1
|
Rotational Dynamics of The Transmembrane Domains Play an Important Role in Peptide Dynamics of Viral Fusion and Ion Channel Forming Proteins—A Molecular Dynamics Simulation Study. Viruses 2022; 14:v14040699. [PMID: 35458429 PMCID: PMC9024552 DOI: 10.3390/v14040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Focusing on the transmembrane domains (TMDs) of viral fusion and channel-forming proteins (VCPs), experimentally available and newly generated peptides in an ideal conformation of the S and E proteins of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and SARS-CoV, gp41 and Vpu, both of human immunodeficiency virus type 1 (HIV-1), haemagglutinin and M2 of influenza A, as well as gB of herpes simplex virus (HSV), are embedded in a fully hydrated lipid bilayer and used in multi-nanosecond molecular dynamics simulations. It is aimed to identify differences in the dynamics of the individual TMDs of the two types of viral membrane proteins. The assumption is made that the dynamics of the individual TMDs are decoupled from their extra-membrane domains, and that the mechanics of the TMDs are distinct from each other due to the different mechanism of function of the two types of proteins. The diffusivity coefficient (DC) of the translational and rotational diffusion is decreased in the oligomeric state of the TMDs compared to those values when calculated from simulations in their monomeric state. When comparing the calculations for two different lengths of the TMD, a longer full peptide and a shorter purely TMD stretch, (i) the difference of the calculated DCs begins to level out when the difference exceeds approximately 15 amino acids per peptide chain, and (ii) the channel protein rotational DC is the most affected diffusion parameter. The rotational dynamics of the individual amino acids within the middle section of the TMDs of the fusion peptides remain high upon oligomerization, but decrease for the channel peptides, with an increasing number of monomers forming the oligomeric state, suggesting an entropic penalty on oligomerization for the latter.
Collapse
|
2
|
Yin L, Chang KF, Nakamura KJ, Kuhn L, Aldrovandi GM, Goodenow MM. Unique genotypic features of HIV-1 C gp41 membrane proximal external region variants during pregnancy relate to mother-to-child transmission via breastfeeding. JOURNAL OF CLINICAL PEDIATRICS AND NEONATOLOGY 2021; 1:9-20. [PMID: 34553192 PMCID: PMC8454918 DOI: 10.46439/pediatrics.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mother-to-child transmission (MTCT) through breastfeeding remains a major source of pediatric HIV-1 infection worldwide. To characterize plasma HIV-1 subtype C populations from infected mothers during pregnancy that related to subsequent breast milk transmission, an exploratory study was designed to apply next generation sequencing and a custom bioinformatics pipeline for HIV-1 gp41 extending from heptad repeat region 2 (HR2) through the membrane proximal external region (MPER) and the membrane spanning domain (MSD). MPER harbors linear and highly conserved epitopes that repeatedly elicits HIV-1 neutralizing antibodies with exceptional breadth. Viral populations during pregnancy from women who transmitted by breastfeeding, compared to those who did not, displayed greater biodiversity, more frequent amino acid polymorphisms, lower hydropathy index and greater positive charge. Viral characteristics were restricted to MPER, failed to extend into flanking HR2 or MSD regions, and were unrelated to predicted neutralization resistance. Findings provide novel parameters to evaluate an association between maternal MPER variants present during gestation and lactogenesis with subsequent transmission outcomes by breastfeeding. IMPORTANCE HIV-1 transmission through breastfeeding accounts for 39% of MTCT and continues as a major route of pediatric infection in developing countries where access to interventions for interrupting transmission is limited. Identifying women who are likely to transmit HIV-1 during breastfeeding would focus therapies, such as broad neutralizing HIV monoclonal antibodies (bn-HIV-Abs), during the breastfeeding period to reduce MTCT. Findings from our pilot study identify novel characteristics of gestational viral MPER quasispecies related to transmission outcomes and raise the possibility for predicting MTCT by breastfeeding based on identifying mothers with high-risk viral populations.
