1
|
GC K, Lesko S, Emery A, Burnett C, Gopal K, Clark S, Swanstrom R, Sherer N, Telesnitsky A, Kharytonchyk S. HIV-1 single transcription start site mutants display complementary replication functions that are restored by reversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626847. [PMID: 39677600 PMCID: PMC11643096 DOI: 10.1101/2024.12.04.626847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
HIV-1 transcription initiates at two positions, generating RNAs with either cap1G or cap3G 5' ends. The replication fates of these RNAs di\er, with viral particles encapsidating almost exclusively cap1G RNAs and cap3G RNAs retained in cells where they are enriched on polysomes and among spliced viral RNAs. Here, we studied replication properties of virus promoter mutants that produced only one RNA 5' isoform or the other: separately, in combination, and during spreading infection. Results showed that either single start RNA could serve as both mRNA and genomic RNA when present as the only form in cells, although cap3G RNA was more efficiently translated and spliced while cap1G RNA was packaged into nascent virions slightly better than RNAs from the parental virus. When co-expressed from separate vectors, cap1G RNA was preferentially packaged into virions. During spreading infection cap1G-only virus displayed only minor defects but cap3G-only virus showed severe replication delays in both the highly permissive MT-4 cell line and in primary human CD4+ T cells. Passage of cap3G-only virus yielded revertants that replicated as well as the twinned (cap1G+ cap3G) transcription start site parent. These revertants displayed restored packaging and splicing levels and had regained multiple transcription start site use.
Collapse
Affiliation(s)
- K. GC
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S. Lesko
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - A. Emery
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C. Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K. Gopal
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S. Clark
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - R. Swanstrom
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - N.M. Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - A. Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S. Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Geng A, Ganser L, Roy R, Shi H, Pratihar S, Case DA, Al-Hashimi HM. An RNA excited conformational state at atomic resolution. Nat Commun 2023; 14:8432. [PMID: 38114465 PMCID: PMC10730710 DOI: 10.1038/s41467-023-43673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Sparse and short-lived excited RNA conformational states are essential players in cell physiology, disease, and therapeutic development, yet determining their 3D structures remains challenging. Combining mutagenesis, NMR spectroscopy, and computational modeling, we determined the 3D structural ensemble formed by a short-lived (lifetime ~2.1 ms) lowly-populated (~0.4%) conformational state in HIV-1 TAR RNA. Through a strand register shift, the excited conformational state completely remodels the 3D structure of the ground state (RMSD from the ground state = 7.2 ± 0.9 Å), forming a surprisingly more ordered conformational ensemble rich in non-canonical mismatches. The structure impedes the formation of the motifs recognized by Tat and the super elongation complex, explaining why this alternative TAR conformation cannot activate HIV-1 transcription. The ability to determine the 3D structures of fleeting RNA states using the presented methodology holds great promise for our understanding of RNA biology, disease mechanisms, and the development of RNA-targeting therapeutics.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laura Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Supriya Pratihar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins (Basel) 2022; 14:toxins14020138. [PMID: 35202165 PMCID: PMC8876946 DOI: 10.3390/toxins14020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Stefanie Schatz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jamila Franca Rosengarten
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Correspondence:
| |
Collapse
|
4
|
Selective packaging of HIV-1 RNA genome is guided by the stability of 5' untranslated region polyA stem. Proc Natl Acad Sci U S A 2021; 118:2114494118. [PMID: 34873042 DOI: 10.1073/pnas.2114494118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
To generate infectious virus, HIV-1 must package two copies of its full-length RNA into particles. HIV-1 transcription initiates from multiple, neighboring sites, generating RNA species that only differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. Strikingly, 1G RNA is preferentially packaged into virions over 3G RNA. We investigated how HIV-1 distinguishes between these nearly identical RNAs using in-gel chemical probing combined with recently developed computational tools for determining RNA conformational ensembles, as well as cell-based assays to quantify the efficiency of RNA packaging into viral particles. We found that 1G and 3G RNAs fold into distinct structural ensembles. The 1G RNA, but not the 3G RNA, primarily adopts conformations with an intact polyA stem, exposed dimerization initiation site, and multiple, unpaired guanosines known to mediate Gag binding. Furthermore, we identified mutants that exhibited altered genome selectivity and packaged 3G RNA efficiently. In these mutants, both 1G and 3G RNAs fold into similar conformational ensembles, such that they can no longer be distinguished. Our findings demonstrate that polyA stem stability guides RNA-packaging selectivity. These studies also uncover the mechanism by which HIV-1 selects its genome for packaging: 1G RNA is preferentially packaged because it exposes structural elements that promote RNA dimerization and Gag binding.
