1
|
Höhler C, Trigili E, Astarita D, Hermsdörfer J, Jahn K, Krewer C. The efficacy of hybrid neuroprostheses in the rehabilitation of upper limb impairment after stroke, a narrative and systematic review with a meta-analysis. Artif Organs 2024; 48:232-253. [PMID: 37548237 DOI: 10.1111/aor.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Paresis of the upper limb (UL) is the most frequent impairment after a stroke. Hybrid neuroprostheses, i.e., the combination of robots and electrical stimulation, have emerged as an option to treat these impairments. METHODS To give an overview of existing devices, their features, and how they are linked to clinical metrics, four different databases were systematically searched for studies on hybrid neuroprostheses for UL rehabilitation after stroke. The evidence on the efficacy of hybrid therapies was synthesized. RESULTS Seventy-three studies were identified, introducing 32 hybrid systems. Among the most recent devices (n = 20), most actively reinforce movement (3 passively) and are typical exoskeletons (3 end-effectors). If classified according to the International Classification of Functioning, Disability and Health, systems for proximal support are expected to affect body structures and functions, while the activity and participation level are targeted when applying Functional Electrical Stimulation distally plus the robotic component proximally. The meta-analysis reveals a significant positive effect on UL functions (p < 0.001), evident in a 7.8-point Mdiff between groups in the Fugl-Meyer assessment. This positive effect remains at the 3-month follow-up (Mdiff = 8.4, p < 0.001). CONCLUSIONS Hybrid neuroprostheses have a positive effect on UL recovery after stroke, with effects persisting at least three months after the intervention. Non-significant studies were those with the shortest intervention periods and the oldest patients. Improvements in UL functions are not only present in the subacute phase after stroke but also in long-term chronic stages. In addition to further technical development, more RCTs are needed to make assumptions about the determinants of successful therapy.
Collapse
Affiliation(s)
- Chiara Höhler
- Research Department, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Chair of Human Movement Science, Faculty of Sport and Health Science, Technical University Munich, Munich, Germany
| | - Emilio Trigili
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Davide Astarita
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Joachim Hermsdörfer
- Chair of Human Movement Science, Faculty of Sport and Health Science, Technical University Munich, Munich, Germany
| | - Klaus Jahn
- Research Department, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich (LMU), Munich, Germany
| | - Carmen Krewer
- Research Department, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Chair of Human Movement Science, Faculty of Sport and Health Science, Technical University Munich, Munich, Germany
| |
Collapse
|
2
|
Fischer-Janzen A, Wendt TM, Van Laerhoven K. A scoping review of gaze and eye tracking-based control methods for assistive robotic arms. Front Robot AI 2024; 11:1326670. [PMID: 38440775 PMCID: PMC10909843 DOI: 10.3389/frobt.2024.1326670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Background: Assistive Robotic Arms are designed to assist physically disabled people with daily activities. Existing joysticks and head controls are not applicable for severely disabled people such as people with Locked-in Syndrome. Therefore, eye tracking control is part of ongoing research. The related literature spans many disciplines, creating a heterogeneous field that makes it difficult to gain an overview. Objectives: This work focuses on ARAs that are controlled by gaze and eye movements. By answering the research questions, this paper provides details on the design of the systems, a comparison of input modalities, methods for measuring the performance of these controls, and an outlook on research areas that gained interest in recent years. Methods: This review was conducted as outlined in the PRISMA 2020 Statement. After identifying a wide range of approaches in use the authors decided to use the PRISMA-ScR extension for a scoping review to present the results. The identification process was carried out by screening three databases. After the screening process, a snowball search was conducted. Results: 39 articles and 6 reviews were included in this article. Characteristics related to the system and study design were extracted and presented divided into three groups based on the use of eye tracking. Conclusion: This paper aims to provide an overview for researchers new to the field by offering insight into eye tracking based robot controllers. We have identified open questions that need to be answered in order to provide people with severe motor function loss with systems that are highly useable and accessible.
Collapse
Affiliation(s)
- Anke Fischer-Janzen
- Faculty Economy, Work-Life Robotics Institute, University of Applied Sciences Offenburg, Offenburg, Germany
| | - Thomas M. Wendt
- Faculty Economy, Work-Life Robotics Institute, University of Applied Sciences Offenburg, Offenburg, Germany
| | - Kristof Van Laerhoven
- Ubiquitous Computing, Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany
| |
Collapse
|
3
|
Vidaurre C, Irastorza-Landa N, Sarasola-Sanz A, Insausti-Delgado A, Ray AM, Bibián C, Helmhold F, Mahmoud WJ, Ortego-Isasa I, López-Larraz E, Lozano Peiteado H, Ramos-Murguialday A. Challenges of neural interfaces for stroke motor rehabilitation. Front Hum Neurosci 2023; 17:1070404. [PMID: 37789905 PMCID: PMC10543821 DOI: 10.3389/fnhum.2023.1070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.