Collapse
Affiliation(s)
- Li Yin
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Kai-Fen Chang
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | | | - Louise Kuhn
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, Sabin Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Maureen M. Goodenow
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
4
|
Hollingsworth LR, Lemkul JA, Bevan DR, Brown AM. HIV-1 Env gp41 Transmembrane Domain Dynamics Are Modulated by Lipid, Water, and Ion Interactions. Biophys J 2019; 115:84-94. [PMID: 29972814 DOI: 10.1016/j.bpj.2018.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
The gp41 transmembrane domain (TMD) of the envelope glycoprotein of the human immunodeficiency virus modulates the conformation of the viral envelope spike, the only druggable target on the surface of the virion. Targeting the envelope glycoprotein with small-molecule and antibody therapies requires an understanding of gp41 TMD dynamics, which is often challenging given the difficulties in describing native membrane properties. Here, atomistic molecular dynamics simulations of a trimeric, prefusion gp41 TMD in a model, asymmetric viral membrane that mimics the native viral envelope were performed. Water and chloride ions were observed to permeate the membrane and interact with the highly conserved arginine bundle, (R696)3, at the center of the membrane and influenced TMD stability by creating a network of hydrogen bonds and electrostatic interactions. We propose that this (R696)3 - water - anion network plays an important role in viral fusion with the host cell by modulating protein conformational changes within the membrane. Additionally, R683 and R707 at the exofacial and cytofacial membrane-water interfaces, respectively, are anchored in the lipid headgroup region and serve as a junction point for stabilization of the termini. The membrane thins as a result of the tilting of the gp41 trimer with nearby lipids increasing in volume, leading to an entropic driving force for TMD conformational change. These results provide additional detail and perspective on the influence of certain lipid types on TMD dynamics and a rationale for targeting key residues of the TMD for therapeutic design. These insights into the molecular details of TMD membrane anchoring will build toward a greater understanding of the dynamics that lead to viral fusion with the host cell.
Collapse
Affiliation(s)
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia; University Libraries, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
5
|
A Hydrophobic Target: Using the Paramyxovirus Fusion Protein Transmembrane Domain To Modulate Fusion Protein Stability. J Virol 2019; 93:JVI.00863-19. [PMID: 31217248 DOI: 10.1128/jvi.00863-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses utilize surface glycoproteins to bind and fuse with a target cell membrane. The zoonotic Hendra virus (HeV), a member of the family Paramyxoviridae, utilizes the attachment protein (G) and the fusion protein (F) to perform these critical functions. Upon triggering, the trimeric F protein undergoes a large, irreversible conformation change to drive membrane fusion. Previously, we have shown that the transmembrane (TM) domain of the F protein, separate from the rest of the protein, is present in a monomer-trimer equilibrium. This TM-TM association contributes to the stability of the prefusion form of the protein, supporting a role for TM-TM interactions in the control of F protein conformational changes. To determine the impact of disrupting TM-TM interactions, constructs expressing the HeV F TM with limited flanking sequences were synthesized. Coexpression of these constructs with HeV F resulted in dramatic reductions in the stability of F protein expression and fusion activity. In contrast, no effects were observed when the HeV F TM constructs were coexpressed with the nonhomologous parainfluenza virus 5 (PIV5) fusion protein, indicating a requirement for specific interactions. To further examine this, a TM peptide homologous to the PIV5 F TM domain was synthesized. Addition of the peptide prior to infection inhibited infection with PIV5 but did not significantly affect infection with human metapneumovirus, a related virus. These results indicate that targeted disruption of TM-TM interactions significantly impact viral fusion protein stability and function, presenting these interactions as a novel target for antiviral development.IMPORTANCE Enveloped viruses require virus-cell membrane fusion to release the viral genome and replicate. The viral fusion protein triggers from the pre- to the postfusion conformation, an essentially irreversible change, to drive membrane fusion. We found that small proteins containing the TM and a limited flanking region homologous to the fusion protein of the zoonotic Hendra virus reduced protein expression and fusion activity. The introduction of exogenous TM peptides may displace a TM domain, disrupting native TM-TM interactions and globally destabilizing the fusion protein. Supporting this hypothesis, we showed that a sequence-specific transmembrane peptide dramatically reduced viral infection in another enveloped virus model, suggesting a broader inhibitory mechanism. Viral fusion protein TM-TM interactions are important for protein function, and disruption of these interactions dramatically reduces protein stability.