Collapse
|
5
|
D’Souza AR, Jayaraman D, Long Z, Zeng J, Prestwood LJ, Chan C, Kappei D, Lever AML, Kenyon JC. HIV-1 Packaging Visualised by In-Gel SHAPE. Viruses 2021; 13:v13122389. [PMID: 34960658 PMCID: PMC8707378 DOI: 10.3390/v13122389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
HIV-1 packages two copies of its gRNA into virions via an interaction with the viral structural protein Gag. Both copies and their native RNA structure are essential for virion infectivity. The precise stepwise nature of the packaging process has not been resolved. This is largely due to a prior lack of structural techniques that follow RNA structural changes within an RNA-protein complex. Here, we apply the in-gel SHAPE (selective 2'OH acylation analysed by primer extension) technique to study the initiation of HIV-1 packaging, examining the interaction between the packaging signal RNA and the Gag polyprotein, and compare it with that of the NC domain of Gag alone. Our results imply interactions between Gag and monomeric packaging signal RNA in switching the RNA conformation into a dimerisation-competent structure, and show that the Gag-dimer complex then continues to stabilise. These data provide a novel insight into how HIV-1 regulates the translation and packaging of its genome.
Collapse
Affiliation(s)
- Aaron R. D’Souza
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
| | - Dhivya Jayaraman
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
| | - Ziqi Long
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Jingwei Zeng
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Liam J. Prestwood
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrew M. L. Lever
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)1-2237-47308 (J.C.K.)
| | - Julia C. Kenyon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)1-2237-47308 (J.C.K.)
| |
Collapse
|
6
|
5'-Cap sequestration is an essential determinant of HIV-1 genome packaging. Proc Natl Acad Sci U S A 2021; 118:2112475118. [PMID: 34493679 PMCID: PMC8449379 DOI: 10.1073/pnas.2112475118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.
Collapse
|
7
|
Kalloush RM, Vivet-Boudou V, Ali LM, Pillai VN, Mustafa F, Marquet R, Rizvi TA. Stabilizing role of structural elements within the 5´ Untranslated Region (UTR) and gag sequences in Mason-Pfizer monkey virus (MPMV) genomic RNA packaging. RNA Biol 2019; 16:612-625. [PMID: 30773097 DOI: 10.1080/15476286.2019.1572424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Mason-Pfizer monkey virus (MPMV) genomic RNA (gRNA) packaging signal is a highly-structured element with several stem-loops held together by two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences. These LRIs play a critical role in maintaining the structure of the 5´ end of the MPMV gRNA. Thus, one could hypothesize that the overall RNA secondary structure of this region is further architecturally held together by three other stem loops (SL3, Gag SL1, and Gag SL2) comprising of sequences from the distal parts of the 5´untranslated region (5' UTR) to ~ 120 nucleotides into gag, excluding gag sequences involved in forming the U5-Gag LRIs. To provide functional evidence for the biological significance of these stem loops during gRNA encapsidation, these structural motifs were mutated and their effects on MPMV RNA packaging and propagation were tested in a single round trans-complementation assay. The mutant RNA structures were further studied by high throughput SHAPE (hSHAPE) assay. Our results reveal that sequences involved in forming these three stem loops do not play crucial roles at an individual level during MPMV gRNA packaging or propagation. Further structure-function analysis indicates that the U5-Gag LRIs have a more important architectural role in stabilizing the higher order structure of the 5´ UTR than the three stem loops which have a more secondary and perhaps indirect role in stabilizing the overall RNA secondary structure of the region. Our work provides a better understanding of the molecular interactions that take place during MPMV gRNA packaging.
