1
|
Ramm SA. Seminal fluid and accessory male investment in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200068. [PMID: 33070740 DOI: 10.1098/rstb.2020.0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sperm production and allocation strategies have been a central concern of sperm competition research for the past 50 years. But during the 'sexual cascade' there may be strong selection for alternative routes to maximizing male fitness. Especially with the evolution of internal fertilization, a common and by now well-studied example is the accessory ejaculate investment represented by seminal fluid, the complex mixture of proteins, peptides and other components transferred to females together with sperm. How seminal fluid investment should covary with sperm investment probably depends on the mechanism of seminal fluid action. If seminal fluid components boost male paternity success by directly enhancing sperm function or use, we might often expect a positive correlation between the two forms of male investment, whereas trade-offs seem more likely if seminal fluid acts independently of sperm. This is largely borne out by a broad taxonomic survey to establish the prevailing patterns of seminal fluid production and allocation during animal evolution, in light of which I discuss the gaps that remain in our understanding of this key ejaculate component and its relationship to sperm investment, before outlining promising approaches for examining seminal fluid-mediated sperm competitiveness in the post-genomic era. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Daupagne L, Koene JM. Disentangling female postmating responses induced by semen transfer components in a simultaneous hermaphrodite. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Anderson PSL. Making a point: shared mechanics underlying the diversity of biological puncture. ACTA ACUST UNITED AC 2018; 221:221/22/jeb187294. [PMID: 30446527 DOI: 10.1242/jeb.187294] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A viper injecting venom into a target, a mantis shrimp harpooning a fish, a cactus dispersing itself via spines attaching to passing mammals; all these are examples of biological puncture. Although disparate in terms of materials, kinematics and phylogeny, all three examples must adhere to the same set of fundamental physical laws that govern puncture mechanics. The diversity of biological puncture systems is a good case study for how physical laws can be used as a baseline for comparing disparate biological systems. In this Review, I explore the diversity of biological puncture and identify key variables that influence these systems. First, I explore recent work on biological puncture in a diversity of organisms, based on their hypothesized objectives: gripping, injection, damage and defence. Variation within each category is discussed, such as the differences between gripping for prey capture, gripping for dispersal of materials or gripping during reproduction. The second half of the Review is focused on specific physical parameters that influence puncture mechanics, such as material properties, stress, energy, speed and the medium within which puncture occurs. I focus on how these parameters have been examined in biology, and how they influence the evolution of biological systems. The ultimate objective of this Review is to outline an initial framework for examining the mechanics and evolution of puncture systems across biology. This framework will not only allow for broad biological comparisons, but also create a baseline for bioinspired design of both tools that puncture efficiently and materials that can resist puncture.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Zizzari ZV, Jessen A, Koene JM. Male reproductive suppression: not a social affair. Curr Zool 2018; 63:573-579. [PMID: 29492017 PMCID: PMC5804194 DOI: 10.1093/cz/zow089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
In the animal kingdom there are countless strategies via which males optimize their reproductive success when faced with male–male competition. These male strategies typically fall into two main categories: pre- and post-copulatory competition. Within these 2 categories, a set of behaviors, referred to as reproductive suppression, is known to cause inhibition of reproductive physiology and/or reproductive behavior in an otherwise fertile individual. What becomes evident when considering examples of reproductive suppression is that these strategies conventionally encompass reproductive interference strategies that occur between members of a hierarchical social group. However, mechanisms aimed at impairing a competitor’s reproductive output are also present in non-social animals. Yet, current thinking emphasizes the importance of sociality as the primary driving force of reproductive suppression. Therefore, the question arises as to whether there is an actual difference between reproductive suppression strategies in social animals and equivalent pre-copulatory competition strategies in non-social animals. In this perspective paper we explore a broad taxonomic range of species whose individuals do not repeatedly interact with the same individuals in networks and yet, depress the fitness of rivals. Examples like alteration of male reproductive physiology, female mimicry, rival spermatophore destruction, and cementing the rival’s genital region in non-social animals, highlight that male pre-copulatory reproductive suppression and male pre-copulatory competition overlap. Finally, we highlight that a distinction between male reproductive interference in animals with and without a social hierarchy might obscure important similarities and does not help to elucidate why different proximate mechanisms evolved. We therefore emphasize that male reproductive suppression need not be restricted to social animals.