Collapse
|
6
|
Perrin J, Bary A, Vernay A, Cosson P. Role of the HIV-1 envelope transmembrane domain in intracellular sorting. BMC Cell Biol 2018; 19:3. [PMID: 29544440 PMCID: PMC5856207 DOI: 10.1186/s12860-018-0153-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Background The envelope protein of lentiviruses are type I transmembrane proteins, and their transmembrane domain contains conserved potentially charged residues. This highly unusual feature would be expected to cause endoplasmic reticulum (ER) localization. The aim of this study was to determine by which means the HIV-1 Env protein is transported to the cell surface although its transmembrane domain contains a conserved arginine residue. Results We expressed various chimeric proteins and analyzed the influence of their transmembrane domain on their intracellular localization. The transmembrane domain of the HIV-1 Env protein does not cause ER retention. This is not due to the presence of conserved glycine residues, or to the position of the arginine residue, but to the length of the transmembrane domain. A shortened version of the Env transmembrane domain causes arginine-dependent ER targeting. Remarkably, the transmembrane domain of the HIV-1 Env protein, although it does not confer ER retention, interacts efficiently with negatively charged residues in the membrane. Conclusion These results suggest that the intrinsic properties of the HIV-1 Env transmembrane domain allow the protein to escape ER-retention mechanisms, while maintaining its ability to interact with cellular proteins and to influence cellular physiology.
Collapse
Affiliation(s)
- Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland.
| | - Aurélie Bary
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Alexandre Vernay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| |
Collapse
|
7
|
Liang S, Ratnayake PU, Keinath C, Jia L, Wolfe R, Ranaweera A, Weliky DP. Efficient Fusion at Neutral pH by Human Immunodeficiency Virus gp41 Trimers Containing the Fusion Peptide and Transmembrane Domains. Biochemistry 2018; 57:1219-1235. [PMID: 29345922 DOI: 10.1021/acs.biochem.7b00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) is membrane-enveloped, and an initial infection step is joining/fusion of viral and cell membranes. This step is catalyzed by gp41, which is a single-pass integral viral membrane protein. The protein contains an ∼170-residue ectodomain located outside the virus that is important for fusion and includes the fusion peptide (FP), N-helix, loop, C-helix, and viral membrane-proximal external region (MPER). The virion initially has noncovalent complexes between three gp41 ectodomains and three gp120 proteins. A gp120 contains ∼500 residues and functions to identify target T-cells and macrophages via binding to specific protein receptors of the target cell membrane. gp120 moves away from the gp41 ectodomain, and the ectodomain is thought to bind to the target cell membrane and mediate membrane fusion. The secondary and tertiary structures of the ectodomain are different in the initial complex with gp120 and the final state without gp120. There is not yet imaging of gp41 during fusion, so the temporal relationship between the gp41 and membrane structures is not known. This study describes biophysical and functional characterization of large gp41 constructs that include the ectodomain and transmembrane domain (TM). Significant fusion is observed of both neutral and anionic vesicles at neutral pH, which reflects the expected conditions of HIV/cell fusion. Fusion is enhanced by the FP, which in HIV/cell fusion likely contacts the host membrane, and the MPER and TM, which respectively interfacially contact and traverse the HIV membrane. Initial contact with vesicles is made by protein trimers that are in a native oligomeric state that reflects the initial complex with gp120 and also is commonly observed for the ectodomain without gp120. Circular dichroism data support helical structure for the N-helix, C-helix, and MPER and nonhelical structure for the FP and loop. Distributions of monomer, trimer, and hexamer states are observed by size-exclusion chromatography (SEC), with dependences on solubilizing detergent and construct. These SEC and other data are integrated into a refined working model of HIV/cell fusion that includes dissociation of the ectodomain into gp41 monomers followed by folding into hairpins that appose the two membranes, and subsequent fusion catalysis by trimers and hexamers of hairpins. The monomer and oligomer gp41 states may therefore satisfy dual requirements for HIV entry of membrane apposition and fusion.