Collapse
Affiliation(s)
- Rawan M Kalloush
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Valérie Vivet-Boudou
- b CNRS, Architecture et Réactivité de l'ARN, UPR , Université de Strasbourg , Strasbourg , France
| | - Lizna M Ali
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Vineeta N Pillai
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Farah Mustafa
- c Department of Biochemistry, College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Roland Marquet
- b CNRS, Architecture et Réactivité de l'ARN, UPR , Université de Strasbourg , Strasbourg , France
| | - Tahir A Rizvi
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| |
Collapse
|
8
|
Lu W, Tirumuru N, St Gelais C, Koneru PC, Liu C, Kvaratskhelia M, He C, Wu L. N6-Methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J Biol Chem 2018; 293:12992-13005. [PMID: 29976753 PMCID: PMC6109920 DOI: 10.1074/jbc.ra118.004215] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/27/2018] [Indexed: 11/06/2022] Open
Abstract
The internal N6-methyladenosine (m6A) modification of cellular mRNA regulates post-transcriptional gene expression. The YTH domain family proteins (YTHDF1-3 or Y1-3) bind to m6A-modified cellular mRNAs and modulate their metabolism and processing, thereby affecting cellular protein translation. We previously reported that HIV-1 RNA contains the m6A modification and that Y1-3 proteins inhibit HIV-1 infection by decreasing HIV-1 reverse transcription activity. Here, we investigated the mechanisms of Y1-3-mediated inhibition of HIV-1 infection in target cells and the effect of Y1-3 on viral production levels in virus-producing cells. We found that Y1-3 protein overexpression in HIV-1 target cells decreases viral genomic RNA (gRNA) levels and inhibits both early and late reverse transcription. Purified recombinant Y1-3 proteins preferentially bound to the m6A-modified 5' leader sequence of gRNA compared with its unmodified RNA counterpart, consistent with the strong binding of Y1-3 proteins to HIV-1 gRNA in infected cells. HIV-1 mutants with two altered m6A modification sites in the 5' leader sequence of gRNA exhibited significantly lower infectivity than WT, replication-competent HIV-1, confirming that these sites alter viral infection. HIV-1 produced from cells in which endogenous Y1, Y3, or Y1-3 proteins were knocked down singly or together had increased viral infectivity compared with HIV-1 produced in control cells. Interestingly, we found that Y1-3 proteins and HIV-1 Gag protein formed a complex with RNA in HIV-1-producing cells. Overall, these results indicate that Y1-3 proteins inhibit HIV-1 infection and provide new insights into the mechanisms by which the m6A modification of HIV-1 RNA affects viral replication.
Collapse
Affiliation(s)
- Wuxun Lu
- From the Center for Retrovirus Research, Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210
| | - Nagaraja Tirumuru
- From the Center for Retrovirus Research, Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210
| | - Corine St Gelais
- From the Center for Retrovirus Research, Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210
| | - Pratibha C Koneru
- the Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| | - Chang Liu
- the Departments of Chemistry and of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637
| | - Mamuka Kvaratskhelia
- the Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| | - Chuan He
- the Departments of Chemistry and of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637
| | - Li Wu
- From the Center for Retrovirus Research, Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210,
| |
Collapse
|
9
|
Kharytonchyk S, Brown JD, Stilger K, Yasin S, Iyer AS, Collins J, Summers MF, Telesnitsky A. Influence of gag and RRE Sequences on HIV-1 RNA Packaging Signal Structure and Function. J Mol Biol 2018; 430:2066-2079. [PMID: 29787767 PMCID: PMC6082134 DOI: 10.1016/j.jmb.2018.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022]
Abstract
The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5' leader Ψ elements plus poorly defined additional features. We previously defined minimal 5' leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5' leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5' leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination.