Collapse
Affiliation(s)
- Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | | | | | | | - Andreas M. Ray
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carlos Bibián
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Florian Helmhold
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Wala J. Mahmoud
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | | | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Darmanian MA, Chua MX, Wu L. A Completely Portable and Concealable, Lightweight Assistive Exosuit for Upper Limbs . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083687 DOI: 10.1109/embc40787.2023.10340106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Exosuits are a relatively new trend in wearable robotics to answer the flaws of their exoskeleton counterparts, but they remain impractical as the lack of rigidity in their frames makes the integration of crucial components into a single unit a challenge. While some simple solutions exist, almost all current research focuses on the output performance of exosuits rather than the needs of potential beneficiaries of this technology. To address this, a novel mechanism of complete portability for exosuits was developed and tested to improve exosuit practicality and adoption. Designed for elbow flexion, the device produced 12.21-13.66Nm of assistive torque and could be mostly concealed by the wearer's clothing without impacting performance. The proof-of-concept design proved successful and demonstrated many advantages over current portability methods, particularly in size and convenience, weighing only 1.7kg. This device provides the sense of normalcy crucial for a technology to seamlessly integrate into the daily lives of its end users. It is extendable and upgradeable with access to advanced materials and manufacturing methods.Clinical Relevance- Exoskeletons are currently the only marketed wearable robotic device for full limb support. This research is the foundation for a new series of exosuits that could drastically enhance the adoptability, accessibility, and versatility of exosuits in physical rehabilitation and general physical enhancement, becoming a superior alternative or addition.
Collapse
|
5
|
Russo JS, Chodhary M, Strik M, Shiels TA, Lin CHS, John SE, Grayden DB. Feasibility of Using Source-Level Brain Computer Interface for People with Multiple Sclerosis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083693 DOI: 10.1109/embc40787.2023.10340364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This work evaluates the feasibility of using a source level Brain-Computer Interface (BCI) for people with Multiple Sclerosis (MS). Data used was previously collected EEG of eight participants (one participant with MS and seven neurotypical participants) who performed imagined movement of the right and left hand. Equivalent current dipole cluster fitting was used to assess related brain activity at the source level and assessed using dipole location and power spectrum analysis. Dipole clusters were resolved within the motor cortices with some notable spatial difference between the MS and control participants. Neural sources that generate motor imagery originated from similar motor areas in the participant with MS compared to the neurotypical participants. Power spectral analysis indicated a reduced level of alpha power in the participant with MS during imagery tasks compared to neurotypical participants. Power in the beta band may be used to distinguish between left and right imagined movement for users with MS in BCI applications.Clinical Relevance- This paper demonstrates the cortical areas activated during imagined BCI-type tasks in a participant with Multiple Sclerosis (MS), and is a proof of concept for translating BCI research to potential users with MS.
Collapse
|
6
|
Catalán JM, Trigili E, Nann M, Blanco-Ivorra A, Lauretti C, Cordella F, Ivorra E, Armstrong E, Crea S, Alcañiz M, Zollo L, Soekadar SR, Vitiello N, García-Aracil N. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs). J Neuroeng Rehabil 2023; 20:61. [PMID: 37149621 PMCID: PMC10164333 DOI: 10.1186/s12984-023-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The aging of the population and the progressive increase of life expectancy in developed countries is leading to a high incidence of age-related cerebrovascular diseases, which affect people's motor and cognitive capabilities and might result in the loss of arm and hand functions. Such conditions have a detrimental impact on people's quality of life. Assistive robots have been developed to help people with motor or cognitive disabilities to perform activities of daily living (ADLs) independently. Most of the robotic systems for assisting on ADLs proposed in the state of the art are mainly external manipulators and exoskeletal devices. The main objective of this study is to compare the performance of an hybrid EEG/EOG interface to perform ADLs when the user is controlling an exoskeleton rather than using an external manipulator. METHODS Ten impaired participants (5 males and 5 females, mean age 52 ± 16 years) were instructed to use both systems to perform a drinking task and a pouring task comprising multiple subtasks. For each device, two modes of operation were studied: synchronous mode (the user received a visual cue indicating the sub-tasks to be performed at each time) and asynchronous mode (the user started and finished each of the sub-tasks independently). Fluent control was assumed when the time for successful initializations ranged below 3 s and a reliable control in case it remained below 5 s. NASA-TLX questionnaire was used to evaluate the task workload. For the trials involving the use of the exoskeleton, a custom Likert-Scale questionnaire was used to evaluate the user's experience in terms of perceived comfort, safety, and reliability. RESULTS All participants were able to control both systems fluently and reliably. However, results suggest better performances of the exoskeleton over the external manipulator (75% successful initializations remain below 3 s in case of the exoskeleton and bellow 5s in case of the external manipulator). CONCLUSIONS Although the results of our study in terms of fluency and reliability of EEG control suggest better performances of the exoskeleton over the external manipulator, such results cannot be considered conclusive, due to the heterogeneity of the population under test and the relatively limited number of participants.