Collapse
Affiliation(s)
- S Liang
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - P U Ratnayake
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - C Keinath
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - L Jia
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - R Wolfe
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - A Ranaweera
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - D P Weliky
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Webb S, Nagy T, Moseley H, Fried M, Dutch R. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability. J Biol Chem 2017; 292:5685-5694. [PMID: 28213515 DOI: 10.1074/jbc.m117.777235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Indexed: 12/29/2022] Open
Abstract
Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.
Collapse
Affiliation(s)
- Stacy Webb
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Tamas Nagy
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Hunter Moseley
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Michael Fried
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Rebecca Dutch
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
9
|
Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype. Exp Cell Res 2017; 352:9-19. [PMID: 28132881 DOI: 10.1016/j.yexcr.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023]
Abstract
Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4+ T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling.
Collapse
|
10
|
Formoso K, García MD, Frasch AC, Scorticati C. Filopodia formation driven by membrane glycoprotein M6a depends on the interaction of its transmembrane domains. J Neurochem 2015; 134:499-512. [PMID: 25940868 DOI: 10.1111/jnc.13153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/19/2022]
Abstract
Membrane glycoprotein M6a, which belongs to the tetraspan proteolipid protein family, promotes structural plasticity in neurons and cell lines by unknown mechanisms. This glycoprotein is encoded by Gpm6a, a stress-regulated gene. The hippocampus of animals chronically stressed by either psychosocial or physical stressors shows decreased M6a expression. Stressed Gpm6a-null mice develop a claustrophobia-like phenotype. In humans, de novo duplication of GPM6A results in learning/behavioral abnormalities, and two single-nucleotide polymorphisms (SNPs) in the non-coding region are linked to mood disorders. Here, we studied M6a dimerization in neuronal membranes and its functional relevance. We showed that the self-interaction of M6a transmembrane domains (TMDs) might be driving M6a dimerization, which is required to induce filopodia formation. Glycine mutants located in TMD2 and TMD4 of M6a affected its dimerization, thus preventing M6a-induced filopodia formation in neurons. In silico analysis of three non-synonymous SNPs located in the coding region of TMDs suggested that these mutations induce protein instability. Indeed, these SNPs prevented M6a from being functional in neurons, owing to decreased stability, dimerization or improper folding. Interestingly, SNP3 (W141R), which caused endoplasmic reticulum retention, is equivalent to that mutated in PLP1, W161L, which causes demyelinating Pelizaeus-Merzbacher disease. In this work we analyzed the functional contribution of transmembrane domains (TMDs) of the neuronal membrane glycoprotein M6a. We determined that certain glycines present in TMD2 and TMD4 are critical for filopodia induction in neurons. In addition, three nsSNPs located in the coding region of TMD2 and TMD3 of GPM6A impair M6a function by affecting its stability, folding and dimer formation.
Collapse
Affiliation(s)
- Karina Formoso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Micaela D García
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| |
Collapse
|
11
|
Roche J, Louis JM, Aniana A, Ghirlando R, Bax A. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding. JOURNAL OF BIOMOLECULAR NMR 2015; 61:235-48. [PMID: 25631354 PMCID: PMC4398632 DOI: 10.1007/s10858-015-9900-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/17/2015] [Indexed: 05/22/2023]
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6 HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6 HB trimer and the membrane affinity of gp41's ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41's transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | | | | | | |
Collapse
|
12
|
Tedbury PR, Freed EO. The cytoplasmic tail of retroviral envelope glycoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:253-84. [PMID: 25595807 DOI: 10.1016/bs.pmbts.2014.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Retroviruses comprise a large, diverse group that infects a broad range of host organisms. Pathogenicity varies widely; the human immunodeficiency virus is the causative agent of acquired immunodeficiency syndrome, one of the world's leading infectious causes of death, while many nonhuman retroviruses cause cancer in the host. Retroviruses have been studied intensively, and great strides have been made in understanding aspects of retroviral biology. While the principal functions of the viral structural proteins are well understood, there remain many incompletely characterized domains. One of these is the cytoplasmic tail (CT) of the envelope glycoprotein. Several functions of the CT are highly conserved, whereas other properties are unique to a specific retrovirus. For example, the lentiviruses encode envelope glycoproteins with particularly large cytoplasmic domains. The functions of the long lentiviral envelope CT are still being deciphered. The reported functions of retroviral envelope CTs are discussed in this chapter.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
13
|
Banerjee K, Weliky DP. Folded monomers and hexamers of the ectodomain of the HIV gp41 membrane fusion protein: potential roles in fusion and synergy between the fusion peptide, hairpin, and membrane-proximal external region. Biochemistry 2014; 53:7184-98. [PMID: 25372604 PMCID: PMC4245979 DOI: 10.1021/bi501159w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
HIV
is an enveloped virus and fusion between the HIV and host cell
membranes is catalyzed by the ectodomain of the HIV gp41 membrane
protein. Both the N-terminal fusion peptide (FP)
and C-terminal membrane-proximal external region
(MPER) are critical for fusion and are postulated to bind to the host
cell and HIV membranes, respectively. Prior to fusion, the gp41 on
the virion is a trimer in noncovalent complex with larger gp120 subunits.