Collapse
Affiliation(s)
- Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Joshua D Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Krista Stilger
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Saif Yasin
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Aishwarya S Iyer
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - John Collins
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States.
| |
Collapse
|
10
|
Mustafa F, Vivet-Boudou V, Jabeen A, Ali LM, Kalloush RM, Marquet R, Rizvi TA. The bifurcated stem loop 4 (SL4) is crucial for efficient packaging of mouse mammary tumor virus (MMTV) genomic RNA. RNA Biol 2018; 15:1047-1059. [PMID: 29929424 PMCID: PMC6161677 DOI: 10.1080/15476286.2018.1486661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Packaging the mouse mammary tumor virus (MMTV) genomic RNA (gRNA) requires the entire 5' untranslated region (UTR) in conjunction with the first 120 nucleotides of the gag gene. This region includes several palindromic (pal) sequence(s) and stable stem loops (SLs). Among these, stem loop 4 (SL4) adopts a bifurcated structure consisting of three stems, two apical loops, and an internal loop. Pal II, located in one of the apical loops, mediates gRNA dimerization, a process intricately linked to packaging. We thus hypothesized that the bifurcated SL4 structure could constitute the major gRNA packaging determinant. To test this hypothesis, the two apical loops and the flanking sequences forming the bifurcated SL4 were individually mutated. These mutations all had deleterious effects on gRNA packaging and propagation. Next, single and compensatory mutants were designed to destabilize then recreate the bifurcated SL4 structure. A structure-function analysis using bioinformatics predictions and RNA chemical probing revealed that mutations that led to the loss of the SL4 bifurcated structure abrogated RNA packaging and propagation, while compensatory mutations that recreated the native SL4 structure restored RNA packaging and propagation to wild type levels. Altogether, our results demonstrate that SL4 constitutes the principal packaging determinant of MMTV gRNA. Our findings further suggest that SL4 acts as a structural switch that can not only differentiate between RNA for translation versus packaging/dimerization, but its location also allows differentiation between spliced and unspliced RNAs during gRNA encapsidation.
Collapse
Affiliation(s)
- Farah Mustafa
- a Department of Biochemistry , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Valérie Vivet-Boudou
- b Université de Strasbourg , CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Ayesha Jabeen
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Lizna M Ali
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Rawan M Kalloush
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Roland Marquet
- b Université de Strasbourg , CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Tahir A Rizvi
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| |
Collapse
|
11
|
Smyth RP, Smith MR, Jousset AC, Despons L, Laumond G, Decoville T, Cattenoz P, Moog C, Jossinet F, Mougel M, Paillart JC, von Kleist M, Marquet R. In cell mutational interference mapping experiment (in cell MIME) identifies the 5' polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucleic Acids Res 2018; 46:e57. [PMID: 29514260 PMCID: PMC5961354 DOI: 10.1093/nar/gky152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.
Collapse
Affiliation(s)
- Redmond P Smyth
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Maureen R Smith
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Anne-Caroline Jousset
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Laurence Despons
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Géraldine Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Thomas Decoville
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Pierre Cattenoz
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Fabrice Jossinet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Marylène Mougel
- IRIM CNRS UMR9004, Université de Montpellier, Montpellier, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Max von Kleist
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| |
Collapse
|
12
|
Dubois N, Marquet R, Paillart JC, Bernacchi S. Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol 2018; 9:527. [PMID: 29623074 PMCID: PMC5874298 DOI: 10.3389/fmicb.2018.00527] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 01/18/2023] Open
Abstract
The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA) molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…), the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.