Collapse
Affiliation(s)
- Z Valentina Zizzari
- Department of Ecological Science-Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Andrea Jessen
- Department of Ecological Science-Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Joris M Koene
- Department of Ecological Science-Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018; 221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sarah Melzer
- Howard Hughes Medical Institute, Department of Neurobiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel Beets
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ilona C Grunwald Kadow
- Technical University of Munich, TUM School of Life Sciences, ZIEL - Institute for Food and Health, 85354 Freising, Germany
| | - Joris Koene
- Vrije Universiteit - Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Haddad
- Volen Center for Complex Systems, Brandeis University, Mailstop 013, 415 South Street, Waltham, MA 02454, USA
| | - Lindy Holden-Dye
- Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
6
|
Lodi M, Staikou A, Janssen R, Koene JM. High level of sperm competition may increase transfer of accessory gland products carried by the love dart of land snails. Ecol Evol 2017; 7:11148-11156. [PMID: 29299289 PMCID: PMC5743536 DOI: 10.1002/ece3.3385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Postcopulatory adaptations that increase reproductive success compared to rivals, like the transfer of accessory gland products that promote paternity, are common when sperm competition occurs among males. In land snails, the dart shooting behavior and its adaptive significance, in promoting individual fitness through enhanced paternity of the successful dart shooter, have been considered such an adaptation. The fitness result gained is mediated by the transfer of mucus components on the love dart capable of altering the physiology of the receiver's reproductive tract. In this context, dart shooting and mucus transfer could be considered as processes targeted by sexual selection. While the effect of dart mucus is beneficial for the dart user, so far it has remained unknown whether its transport is greater when snails experience a higher level of sperm competition. Here, we report results of a study on inter- and intraspecific variations of dart and mucus gland morphometry, considered to be traits reflecting the ability of snails to adjust the production and transfer of mucus under varying sperm competition scenarios. We investigated four populations with different densities from four dart-bearing species, Arianta arbustorum, Cepaea nemoralis, Cornu aspersum, and Helix lucorum. The results indicate that different adaptations of these traits occur among the studied species that all seem to achieve the same goal of transferring more mucus when sperm competition is higher. For example, the presence of longer and more branched mucous glands or an increase in dart surface most likely reflect increased mucus production and enhanced ability of mucus transport, respectively. Interestingly, the species for which the use of the dart is reported to be facultative, A. arbustorum, did not show any variation among the examined traits. To conclude, sexual selection in the form of sperm competition intensity seems to be an important selective force for these simultaneously hermaphroditic dart-bearing snails, driving differences in sexual traits.
Collapse
Affiliation(s)
- Monica Lodi
- Section of Animal Ecology Department of Ecological Science Faculty of Earth and Life Sciences VU University Amsterdam Amsterdam The Netherlands.,Naturalis Biodiversity Center Leiden The Netherlands
| | - Alexandra Staikou
- Department of Zoology School of Biology Aristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Ruben Janssen
- Section of Conservation Biology Department of Environmental Sciences University of Basel Basel Switzerland
| | - Joris M Koene
- Section of Animal Ecology Department of Ecological Science Faculty of Earth and Life Sciences VU University Amsterdam Amsterdam The Netherlands.,Naturalis Biodiversity Center Leiden The Netherlands
| |
Collapse
|
7
|
Lodi M, Meijer FW, Koene JM. Ejaculates are not used as nuptial gifts in simultaneously hermaphroditic snails. ZOOLOGY 2017; 123:30-36. [PMID: 28712675 DOI: 10.1016/j.zool.2017.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022]
Abstract
Promoted by sexual selection, males usually adopt different ways to increase their fertilization chances. In many insect taxa males donate nuptial gifts, together with sperm, which represent a valuable additional nutrient source that females can use to provision eggs. This has also been suggested to occur in simultaneous hermaphrodites, organisms with both sex functions. In theory, donation of nuptial gifts or extra nutrients might work in hermaphrodites that mate unilaterally (one-way donation of ejaculates), but will not be effective when these organisms mate reciprocally (mutual exchange of ejaculates), since on average each partner would receive the amount it also transfers. Hence, for the latter the net amount gained would be zero, and when considering the non-trivial costs of metabolic conversion the energy balance of this exchange ends up negative. To test this prediction, we measured the material (dry weight) and resource (carbon and nitrogen content) investment into ejaculates of the unilaterally mating freshwater snail Lymnaea stagnalis and spermatophores of the reciprocally mating land snail Cornu aspersum. When compared to eggs, our measurements indicate that the investment is low for ejaculates and spermatophores, neither of which represent a significant contribution to egg production. Importantly, during reciprocal matings, couples exchanged similar amounts of material and resources, thus a gain of extra substances seems irrelevant. Hence, caution is needed when generalizing functions of male reproductive strategies across mating systems. Although digestion of ejaculates does not provide extra material and resources in simultaneous hermaphrodites, their absorption could still be important to eliminate an excess of received sperm and to select sperm via cryptic female choice.