The gp120 bind host cell receptors and move away or dissociate from
gp41 which subsequently catalyzes fusion. In the present work, large
gp41 ectodomain constructs were produced and biophysically and structurally
characterized. One significant finding is observation of synergy between
the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced
fusion can be very efficient with only ∼15 gp41 per vesicle,
which is comparable to the number of gp41 on a virion. Conditions
are found with predominant monomer or hexamer but not trimer and these
may be oligomeric states during fusion. Monomer gp41 ectodomain is
hyperthermostable and has helical hairpin structure. A new HIV fusion
model is presented where (1) hemifusion is catalyzed by folding of
gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps
are catalyzed by assembly into a hexamer with FPs in an antiparallel
β sheet. There is also significant interest in the gp41 MPER
because it is the epitope of several broadly neutralizing antibodies.
Two of these antibodies bind our gp41 ectodomain constructs and support
investigation of the gp41 ectodomain as an immunogen in HIV vaccine
development.
Collapse
Affiliation(s)
- Koyeli Banerjee
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | |
Collapse
|
14
|
Dysfunction of bovine endogenous retrovirus K2 envelope glycoprotein is related to unsuccessful intracellular trafficking. J Virol 2014; 88:6896-905. [PMID: 24696495 DOI: 10.1128/jvi.00288-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are the remnants of retroviral infection of ancestral germ cells. Mutations introduced into ERVs halt the production of infectious agents, but their effects on the function of retroviral proteins are not fully understood. Retroviral envelope glycoproteins (Envs) are utilized in membrane fusion during viral entry, and we recently identified intact coding sequences for bovine endogenous retrovirus K1 (BERV-K1) and BERV-K2 Envs. Amino acid sequences of BERV-K1 Env (also called Fematrin-1) and BERV-K2 Env are similar, and both viruses are classified in the genus Betaretrovirus. While Fematrin-1 plays an important role in cell-to-cell fusion in bovine placenta, the BERV-K2 envelope gene is marginally expressed in vivo, and its recombinant Env protein is defective in membrane fusion due to inefficient cleavage of surface (SU) and transmembrane subunits. Here, we conducted chimeric analyses of Fematrin-1 and BERV-K2 Envs and revealed that defective maturation of BERV-K2 Env contributed to failed intracellular trafficking. Fluorescence microscopy and flow cytometric analysis suggested that in contrast to Fematrin-1 Env, BERV-K2 Env could not be transported from the endoplasmic reticulum to the trans-Golgi network, where cellular proteases required for processing retroviral Envs are localized. We also identified that one of the responsive regions of this phenomenon resided within a 65-amino-acid region of BERV-K2 SU. This is the first report to identify that retroviral Env SU is involved in the regulation of intracellular trafficking, and it may help to elucidate the maturation process of Fematrin-1 and other related Envs. IMPORTANCE Retroviruses utilize envelope glycoproteins (Envs) to enter host target cells. Mature retroviral Env is a heterodimer, which consists of surface (SU) and transmembrane (TM) subunits that are generated by the cleavage of an Env precursor protein in the trans-Golgi network. SU and TM mediate the recognition of the entry receptor and virus-host membrane fusion, respectively. However, unexplained issues remain for the maturation process of retroviral Env. We previously reported that bovine endogenous retrovirus K2 (BERV-K2) Env lost fusogenicity due to a defect in the cleavage of SU and TM. In this study, we identified that mutations residing in BERV-K2 SU disturbed intracellular trafficking of BERV-K2 Env and resulted its inefficient cleavage. Because SU is not known to play an important role in this process, our study may provide novel insights into the maturation mechanism of retroviral Envs.