Collapse
Affiliation(s)
- Noé Dubois
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Serena Bernacchi
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Antzin-Anduetza I, Mahiet C, Granger LA, Odendall C, Swanson CM. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology 2017; 14:49. [PMID: 29121951 PMCID: PMC5679385 DOI: 10.1186/s12977-017-0374-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) structural protein Gag is necessary and sufficient to form viral particles. In addition to encoding the amino acid sequence for Gag, the underlying RNA sequence could encode cis-acting elements or nucleotide biases that are necessary for viral replication. Furthermore, RNA sequences that inhibit viral replication could be suppressed in gag. However, the functional relevance of RNA elements and nucleotide biases that promote or repress HIV-1 replication remain poorly understood. RESULTS To characterize if the RNA sequence in gag controls HIV-1 replication, the matrix (MA) region was codon modified, allowing the RNA sequence to be altered without affecting the protein sequence. Codon modification of nucleotides (nt) 22-261 or 22-378 in gag inhibited viral replication by decreasing genomic RNA (gRNA) abundance, gRNA stability, Gag expression, virion production and infectivity. Comparing the effect of these point mutations to deletions of the same region revealed that the mutations inhibited infectious virus production while the deletions did not. This demonstrated that codon modification introduced inhibitory sequences. There is a much lower than expected frequency of CpG dinucleotides in HIV-1 and codon modification introduced a substantial increase in CpG abundance. To determine if they are necessary for inhibition of HIV-1 replication, codons introducing CpG dinucleotides were mutated back to the wild type codon, which restored efficient Gag expression and infectious virion production. To determine if they are sufficient to inhibit viral replication, CpG dinucleotides were inserted into gag in the absence of other changes. The increased CpG dinucleotide content decreased HIV-1 infectivity and viral replication. CONCLUSIONS The HIV-1 RNA sequence contains low abundance of CpG dinucleotides. Increasing the abundance of CpG dinucleotides inhibits multiple steps of the viral life cycle, providing a functional explanation for why CpG dinucleotides are suppressed in HIV-1.
Collapse
Affiliation(s)
- Irati Antzin-Anduetza
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Mahiet
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Luke A Granger
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Odendall
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
14
|
Bernacchi S, Abd El-Wahab EW, Dubois N, Hijnen M, Smyth RP, Mak J, Marquet R, Paillart JC. HIV-1 Pr55 Gag binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biol 2016; 14:90-103. [PMID: 27841704 DOI: 10.1080/15476286.2016.1256533] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The HIV-1 Pr55Gag precursor specifically selects genomic RNA (gRNA) from a large variety of cellular and spliced viral RNAs (svRNAs), however the molecular mechanisms of this selective recognition remains poorly understood. To gain better understanding of this process, we analyzed the interactions between Pr55Gag and a large panel of viral RNA (vRNA) fragments encompassing the main packaging signal (Psi) and its flanking regions by fluorescence spectroscopy. We showed that the gRNA harbors a high affinity binding site which is absent from svRNA species, suggesting that this site might be crucial for selecting the HIV-1 genome. Our stoichiometry analysis of protein/RNA complexes revealed that few copies of Pr55Gag specifically associate with the 5' region of the gRNA. Besides, we found that gRNA dimerization significantly impacts Pr55Gag binding, and we confirmed that the internal loop of stem-loop 1 (SL1) in Psi is crucial for specific interaction with Pr55Gag. Our analysis of gRNA fragments of different length supports the existence of a long-range tertiary interaction involving sequences upstream and downstream of the Psi region. This long-range interaction might promote optimal exposure of SL1 for efficient Pr55Gag recognition. Altogether, our results shed light on the molecular mechanisms allowing the specific selection of gRNA by Pr55Gag among a variety of svRNAs, all harboring SL1 in their first common exon.
Collapse
Affiliation(s)
- Serena Bernacchi
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Ekram W Abd El-Wahab
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Noé Dubois
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Marcel Hijnen
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia
| | - Redmond P Smyth
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Johnson Mak
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia.,d School of Medicine, Faculty of Health, Deakin University , Geelong , Victoria , Australia.,e Commonwealth Scientific and Industrial Research Organization, Livestock Industries, Australian Animal Health Laboratory , Geelong , Victoria , Australia
| | - Roland Marquet
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | | |
Collapse
|
15
|
Transcriptional start site heterogeneity modulates the structure and function of the HIV-1 genome. Proc Natl Acad Sci U S A 2016; 113:13378-13383. [PMID: 27834211 DOI: 10.1073/pnas.1616627113] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The promoter in HIV type 1 (HIV-1) proviral DNA contains three sequential guanosines at the U3-R boundary that have been proposed to function as sites for transcription initiation. Here we show that all three sites are used in cells infected with HIV-1 and that viral RNAs containing a single 5' capped guanosine (Cap1G) are specifically selected for packaging in virions, consistent with a recent report [Masuda et al. (2015) Sci Rep 5:17680]. In addition, we now show that transcripts that begin with two or three capped guanosines (Cap2G or Cap3G) are enriched on polysomes, indicating that RNAs synthesized from different transcription start sites have different functions in viral replication. Because genomes are selected for packaging as dimers, we examined the in vitro monomer-dimer equilibrium properties of Cap1G, Cap2G, and Cap3G 5'-leader RNAs in the NL4-3 strain of HIV-1. Strikingly, under physiological-like ionic conditions in which the Cap1G 5'-leader RNA adopts a dimeric structure, the Cap2G and Cap3G 5'-leader RNAs exist predominantly as monomers. Mutagenesis studies designed to probe for base-pairing interactions suggest that the additional guanosines of the 2G and 3G RNAs remodel the base of the PolyA hairpin, resulting in enhanced sequestration of dimer-promoting residues and stabilization of the monomer. Our studies suggest a mechanism through which the structure, function, and fate of the viral genome can be modulated by the transcriptionally controlled presence or absence of a single 5' guanosine.