Collapse
Affiliation(s)
- Monica Lodi
- Section of Animal Ecology, Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands.
| | - Fedde W Meijer
- Section of Animal Ecology, Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Joris M Koene
- Section of Animal Ecology, Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| |
Collapse
|
8
|
Koene JM. Sex determination and gender expression: Reproductive investment in snails. Mol Reprod Dev 2017; 84:132-143. [PMID: 27245260 PMCID: PMC6220956 DOI: 10.1002/mrd.22662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/22/2016] [Indexed: 02/01/2023]
Abstract
Sex determination is generally seen as an issue of importance for separate-sexed organisms; however, when considering other sexual systems, such as hermaphroditism, sex allocation is a less-binary form of sex determination. As illustrated here, with examples from molluscs, this different vantage point can offer important evolutionary insights. After all, males and females produce only one type of gamete, whereas hermaphrodites produce both. In addition, sperm and accessory gland products are donated bidirectionally. For reciprocal mating, this is obvious since sperm are exchanged within one mating interaction; but even unilaterally mating species end up mating in both sexual roles, albeit not simultaneously. With this in mind, I highlight two factors that play an important role in how reproductive investment is divided in snails: First, the individual's motivation to preferentially donate rather than receive sperm (or vice versa) leads to flexible behavioral performance, and thereby investment, of either sex. Second, due to the presence of both sexual roles within the same individual, partners are potentially able to influence investment in both sexual functions of their partner to their own benefit. The latter has already led to novel insights into how accessory gland products may evolve. Moreover, the current evidence points towards different ways in which allocation to reproduction can be changed in simultaneous hermaphrodites. These often differ from the separate-sexed situation, highlighting that comparison across different sexual systems may help identify commonalities and differences in physiological, and molecular mechanisms as well as evolutionary patterns. Mol. Reprod. Dev. 84: 132-143, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joris M. Koene
- Faculty of Earth and Life SciencesDepartment of Ecological ScienceVrije UniversiteitAmsterdamThe Netherlands
- Terrestrial ZoologyNaturalis Biodiversity CentreLeidenThe Netherlands
| |
Collapse
|
9
|
Zizzari ZV, Engl T, Lorenz S, van Straalen NM, Ellers J, Groot AT. Love at first sniff: a spermatophore-associated pheromone mediates partner attraction in a collembolan species. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Lodi M, Koene JM. Hidden female physiological resistance to male accessory gland substances in a simultaneous hermaphrodite. ACTA ACUST UNITED AC 2017; 220:1026-1031. [PMID: 28062580 PMCID: PMC5358325 DOI: 10.1242/jeb.149963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
Abstract
To increase fertilization chances compared with rivals, males are favoured to transfer accessory gland proteins to females during mating. These substances, by influencing female physiology, cause alteration of her sperm usage and remating rate. Simultaneously hermaphroditic land snails with love-darts are a case in point. During courtship, a love-dart is pierced through the partner's body wall, thereby introducing accessory mucous gland products. This mucus physiologically increases paternity by inhibiting the digestion of donated sperm. The sperm, which are packaged in a spermatophore, are exchanged and received in an organ called the diverticulum. Because of its length, this organ was previously proposed to be a female anatomical adaptation that may limit the dart interference with the recipient's sperm usage. For reproductive success of the donor, an anatomically long spermatophore, relative to the partner's diverticulum, is beneficial as sperm can avoid digestion by exiting through the spermatophore's tail safely. However, the snail Eobania vermiculata possesses a diverticulum that is three times longer than the spermatophore it receives. Here, we report that the love-dart mucus of this species contains a contraction-inducing substance that shortens the diverticulum, an effect that is only properly revealed when the mucus is applied to another helicid species, Cornu aspersum. This finding suggests that E. vermiculata may have evolved a physiological resistance to the manipulative substance received via the love-dart by becoming insensitive to it. This provides useful insight into the evolution of female resistance to male manipulations, indicating that it can remain hidden if tested on a single species. Summary: The effect of accessory gland proteins transferred on the love-dart of land snails can remain hidden within a species as a result of physiological female resistance to male manipulation.