Collapse
Affiliation(s)
- José M Catalán
- Robotics and Artificial Intelligence Group of the Bioengineering Institute, Miguel Hernandez University, 03202, Elche, Spain.
| | - Emilio Trigili
- BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Marius Nann
- Clinical Neurotechnology Laboratory, Charité, Universitätsmedizin Berlin, 10117, Belin, Germany
| | - Andrea Blanco-Ivorra
- Robotics and Artificial Intelligence Group of the Bioengineering Institute, Miguel Hernandez University, 03202, Elche, Spain
| | - Clemente Lauretti
- Laboratory of Biomedical Robotics and Biomicrosystems, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Francesca Cordella
- Laboratory of Biomedical Robotics and Biomicrosystems, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Eugenio Ivorra
- University Institute for Human-Centered Technology Research (Human-Tech), Universitat Politècnica de València, 46022, Valencia, Spain
| | | | - Simona Crea
- BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mariano Alcañiz
- University Institute for Human-Centered Technology Research (Human-Tech), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Loredana Zollo
- Laboratory of Biomedical Robotics and Biomicrosystems, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Charité, Universitätsmedizin Berlin, 10117, Belin, Germany
| | - Nicola Vitiello
- BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Nicolás García-Aracil
- Robotics and Artificial Intelligence Group of the Bioengineering Institute, Miguel Hernandez University, 03202, Elche, Spain
| |
Collapse
|
7
|
Durante F, Raparelli T, Beomonte Zobel P. Two-Dof Upper Limb Rehabilitation Robot Driven by Straight Fibers Pneumatic Muscles. Bioengineering (Basel) 2022; 9:377. [PMID: 36004902 PMCID: PMC9405197 DOI: 10.3390/bioengineering9080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the design of a 2-dof (degrees of freedom) rehabilitation robot for upper limbs driven by pneumatic muscle actuators is presented. This paper includes the different aspects of the mechanical design and the control system and the results of the first experimental tests. The robot prototype is constructed and at this preliminary step a position and trajectory control by fuzzy logic is implemented. The pneumatic muscle actuators used in this arm are designed and constructed by the authors' research group.
Collapse
Affiliation(s)
- Francesco Durante
- Department of Industrial and Information Engineering and Economy (DIIIE), University of L’Aquila, P.le Pontieri 1, Località Monteluco, 67100 L’Aquila, Italy
| | - Terenziano Raparelli
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Pierluigi Beomonte Zobel
- Department of Industrial and Information Engineering and Economy (DIIIE), University of L’Aquila, P.le Pontieri 1, Località Monteluco, 67100 L’Aquila, Italy
| |
Collapse
|
8
|
Cardoso LRL, Bochkezanian V, Forner-Cordero A, Melendez-Calderon A, Bo APL. Soft robotics and functional electrical stimulation advances for restoring hand function in people with SCI: a narrative review, clinical guidelines and future directions. J Neuroeng Rehabil 2022; 19:66. [PMID: 35773733 PMCID: PMC9245887 DOI: 10.1186/s12984-022-01043-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Recovery of hand function is crucial for the independence of people with spinal cord injury (SCI). Wearable devices based on soft robotics (SR) or functional electrical stimulation (FES) have been employed to assist the recovery of hand function both during activities of daily living (ADLs) and during therapy. However, the implementation of these wearable devices has not been compiled in a review focusing on the functional outcomes they can activate/elicit/stimulate/potentiate. This narrative review aims at providing a guide both for engineers to help in the development of new technologies and for clinicians to serve as clinical guidelines based on the available technology in order to assist and/or recover hand function in people with SCI. Methods A literature search was performed in Scopus, Pubmed and IEEE Xplore for articles involving SR devices or FES systems designed for hand therapy or assistance, published since 2010. Only studies that reported functional outcomes from individuals with SCI were selected. The final collections of both groups (SR and FES) were analysed based on the technical aspects and reported functional outcomes. Results A total of 37 out of 1101 articles were selected, 12 regarding SR and 25 involving FES devices. Most studies were limited to research prototypes, designed either for assistance or therapy. From an engineering perspective, technological improvements for home-based use such as portability, donning/doffing and the time spent with calibration were identified. From the clinician point of view, the most suitable technical features (e.g., user intent detection) and assessment tools should be determined according to the particular patient condition. A wide range of functional assessment tests were adopted, moreover, most studies used non-standardized tests. Conclusion SR and FES wearable devices are promising technologies to support hand function recovery in subjects with SCI. Technical improvements in aspects such as the user intent detection, portability or calibration as well as consistent assessment of functional outcomes were the main identified limitations. These limitations seem to be be preventing the translation into clinical practice of these technological devices created in the laboratory.