Collapse
|
15
|
Characterization of the water defect at the HIV-1 gp41 membrane spanning domain in bilayers with and without cholesterol using molecular simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1396-405. [PMID: 24440660 DOI: 10.1016/j.bbamem.2014.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/24/2013] [Accepted: 01/08/2014] [Indexed: 12/23/2022]
Abstract
The membrane spanning domain (MSD) of human immunodeficiency virus 1 (HIV-1) envelope glycoprotein gp41 is important for fusion and infection. We used molecular dynamics (MD) simulations (3.4 μs total) to relate membrane and peptide properties that lead to water solvation of the α-helical gp41 MSD's midspan arginine in pure dipalmitoylphosphatidylcholine (DPPC) and in 50/50 DPPC/cholesterol membranes. We find that the midspan arginine is solvated by water that penetrates the inner leaflet, leading to a so-called water defect. The water defect is surprisingly robust across initial conditions and membrane compositions, but the presence of cholesterol modulates its behavior in several key ways. In the cholesterol-containing membranes, fluctuations in membrane thickness and water penetration depth are localized near the midspan arginine, and the MSD helices display a tightly regulated tilt angle. In the cholesterol-free membranes, thickness fluctuations are not as strongly correlated to the peptide position and tilt angles vary significantly depending on protein position relative to boundaries between domains of differing thickness. Cholesterol in an HIV-1 viral membrane is required for infection. Therefore, this work suggests that the colocalized water defect and membrane thickness fluctuations in cholesterol-containing viral membranes play an important role in fusion by bringing the membrane closer to a stability limit that must be crossed for fusion to occur.
Collapse
|
16
|
Motohashi Y, Ohashi-Kobayashi A, Nakanishi-Matsui M, Fujimoto Y, Maeda M. Intracellular Localization of ABC Transporter TAPL Differs between Transient and Stable Expression. Cell 2014. [DOI: 10.4236/cellbio.2014.32006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Smith EC, Smith SE, Carter JR, Webb SR, Gibson KM, Hellman LM, Fried MG, Dutch RE. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function. J Biol Chem 2013; 288:35726-35. [PMID: 24178297 DOI: 10.1074/jbc.m113.514554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.
Collapse
Affiliation(s)
- Everett Clinton Smith
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Retrovirus glycoprotein functionality requires proper alignment of the ectodomain and the membrane-proximal cytoplasmic tail. J Virol 2013; 87:12805-13. [PMID: 24049172 DOI: 10.1128/jvi.01847-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonnative viral glycoproteins, including Friend murine leukemia virus envelope (F-MLV Env) are actively recruited to HIV-1 assembly sites by an unknown mechanism. Because interactions with the lipid microenvironment at budding sites could contribute to recruitment, we examined the contribution of the hydrophobicity of the F-MLV Env membrane-spanning domain (MSD) to its incorporation into HIV-1 particles. A series of F-MLV Env mutants that added or deleted one, two, or three leucines in the MSD were constructed. All six mutants retained the ability to be incorporated into HIV-1 particles, but the -1L, -2L, -3L, +1L, and +2L mutants were not capable of producing infectious particles. Surprisingly, the +3L Env glycoprotein was able to produce infectious particles and was constitutively fusogenic. However, when the cytoplasmic tail domains (CTDs) in the Env constructs were deleted, all six of the MSD mutants were able to produce infectious particles. Further mutational analyses revealed that the first 10 amino acids of the CTD is a critical regulator of infectivity. A similar phenotype was observed in HIV-1 Env upon addition of leucines in the MSD, with +1 and +2 leucine mutations greatly reducing Env activity, but +3 leucine mutations behaving similar to the wild type. Unlike F-MLV Env (+1L and +2L), HIV-1 Env (+1L and +2L) infectivity was not restored by deletion of the CTD. We hypothesize that the CTD forms a coiled-coil that disrupts the protein's functionality if it is not in phase with the trimer interface of the ectodomain.