Collapse
|
16
|
NMR detection of intermolecular interaction sites in the dimeric 5'-leader of the HIV-1 genome. Proc Natl Acad Sci U S A 2016; 113:13033-13038. [PMID: 27791166 DOI: 10.1073/pnas.1614785113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
HIV type-1 (HIV-1) contains a pseudodiploid RNA genome that is selected for packaging and maintained in virions as a noncovalently linked dimer. Genome dimerization is mediated by conserved elements within the 5'-leader of the RNA, including a palindromic dimer initiation signal (DIS) that has been proposed to form kissing hairpin and/or extended duplex intermolecular contacts. Here, we have applied a 2H-edited NMR approach to directly probe for intermolecular interactions in the full-length, dimeric HIV-1 5'-leader (688 nucleotides; 230 kDa). The interface is extensive and includes DIS:DIS base pairing in an extended duplex state as well as intermolecular pairing between elements of the upstream Unique-5' (U5) sequence and those near the gag start site (AUG). Other pseudopalindromic regions of the leader, including the transcription activation (TAR), polyadenylation (PolyA), and primer binding (PBS) elements, do not participate in intermolecular base pairing. Using a 2H-edited one-dimensional NMR approach, we also show that the extended interface structure forms on a time scale similar to that of overall RNA dimerization. Our studies indicate that a kissing dimer-mediated structure, if formed, exists only transiently and readily converts to the extended interface structure, even in the absence of the HIV-1 nucleocapsid protein or other RNA chaperones.
Collapse
|
17
|
Ferrer M, Clerté C, Chamontin C, Basyuk E, Lainé S, Hottin J, Bertrand E, Margeat E, Mougel M. Imaging HIV-1 RNA dimerization in cells by multicolor super-resolution and fluctuation microscopies. Nucleic Acids Res 2016; 44:7922-34. [PMID: 27280976 PMCID: PMC5027490 DOI: 10.1093/nar/gkw511] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/27/2016] [Indexed: 11/15/2022] Open
Abstract
Dimerization is a unique and vital characteristic of retroviral genomes. It is commonly accepted that genomic RNA (gRNA) must be dimeric at the plasma membrane of the infected cells to be packaged during virus assembly. However, where, when and how HIV-1 gRNA find each other and dimerize in the cell are long-standing questions that cannot be answered using conventional approaches. Here, we combine two state-of-the-art, multicolor RNA labeling strategies with two single-molecule microscopy technologies to address these questions. We used 3D-super-resolution structured illumination microscopy to analyze and quantify the spatial gRNA association throughout the cell and monitored the dynamics of RNA-RNA complexes in living-cells by cross-correlation fluctuation analysis. These sensitive and complementary approaches, combined with trans-complementation experiments, reveal for the first time the presence of interacting gRNA in the cytosol, a challenging observation due to the low frequency of these events and their dilution among the bulk of other RNAs, and allow the determination of the subcellular orchestration of the HIV-1 dimerization process.