Collapse
Affiliation(s)
- Lucas R L Cardoso
- Biomedical Engineering, School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Vanesa Bochkezanian
- College of Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Australia
| | - Arturo Forner-Cordero
- Biomechatronics Laboratory, Escola Politecnica, University of São Paulo, São Paulo, Brazil
| | - Alejandro Melendez-Calderon
- Biomedical Engineering, School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.,School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Jamieson Trauma Institute, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| | - Antonio P L Bo
- Biomedical Engineering, School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Wolf DN, Schearer EM. Trajectory Optimization and Model Predictive Control for Functional Electrical Stimulation-Controlled Reaching. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3145946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Gantenbein J, Dittli J, Meyer JT, Gassert R, Lambercy O. Intention Detection Strategies for Robotic Upper-Limb Orthoses: A Scoping Review Considering Usability, Daily Life Application, and User Evaluation. Front Neurorobot 2022; 16:815693. [PMID: 35264940 PMCID: PMC8900616 DOI: 10.3389/fnbot.2022.815693] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wearable robotic upper limb orthoses (ULO) are promising tools to assist or enhance the upper-limb function of their users. While the functionality of these devices has continuously increased, the robust and reliable detection of the user's intention to control the available degrees of freedom remains a major challenge and a barrier for acceptance. As the information interface between device and user, the intention detection strategy (IDS) has a crucial impact on the usability of the overall device. Yet, this aspect and the impact it has on the device usability is only rarely evaluated with respect to the context of use of ULO. A scoping literature review was conducted to identify non-invasive IDS applied to ULO that have been evaluated with human participants, with a specific focus on evaluation methods and findings related to functionality and usability and their appropriateness for specific contexts of use in daily life. A total of 93 studies were identified, describing 29 different IDS that are summarized and classified according to a four-level classification scheme. The predominant user input signal associated with the described IDS was electromyography (35.6%), followed by manual triggers such as buttons, touchscreens or joysticks (16.7%), as well as isometric force generated by residual movement in upper-limb segments (15.1%). We identify and discuss the strengths and weaknesses of IDS with respect to specific contexts of use and highlight a trade-off between performance and complexity in selecting an optimal IDS. Investigating evaluation practices to study the usability of IDS, the included studies revealed that, primarily, objective and quantitative usability attributes related to effectiveness or efficiency were assessed. Further, it underlined the lack of a systematic way to determine whether the usability of an IDS is sufficiently high to be appropriate for use in daily life applications. This work highlights the importance of a user- and application-specific selection and evaluation of non-invasive IDS for ULO. For technology developers in the field, it further provides recommendations on the selection process of IDS as well as to the design of corresponding evaluation protocols.