Collapse
Affiliation(s)
- Monica Lodi
- Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands .,Naturalis Biodiversity Center, Vondellaan 55, Leiden 2332 AA, The Netherlands
| | - Joris M Koene
- Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands.,Naturalis Biodiversity Center, Vondellaan 55, Leiden 2332 AA, The Netherlands
| |
Collapse
|
11
|
Lodi M, Koene JM. On the effect specificity of accessory gland products transferred by the love-dart of land snails. BMC Evol Biol 2016; 16:104. [PMID: 27178200 PMCID: PMC4866404 DOI: 10.1186/s12862-016-0672-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023] Open
Abstract
Background Sexual selection favours the evolution of male bioactive substances transferred during mating to enhance male reproductive success by affecting female physiology. These effects are mainly well documented for separate-sexed species. In simultaneous hermaphrodites, one of the most peculiar examples of transfer of such substances is via stabbing a so-called love-dart in land snails. This calcareous stylet delivers mucous products produced by accessory glands into the mate’s haemolymph. In Cornu aspersum, this mucus temporarily causes two changes in the recipient. First, the spermatophore uptake into the spermatophore-receiving organ, called diverticulum, is probably favoured by contractions of this organ. Second, the amount of stored sperm increases by contractions of the copulatory canal, which close off the tract leading to the sperm digesting organ. However, it has yet to be determined whether these effects are similar across species, which would imply a common strategy of the dart in increasing male reproductive success. Results We performed a cross-reactivity test to compare the in vitro response of the diverticulum and copulatory canal of C. aspersum (Helicidae) to its own and other species’ mucus (seven helicids and one bradybaenid). We found that the contractions in the diverticulum were only induced by dart mucus of certain species, while the copulatory canal responded equally to all but one species’ mucus tested. In addition, we report a newly-discovered effect causing the shortening of the diverticulum, which is also only caused by dart mucus of certain species. The advantage seems to be a distance reduction to the sperm storage organ. Conclusions All these findings are the first to shed light on the evolution of the different functions of accessory gland products in dart-bearing species. These functions may be achieved via common physiological changes caused by the substances contained in the dart mucus, since the responses evoked were similar across species’ mucus. Moreover, while these substances can act similarly in separate-sexed species as in simultaneous hermaphrodites, differences may occur in their evolution between the two sexual systems. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0672-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica Lodi
- Section of Animal Ecology, Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands. .,Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.
| | - Joris M Koene
- Section of Animal Ecology, Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.,Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| |
Collapse
|
12
|
Scolari F, Benoit JB, Michalkova V, Aksoy E, Takac P, Abd-Alla AMM, Malacrida AR, Aksoy S, Attardo GM. The Spermatophore in Glossina morsitans morsitans: Insights into Male Contributions to Reproduction. Sci Rep 2016; 6:20334. [PMID: 26847001 PMCID: PMC4742874 DOI: 10.1038/srep20334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022] Open
Abstract
Male Seminal Fluid Proteins (SFPs) transferred during copulation modulate female reproductive physiology and behavior, impacting sperm storage/use, ovulation, oviposition, and remating receptivity. These capabilities make them ideal targets for developing novel methods of insect disease vector control. Little is known about the nature of SFPs in the viviparous tsetse flies (Diptera: Glossinidae), vectors of Human and Animal African trypanosomiasis. In tsetse, male ejaculate is assembled into a capsule-like spermatophore structure visible post-copulation in the female uterus. We applied high-throughput approaches to uncover the composition of the spermatophore in Glossina morsitans morsitans. We found that both male accessory glands and testes contribute to its formation. The male accessory glands produce a small number of abundant novel proteins with yet unknown functions, in addition to enzyme inhibitors and peptidase regulators. The testes contribute sperm in addition to a diverse array of less abundant proteins associated with binding, oxidoreductase/transferase activities, cytoskeletal and lipid/carbohydrate transporter functions. Proteins encoded by female-biased genes are also found in the spermatophore. About half of the proteins display sequence conservation relative to other Diptera, and low similarity to SFPs from other studied species, possibly reflecting both their fast evolutionary pace and the divergent nature of tsetse's viviparous biology.