Collapse
|
19
|
[Joint collaboration in infectious diseases in China, the University of Tokyo]. Uirusu 2013; 63:37-44. [PMID: 24769576 DOI: 10.2222/jsv.63.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent rapid developments in Asian and African countries bring an opportunity of cross-species transmission of pathogens through unprecedented contacts between people and wild animals. Furthermore, increase of global exchanges of people and products facilitates a rapid spread of infectious diseases worldwide. China has an enormous population with diverse ethnic groups within its wide territory; furthermore, it is experiencing very rapid urbanization. These conditions make China a potential epicenter of emerging infectious diseases. One good example is the SARS incidence in 2003. Therefore, it is essential to include China in a network of research groups of infectious diseases. Here we summarize the ongoing collaborations between the Institute of Medical Science, the University of Tokyo, and its Chinese counterparts.
Collapse
|
20
|
Faingold O, Cohen T, Shai Y. A GxxxG-like motif within HIV-1 fusion peptide is critical to its immunosuppressant activity, structure, and interaction with the transmembrane domain of the T-cell receptor. J Biol Chem 2012; 287:33503-11. [PMID: 22872636 DOI: 10.1074/jbc.m112.370817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To thrive in the human body, HIV fuses to its target cell and evades the immune response via several mechanisms. The fusion cascade is initiated by the fusion peptide (FP), which is located at the N-terminal of gp41, the transmembrane protein of HIV. Recently, it has been shown that the HIV-1 FP, particularly its 5-13 amino acid region (FP(5-13)), suppresses T-cell activation and interacts with the transmembrane domain (TMD) of the T-cell receptor (TCR) complex. Specific amino acid motifs often contribute to such interactions in TMDs of membrane proteins. Using bioinformatics and experimental studies, we report on a GxxxG-like motif (AxxxG), which is conserved in the FP throughout different clades and strains of HIV-1. Biological activity studies and FTIR spectroscopy revealed that HIV FP(5-13)-derived peptides, in which the motif was altered either by randomization or by a single amino acid shift, lost their immunosuppressive activity concomitant with a loss of the β-sheet structure in a membranous environment. Furthermore, fluorescence studies revealed that the inactive mutants lost their ability to interact with their target site, namely, the TMD of TCRα, designated CP. Importantly, lipotechoic acid activated macrophages (lacking TCR) were not affected by FP, further demonstrating the specificity of the immunosuppressant activity of CP. Finally, although the AxxxG WT and the GxxxG analog both associated with the CP and immunosuppressed T-cells, the AxxxG WT but not the GxxxG analog induced lipid mixing. Overall, the data support an important role for the AxxxG motif in the function of FP and might explain the natural selection of the AxxxG motif rather than the classical GxxxG motif in FP.
Collapse
Affiliation(s)
- Omri Faingold
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
21
|
The comparison of genetic variation in the envelope protein between various immunodeficiency viruses and equine infectious anemia virus. Virol Sin 2012; 27:241-7. [PMID: 22899432 DOI: 10.1007/s12250-012-3253-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022] Open
Abstract
The envelope protein (Env) of lentiviruses such as HIV, SIV, FIV and EIAV is larger than that of other retroviruses. The Chinese EIAV attenuated vaccine is based on Env and has helped to successfully control this virus, demonstrating that envelope is crucial for vaccine. We compared Env variation of the four kinds of lentiviruses. Phylogenetic analysis showed that the evolutionary relationship of Env between HIV and SIV was the closest and they appeared to descend from a common ancestor, and the relationship of HIV and EIAV was the furthest. EIAV had the shortest Env length and the least number of potential N-linked glycosylation sites (PNGS) as well as glycosylation density compared to various immunodeficiency viruses. However, HIV had the longest Env length and the most PNGS. Moreover, the alignment of HIV and SIV showed that PNGS were primarily distributed within extracellular membrane protein gp120 rather than transmembrane gp41. It implies that the size difference among these viruses is associated with a lentivirus specific function and also the diversity of env. There are low levels of modification of glycosylation sites of Env and selection of optimal protective epitopes might be useful for development of an effective vaccine against HIV/AIDS.