Collapse
Affiliation(s)
- Jessica Gantenbein
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jan Dittli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jan Thomas Meyer
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
11
|
Neuromuscular electrical stimulation restores upper limb sensory-motor functions and body representations in chronic stroke survivors. MED 2022; 3:58-74.e10. [DOI: 10.1016/j.medj.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
|
12
|
Reactive Exercises with Interactive Objects: Interim Analysis of a Randomized Trial on Task-Driven NMES Grasp Rehabilitation for Subacute and Early Chronic Stroke Patients. SENSORS 2021; 21:s21206739. [PMID: 34695957 PMCID: PMC8538703 DOI: 10.3390/s21206739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
Enriched environments and tools are believed to promote grasp rehabilitation after stroke. We designed S2, an interactive grasp rehabilitation system consisting of smart objects, custom orthoses for selective grasp constraining, and an electrode array system for forearm NMES. Motor improvements and perceived usability of a new enriched upper limb training system for sub-acute stroke patients was assessed in this interim analysis. Inclusion criteria: sub-acute stroke patients with MMSE>20, ipsilesional MI>80%, and contralesional MI<80%. Effects of 30-min therapy supplements, conventional vs. S2 prototype, are compared through a parallel two-arms dose-matched open-label trial, lasting 27 sessions. Clinical centres: Asklepios Neurologische Klinik Falkenstein, Königstein im Taunus, Germany, and Clinica Villa Beretta, Costa Masnaga, Italy. Assessment scales: ARAT, System Usability, and Technology Acceptance. Methodology: 26 participants were block randomized, allocated to the study (control N=12, experimental N=14) and underwent the training protocol. Among them, 11 participants with ARAT score at inclusion below 35, n = 6 in the experimental group, and n = 5 in the control group were analysed. Results: participants in the enriched treatment group displayed a larger improvement in the ARAT scale (+14.9 pts, pval=0.0494). Perceived usability differed between clinics. No adverse effect was observed in relation to the treatments. Trial status: closed. Conclusions: The S2 system, developed according to shared clinical directives, was tested in a clinical proof of concept. Variations of ARAT scores confirm the feasibility of clinical investigation for hand rehabilitation after stroke.
Collapse
|
13
|
Wheelchair-Mounted Upper Limb Robotic Exoskeleton with Adaptive Controller for Activities of Daily Living. SENSORS 2021; 21:s21175738. [PMID: 34502632 PMCID: PMC8433689 DOI: 10.3390/s21175738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Neuro-muscular disorders and diseases such as cerebral palsy and Duchenne Muscular Dystrophy can severely limit a person's ability to perform activities of daily living (ADL). Exoskeletons can provide an active or passive support solution to assist these groups of people to perform ADL. This study presents an artificial neural network-trained adaptive controller mechanism that uses surface electromyography (sEMG) signals from the human forearm to detect hand gestures and navigate an in-house-built wheelchair-mounted upper limb robotic exoskeleton based on the user's intent while ensuring safety. To achieve the desired position of the exoskeleton based on human intent, 10 hand gestures were recorded from 8 participants without upper limb movement disabilities. Participants were tasked to perform water bottle pick and place activities while using the exoskeleton, and sEMG signals were collected from the forearm and processed through root mean square, median filter, and mean feature extractors prior to training a scaled conjugate gradient backpropagation artificial neural network. The trained network achieved an average of more than 93% accuracy, while all 8 participants who did not have any prior experience of using an exoskeleton were successfully able to perform the task in less than 20 s using the proposed artificial neural network-trained adaptive controller mechanism. These results are significant and promising thus could be tested on people with muscular dystrophy and neuro-degenerative diseases.
Collapse
|
14
|
Vidaurre C, Jorajuría T, Ramos-Murguialday A, Müller KR, Gómez M, Nikulin VV. Improving motor imagery classification during induced motor perturbations. J Neural Eng 2021; 18. [PMID: 34233305 DOI: 10.1088/1741-2552/ac123f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022]
Abstract
Objective.Motor imagery is the mental simulation of movements. It is a common paradigm to design brain-computer interfaces (BCIs) that elicits the modulation of brain oscillatory activity similar to real, passive and induced movements. In this study, we used peripheral stimulation to provoke movements of one limb during the performance of motor imagery tasks. Unlike other works, in which induced movements are used to support the BCI operation, our goal was to test and improve the robustness of motor imagery based BCI systems to perturbations caused by artificially generated movements.Approach.We performed a BCI session with ten participants who carried out motor imagery of three limbs. In some of the trials, one of the arms was moved by neuromuscular stimulation. We analysed 2-class motor imagery classifications with and without movement perturbations. We investigated the performance decrease produced by these disturbances and designed different computational strategies to attenuate the observed classification accuracy drop.Main results.When the movement was induced in a limb not coincident with the motor imagery classes, extracting oscillatory sources of the movement imagination tasks resulted in BCI performance being similar to the control (undisturbed) condition; when the movement was induced in a limb also involved in the motor imagery tasks, the performance drop was significantly alleviated by spatially filtering out the neural noise caused by the stimulation. We also show that the loss of BCI accuracy was accompanied by weaker power of the sensorimotor rhythm. Importantly, this residual power could be used to predict whether a BCI user will perform with sufficient accuracy under the movement disturbances.Significance.We provide methods to ameliorate and even eliminate motor related afferent disturbances during the performance of motor imagery tasks. This can help improving the reliability of current motor imagery based BCI systems.