Collapse
Affiliation(s)
- Francesca Scolari
- University of Pavia, Dept of Biology and Biotechnology, 27100 Pavia, Italy
| | - Joshua B. Benoit
- University of Cincinnati, McMicken School of Arts and Sciences, Dept of Biological Sciences, 45221, Cincinnati, OH, USA
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
| | - Veronika Michalkova
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06 SR, Bratislava, Slovakia
| | - Emre Aksoy
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06 SR, Bratislava, Slovakia
| | - Adly M. M. Abd-Alla
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Anna R. Malacrida
- University of Pavia, Dept of Biology and Biotechnology, 27100 Pavia, Italy
| | - Serap Aksoy
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
| | - Geoffrey M. Attardo
- Yale School of Public Health, Dept of Epidemiology of Microbial Diseases, 06520, New Haven, CT, USA
| |
Collapse
|
13
|
Lewis SM, Vahed K, Koene JM, Engqvist L, Bussière LF, Perry JC, Gwynne D, Lehmann GUC. Emerging issues in the evolution of animal nuptial gifts. Biol Lett 2015; 10:rsbl.2014.0336. [PMID: 25030043 DOI: 10.1098/rsbl.2014.0336] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Uniquely positioned at the intersection of sexual selection, nutritional ecology and life-history theory, nuptial gifts are widespread and diverse. Despite extensive empirical study, we still have only a rudimentary understanding of gift evolution because we lack a unified conceptual framework for considering these traits. In this opinion piece, we tackle several issues that we believe have substantively hindered progress in this area. Here, we: (i) present a comprehensive definition and classification scheme for nuptial gifts (including those transferred by simultaneous hermaphrodites), (ii) outline evolutionary predictions for different gift types, and (iii) highlight some research directions to help facilitate progress in this field.
Collapse
Affiliation(s)
- Sara M Lewis
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Karim Vahed
- Department of Biological Sciences, University of Derby, Derby DE22 1GB, UK
| | - Joris M Koene
- Department of Ecological Science, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Leif Engqvist
- Evolutionary Biology, Bielefeld University, Bielefeld 33615, Germany Department of Behavioural Ecology, University of Bern, Hinterkappelen 3032, Switzerland
| | - Luc F Bussière
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Jennifer C Perry
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK Jesus College, University of Oxford, Oxford OX1 3DW, UK
| | - Darryl Gwynne
- Department of Zoology, University of Toronto Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
14
|
Kimura K, Shibuya K, Chiba S. Effect of injection of love-dart mucus on physical vigour in land snails: can remating suppression be explained by physical damage? ETHOL ECOL EVOL 2015. [DOI: 10.1080/03949370.2015.1037359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Abstract
Hermaphrodites combine the male and female sex functions into a single individual, either sequentially or simultaneously. This simple fact means that they exhibit both similarities and differences in the way in which they experience, and respond to, sexual conflict compared to separate-sexed organisms. Here, we focus on clarifying how sexual conflict concepts can be adapted to apply to all anisogamous sexual systems and review unique (or especially important) aspects of sexual conflict in hermaphroditic animals. These include conflicts over the timing of sex change in sequential hermaphrodites, and in simultaneous hermaphrodites, over both sex roles and the postmating manipulation of the sperm recipient by the sperm donor. Extending and applying sexual conflict thinking to hermaphrodites can identify general evolutionary principles and help explain some of the unique reproductive diversity found among animals exhibiting this widespread but to date understudied sexual system.
Collapse
Affiliation(s)
- Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS UMR 5175, 34293 Montpellier Cedex 05, France
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|