Collapse
|
22
|
Reuven EM, Dadon Y, Viard M, Manukovsky N, Blumenthal R, Shai Y. HIV-1 gp41 transmembrane domain interacts with the fusion peptide: implication in lipid mixing and inhibition of virus-cell fusion. Biochemistry 2012; 51:2867-78. [PMID: 22413880 PMCID: PMC3335273 DOI: 10.1021/bi201721r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fusion of the human immunodeficiency virus (HIV) with target cells is mediated by the gp41 subunit of the envelope protein. Mutation and deletion studies within the transmembrane domain (TMD) of intact gp41 influenced its fusion activity. In addition, current models suggest that the TMD is in proximity with the fusion peptide (FP) at the late fusion stages, but there are no direct experimental data to support this hypothesis. Here, we investigated the TMD focusing on two regions: the N-terminal containing the GxxxG motif and the C-terminal containing the GLRI motif, which is conserved among the TMDs of HIV and the T-cell receptor. Studies utilizing the ToxR expression system combined with synthetic peptides and their fluorescent analogues derived from TMD revealed that the GxxxG motif is important for TMD self-association, whereas the C-terminal region is for its heteroassociation with FP. Functionally, all three TMD peptides induced lipid mixing that was enhanced significantly upon mixing with FP. Furthermore, the TMD peptides inhibited virus-cell fusion apparently through their interaction with their endogenous counterparts. Notably, the R2E mutant (in the GLRI) was significantly less potent than the two others. Overall, our findings provide experimental evidence that HIV-1 TMD contributes to membrane assembly and function of the HIV-1 envelope. Owing to similarities between functional domains within viruses, these findings suggest that the TMDs and FPs may contribute similarly in other viruses as well.
Collapse
Affiliation(s)
- Eliran Moshe Reuven
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Yakir Dadon
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Mathias Viard
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nurit Manukovsky
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Robert Blumenthal
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
23
|
Popa A, Carter JR, Smith SE, Hellman L, Fried MG, Dutch RE. Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol 2012; 86:3014-26. [PMID: 22238299 PMCID: PMC3302302 DOI: 10.1128/jvi.05826-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/23/2011] [Indexed: 12/17/2022] Open
Abstract
Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking.
Collapse
Affiliation(s)
- Andreea Popa
- Department of Molecular and Cellular Biochemistry
| | | | | | | | - Michael G. Fried
- Department of Molecular and Cellular Biochemistry
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
24
|
Beyond anchoring: the expanding role of the hendra virus fusion protein transmembrane domain in protein folding, stability, and function. J Virol 2012; 86:3003-13. [PMID: 22238302 DOI: 10.1128/jvi.05762-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion.
Collapse
|
25
|
Conserved arginine residue in the membrane-spanning domain of HIV-1 gp41 is required for efficient membrane fusion. Protein Cell 2011; 2:369-76. [PMID: 21667332 DOI: 10.1007/s13238-011-1051-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022] Open
Abstract
Despite the high mutation rate of HIV-1, the amino acid sequences of the membrane-spanning domain (MSD) of HIV-1 gp41 are well conserved. Arginine residues are rarely found in single membrane-spanning domains, yet an arginine residue, R(696) (the numbering is based on that of HXB2), is highly conserved in HIV-1 gp41. To examine the role of R(696), it was mutated to K, A, I, L, D, E, N, and Q. Most of these substitutions did not affect the expression, processing or surface distribution of the envelope protein (Env). However, a syncytia formation assay showed that the substitution of R(696) with amino acid residues other than K, a naturally observed mutation in the gp41 MSD, decreased fusion activity. Substitution with hydrophobic amino acid residues (A, I, and L) resulted in a modest decrease, while substitution with D or E, potentially negatively-charged residues, almost abolished the syncytia formation. All the fusion-defective mutants showed slower kinetics with the cell-based dual split protein (DSP) assay that scores the degree of membrane fusion based on pore formation between fusing cells. Interestingly, the D and E substitutions did show some fusion activity in the DSP assays, suggesting that proteins containing D or E substitutions retained some fusion pore-forming capability. However, nascent pores failed to develop, due probably to impaired activity in the pore enlargement process. Our data show the importance of this conserved arginine residue for efficient membrane fusion.
Collapse
|