Collapse
Affiliation(s)
- C Vidaurre
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain.,Machine Learning Group, Computer Science Faculty, Berlin Institute of Technology, Berlin, Germany.,Both authors contributed equally
| | - T Jorajuría
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain.,Both authors contributed equally
| | - A Ramos-Murguialday
- Institute for Medical Psychology and Behavioral Neurobiology (IMP), University of Tübingen, 72076 Tübingen, Germany.,Neurotechnology Laboratory, TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - K-R Müller
- Machine Learning Group, Computer Science Faculty, Berlin Institute of Technology, Berlin, Germany.,BIFOLD Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea.,Max Planck Institute for Informatics, Saarbrücken, Germany
| | - M Gómez
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - V V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
15
|
Majidi Fard Vatan H, Nefti-Meziani S, Davis S, Saffari Z, El-Hussieny H. A review: A Comprehensive Review of Soft and Rigid Wearable Rehabilitation and Assistive Devices with a Focus on the Shoulder Joint. J INTELL ROBOT SYST 2021. [DOI: 10.1007/s10846-021-01353-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe importance of the human upper limb role in performing daily life and personal activities is significant. Improper functioning of this organ due to neurological disorders or surgeries can greatly affect the daily activities performed by patients. This paper aims to comprehensively review soft and rigid wearable robotic devices provided for rehabilitation and assistance focusing on the shoulder joint. In the last two decades, many devices have been proposed in this regard, however, there have been a few groups whose devices have had effective therapeutic capability with acceptable clinical evidence. Also, there were not many portable, lightweight and user-friendly devices. Therefore, this comprehensive study could pave the way for achieving optimal future devices, given the growing need for these devices. According to the results, the most commonly used plan was Exoskeleton, the most commonly used actuators were electrical, and most devices were considered to be stationary and rigid. By doing these studies, the advantages and disadvantages of each method are also presented. The presented devices each have a new idea and attitude in a specific field to solve the problems of movement disorders and rehabilitation, which were in the form of prototypes, initial clinical studies and sometimes comprehensive clinical and commercial studies. These plans need more comprehensive clinical trials to become a complete and efficient plan. This article could be used by researchers to identify and evaluate the important features and strengths and weaknesses of the plans to lead to the presentation of more optimal plans in the future.
Collapse
|
16
|
Ambrosini E, Gasperini G, Zajc J, Immick N, Augsten A, Rossini M, Ballarati R, Russold M, Ferrante S, Ferrigno G, Bulgheroni M, Baccinelli W, Schauer T, Wiesener C, Gfoehler M, Puchinger M, Weber M, Weber S, Pedrocchi A, Molteni F, Krakow K. A Robotic System with EMG-Triggered Functional Eletrical Stimulation for Restoring Arm Functions in Stroke Survivors. Neurorehabil Neural Repair 2021; 35:334-345. [PMID: 33655789 DOI: 10.1177/1545968321997769] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Robotic systems combined with Functional Electrical Stimulation (FES) showed promising results on upper-limb motor recovery after stroke, but adequately-sized randomized controlled trials (RCTs) are still missing. OBJECTIVE To evaluate whether arm training supported by RETRAINER, a passive exoskeleton integrated with electromyograph-triggered functional electrical stimulation, is superior to advanced conventional therapy (ACT) of equal intensity in the recovery of arm functions, dexterity, strength, activities of daily living, and quality of life after stroke. METHODS A single-blind RCT recruiting 72 patients was conducted. Patients, randomly allocated to 2 groups, were trained for 9 weeks, 3 times per week: the experimental group performed task-oriented exercises assisted by RETRAINER for 30 minutes plus ACT (60 minutes), whereas the control group performed only ACT (90 minutes). Patients were assessed before, soon after, and 1 month after the end of the intervention. Outcome measures were as follows: Action Research Arm Test (ARAT), Motricity Index, Motor Activity Log, Box and Blocks Test (BBT), Stroke Specific Quality of Life Scale (SSQoL), and Muscle Research Council. RESULTS All outcomes but SSQoL significantly improved over time in both groups (P < .001); a significant interaction effect in favor of the experimental group was found for ARAT and BBT. ARAT showed a between-group change of 11.5 points (P = .010) at the end of the intervention, which increased to 13.6 points 1 month after. Patients considered RETRAINER moderately usable (System Usability Score of 61.5 ± 22.8). CONCLUSIONS Hybrid robotic systems, allowing to perform personalized, intensive, and task-oriented training, with an enriched sensory feedback, was superior to ACT in improving arm functions and dexterity after stroke.