Collapse
Affiliation(s)
- Mireia Ferrer
- Centre d'études d'agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Caroline Clerté
- CNRS UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France INSERM U1054, 34090 Montpellier, France Université de Montpellier, 34090 Montpellier, France
| | - Célia Chamontin
- Centre d'études d'agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Sébastien Lainé
- Centre d'études d'agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Jérome Hottin
- CNRS UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France INSERM U1054, 34090 Montpellier, France Université de Montpellier, 34090 Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Emmanuel Margeat
- CNRS UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France INSERM U1054, 34090 Montpellier, France Université de Montpellier, 34090 Montpellier, France
| | - Marylène Mougel
- Centre d'études d'agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
18
|
van Bel N, Ghabri A, Das AT, Berkhout B. The HIV-1 leader RNA is exquisitely sensitive to structural changes. Virology 2015; 483:236-52. [DOI: 10.1016/j.virol.2015.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/05/2015] [Accepted: 03/27/2015] [Indexed: 01/14/2023]
|
19
|
van Bel N, Das AT, Cornelissen M, Abbink TEM, Berkhout B. A short sequence motif in the 5' leader of the HIV-1 genome modulates extended RNA dimer formation and virus replication. J Biol Chem 2014; 289:35061-74. [PMID: 25368321 DOI: 10.1074/jbc.m114.621425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5' leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.
Collapse
Affiliation(s)
- Nikki van Bel
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Atze T Das
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Marion Cornelissen
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Truus E M Abbink
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and the Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| | - Ben Berkhout
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| |
Collapse
|
20
|
Abstract
Using on- and off-resonance carbon and nitrogen R1ρ NMR relaxation dispersion in concert with mutagenesis and NMR chemical shift fingerprinting, we show that the transactivation response element RNA from the HIV-1 exists in dynamic equilibrium with a transient state that has a lifetime of ∼2 ms and population of ∼0.4%, which simultaneously remodels the structure of a bulge, stem, and apical loop. This is accomplished by a global change in strand register, in which bulge residues pair up with residues in the upper stem, causing a reshuffling of base pairs that propagates to the tip of apical loop, resulting in the creation of three noncanonical base pairs. Our results show that transient states can remodel distant RNA motifs and possibly give rise to mechanisms for rapid long-range communication in RNA that can be harnessed in processes such as cooperative folding and ribonucleoprotein assembly.
Collapse
|
21
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Hovorun DM. Phylogenetic study on structural elements of HIV-1 poly(A) region. 2. USE domain and TAR hairpin. ACTA ACUST UNITED AC 2014. [DOI: 10.7124/bc.000879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - D. M. Hovorun
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
22
|
Abstract
The 5' untranslated leader region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is a strongly conserved sequence that encodes several regulatory motifs important for viral replication. Most of these motifs are exposed as hairpin structures, including the dimerization initiation signal (DIS), the major splice donor site (SD), and the packaging signal (Ψ), which are connected by short single-stranded regions. Mutational analysis revealed many functions of these hairpins, but only a few studies have focused on the single-stranded purine-rich sequences. Using the in vivo SELEX (systematic evolution of ligands by exponential enrichment) approach, we probed the sequence space in these regions that is compatible with efficient HIV-1 replication and analyzed the impact on the RNA secondary structure of the leader RNA. Our results show a strong sequence requirement for the DIS hairpin flanking regions. We postulate that these sequences are important for the binding of specific protein factors that support leader RNA-mediated functions. The sequence between the SD and Ψ hairpins seems to have a less prominent role, despite the strong conservation of the stretch of 5 A residues in natural isolates. We hypothesize that this may reflect the subtle evolutionary pressure on HIV-1 to acquire an A-rich RNA genome. In silico analyses indicate that sequences are avoided in all 3 single-stranded domains that affect the local or overall leader RNA folding. IMPORTANCE Many regulatory RNA sequences are clustered in the untranslated leader domain of the HIV-1 RNA genome. Several RNA hairpin structures in this domain have been proposed to fulfill specific roles, e.g., mediating RNA dimer formation to facilitate HIV-1 recombination. We now focus on the importance of a few well-conserved single-stranded sequences that connect these hairpins. We created libraries of HIV-1 variants in which these segments were randomized and selected the best-replicating variants. For two segments we document the selection of the (nearly) wild-type sequence, thus demonstrating the importance of these primary nucleotide sequences and the power of the in vivo SELEX approach. However, for the third segment a large variety of sequences is compatible with efficient HIV-1 replication. Interestingly, the A-rich sequence of this segment is highly conserved among HIV-1 isolates, which likely reflects the evolutionary tendency of HIV-1 to adopt A-rich sequences.