Collapse
Affiliation(s)
| | | | | | - Nancy Immick
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Andreas Augsten
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Mauro Rossini
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | - Karsten Krakow
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| |
Collapse
|
17
|
Gasser BW, Martinez A, Sasso-Lance E, Kandilakis C, Durrough CM, Goldfarb M. Preliminary Assessment of a Hand and Arm Exoskeleton for Enabling Bimanual Tasks for Individuals With Hemiparesis. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2214-2223. [PMID: 32822300 DOI: 10.1109/tnsre.2020.3018649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The design and preliminary assessment of a semi-powered hand and arm exoskeleton is described. The exoskeleton is designed to enable bimanual activities of daily living for individuals with chronic, upper-limb hemiparesis resulting from stroke. Specifically, the device augments the user's grasp strength and ability to extend the affected hand for bimanual tasks and supplements wrist and elbow stability while conducting these tasks. The exoskeleton is battery-powered and self-contained with all electronics and power units placed within the device structure. A preliminary assessment of the exoskeleton was performed with three subjects having right-sided upper-limb motor deficit resulting from stroke. For subjects with limited hand and arm functionality, the exoskeleton increased grasp strength and improved the ability to perform representative bimanual tasks.
Collapse
|
18
|
A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Exp Neurol 2020; 328:113274. [DOI: 10.1016/j.expneurol.2020.113274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022]
|
19
|
Gasperina SD, Gfoehler M, Puchinger M, Braghin F, Pedrocchi A, Gandolla M, Manti A, Aquilante L, Longatelli V, D'Angelo MG, Molteni F, Biffi E, Rossini M. Upper-limb actuated exoskeleton for muscular dystrophy patients: preliminary results .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4431-4435. [PMID: 31946849 DOI: 10.1109/embc.2019.8857725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Being able to perform a lost movement is an important experience towards increased independence and self-esteem, particularly for neuromuscular patients, who see their muscles weaken day after day. In this pilot study, preliminary results on the testing of a motorized upper-limb exoskeleton for muscular dystrophy patients are presented. The mechatronic system is a five Degrees of Freedom exoskeleton, which acts at shoulder, elbow, and wrist levels. It is designed to help severely impaired people to regain independence during daily-life activities. While wearing the exoskeleton, the user has the direct control of the system by actively piloting the position of end-effector by means of joystick or vocal control. The usability of the system and a quantitative assessment of arm functionality with and without the exoskeleton are evaluated on five muscular dystrophy patients. According to the objective functional benefit evaluation performed through the PUL scale, all participants strongly increased their range of motion and they were able to perform activities that were not possible without the exoskeleton, such as such as feeding, playing activities at the table, combing hair or using a keyboard. As for the evaluation of self-perceived functional benefit, four patients reflected the effective measured functional improvement. System usability has been evaluated to be good.
Collapse
|
20
|
Serrezuela RR, Quezada MT, Zayas MH, Pedrón AM, Hermosilla DM, Zamora RS. Robotic therapy for the hemiplegic shoulder pain: a pilot study. J Neuroeng Rehabil 2020; 17:54. [PMID: 32321536 PMCID: PMC7178610 DOI: 10.1186/s12984-020-00674-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/01/2020] [Indexed: 11/28/2022] Open
Abstract
Backgrounds Exoskeletons development arises with a leading role in neurorehabilitation technologies; however, very few prototypes for upper limbs have been tested, contrasted and duly certified in terms of their effectiveness in clinical environments in order to incorporate into the health system. The purpose of this pilot study was to determine if robotic therapy of Hemiplegic Shoulder Pain (HSP) could lead to functional improvement in terms of diminishing of pain, spasticity, subluxation, the increasing of tone and muscle strength, and the satisfaction degree. Methods An experimental study was conducted in 16 patients with painful shoulder post- ischemic stroke in two experimental groups: conventional and robotic therapy. At different stages of its evolution, the robotic therapy effectiveness applied with anti-gravitational movements was evaluated. Clinical trial was developed at the Physical Medicine and Rehabilitation Department of the Surgical Clinical Hospital “Dr. Juan Bruno Zayas Alfonso” in Santiago de Cuba, from September 2016 - March 2018. Among other variables: the presence of humeral scapular subluxation (HSS), pain, spasticity, mobility, tone and muscle strength, and the satisfaction degree were recorded. Results with 95% reliability were compared between admission and third months of treatment. The Mann-Whitney U-Test, Chi-Square and Fisher’s Exact Tests were used as comparison criteria. Results Robotic therapy positively influenced in the decrease and annulment of pain and the spasticity degree, reaching a range increase of joint movement and the improvement of muscle tone.