Collapse
|
23
|
Webb JA, Jones CP, Parent LJ, Rouzina I, Musier-Forsyth K. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging. RNA (NEW YORK, N.Y.) 2013; 19:1078-88. [PMID: 23798665 PMCID: PMC3708528 DOI: 10.1261/rna.038869.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/13/2013] [Indexed: 05/02/2023]
Abstract
Despite the vast excess of cellular RNAs, precisely two copies of viral genomic RNA (gRNA) are selectively packaged into new human immunodeficiency type 1 (HIV-1) particles via specific interactions between the HIV-1 Gag and the gRNA psi (ψ) packaging signal. Gag consists of the matrix (MA), capsid, nucleocapsid (NC), and p6 domains. Binding of the Gag NC domain to ψ is necessary for gRNA packaging, but the mechanism by which Gag selectively interacts with ψ is unclear. Here, we investigate the binding of NC and Gag variants to an RNA derived from ψ (Psi RNA), as well as to a non-ψ region (TARPolyA). Binding was measured as a function of salt to obtain the effective charge (Zeff) and nonelectrostatic (i.e., specific) component of binding, Kd(1M). Gag binds to Psi RNA with a dramatically reduced Kd(1M) and lower Zeff relative to TARPolyA. NC, GagΔMA, and a dimerization mutant of Gag bind TARPolyA with reduced Zeff relative to WT Gag. Mutations involving the NC zinc finger motifs of Gag or changes to the G-rich NC-binding regions of Psi RNA significantly reduce the nonelectrostatic component of binding, leading to an increase in Zeff. These results show that Gag interacts with gRNA using different binding modes; both the NC and MA domains are bound to RNA in the case of TARPolyA, whereas binding to Psi RNA involves only the NC domain. Taken together, these results suggest a novel mechanism for selective gRNA encapsidation.
Collapse
Affiliation(s)
- Joseph A. Webb
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Retrovirus Research, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christopher P. Jones
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Retrovirus Research, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Retrovirus Research, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
24
|
Mouzakis KD, Lang AL, Vander Meulen KA, Easterday PD, Butcher SE. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res 2012; 41:1901-13. [PMID: 23248007 PMCID: PMC3561942 DOI: 10.1093/nar/gks1254] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human immunodeficiency virus (HIV) requires a programmed −1 ribosomal frameshift for Pol gene expression. The HIV frameshift site consists of a heptanucleotide slippery sequence (UUUUUUA) followed by a spacer region and a downstream RNA stem–loop structure. Here we investigate the role of the RNA structure in promoting the −1 frameshift. The stem–loop was systematically altered to decouple the contributions of local and overall thermodynamic stability towards frameshift efficiency. No correlation between overall stability and frameshift efficiency is observed. In contrast, there is a strong correlation between frameshift efficiency and the local thermodynamic stability of the first 3–4 bp in the stem–loop, which are predicted to reside at the opening of the mRNA entrance channel when the ribosome is paused at the slippery site. Insertion or deletions in the spacer region appear to correspondingly change the identity of the base pairs encountered 8 nt downstream of the slippery site. Finally, the role of the surrounding genomic secondary structure was investigated and found to have a modest impact on frameshift efficiency, consistent with the hypothesis that the genomic secondary structure attenuates frameshifting by affecting the overall rate of translation.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
25
|
Wang HY, Li JJ, Cao XN, Xu JY, Liu MR, Chen Y. Detection of CD4+ T-lymphocytes from hemodialyzed patients by surface plasmon resonance. CHINESE CHEM LETT 2012. [DOI: 10.1016/j.cclet.2012.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|