Collapse
|
21
|
Schearer EM, Wolf DN. Predicting functional force production capabilities of upper extremity functional electrical stimulation neuroprostheses: a proof of concept study. J Neural Eng 2020; 17:016051. [PMID: 31910397 DOI: 10.1088/1741-2552/ab68b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study's goal was to demonstrate person-specific predictions of the force production capabilities of a paralyzed arm when actuated with a functional electrical stimulation (FES) neuroprosthesis. These predictions allow us to determine, for each hand position in a person's workspace, if FES activated muscles can produce enough force to hold the arm against gravity and other passive forces, the amount of force the arm can potentially exert on external objects, and in which directions FES can move the arm. APPROACH We computed force production predictions for a person with high tetraplegia and an FES neuroprosthesis used to activate muscles in her shoulder and arm. We developed Gaussian process regression models of the force produced at the end of the forearm when stimulating individual muscles at different wrist positions in the person's workspace. For any given wrist position, we predicted all possible forces a person can produce by any combination of individual muscles. Based on the force predictions, we determined if FES could produce force sufficient to overcome passive forces to hold a wrist position, the maximum force FES could produce in all directions, and the set of directions in which FES could move the arm. To estimate the error in our predictions, we then compared our force predictions based on single-muscle models to the actual forces produced when stimulating combinations of the person's muscles. MAIN RESULTS Our models classified the person's ability to hold static arm positions correctly for 83% (Session #1) and 69% (Session #2) for 39 wrist positions over two sessions. We predicted this person's ability to produce force at the end of her arm with an RMS error of 5.5 N and the percent of directions for which FES could achieve motion with RMS error of 10%. The accuracy of these predictions is similar to that found in the literature for FES systems with fewer degrees of freedom and fewer muscles. SIGNIFICANCE These person and device-specific predictions of functional capabilities of the arm allow neuroprosthesis developers to set achievable functional objectives for the systems they develop. These predictions can potentially serve as a screening tool for clinicians to use in planning neuroprosthetic interventions, greatly reducing the risk and uncertainty in such interventions.
Collapse
Affiliation(s)
- Eric M Schearer
- Center for Human-Machine Systems, Cleveland State University, Cleveland, United States of America. Cleveland Functional Electrical Stimulation Center, Cleveland, United States of America. MetroHealth Medical Center, Department of Physical Medicine and Rehabilitation, Cleveland, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|
22
|
Ambrosini E, Zajc J, Ferrante S, Ferrigno G, Dalla Gasperina S, Bulgheroni M, Baccinelli W, Schauer T, Wiesener C, Russold M, Gfoehler M, Puchinger M, Weber M, Becker S, Krakow K, Immick N, Augsten A, Rossini M, Proserpio D, Gasperini G, Molteni F, Pedrocchi A. A Hybrid Robotic System for Arm Training of Stroke Survivors: Concept and First Evaluation. IEEE Trans Biomed Eng 2019; 66:3290-3300. [DOI: 10.1109/tbme.2019.2900525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Badesa FJ, Diez JA, Catalan JM, Trigili E, Cordella F, Nann M, Crea S, Soekadar SR, Zollo L, Vitiello N, Garcia-Aracil N. Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4931. [PMID: 31726745 PMCID: PMC6891352 DOI: 10.3390/s19224931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
Abstract
When combined with assistive robotic devices, such as wearable robotics, brain/neural-computer interfaces (BNCI) have the potential to restore the capabilities of handicapped people to carry out activities of daily living. To improve applicability of such systems, workload and stress should be reduced to a minimal level. Here, we investigated the user's physiological reactions during the exhaustive use of the interfaces of a hybrid control interface. Eleven BNCI-naive healthy volunteers participated in the experiments. All participants sat in a comfortable chair in front of a desk and wore a whole-arm exoskeleton as well as wearable devices for monitoring physiological, electroencephalographic (EEG) and electrooculographic (EoG) signals. The experimental protocol consisted of three phases: (i) Set-up, calibration and BNCI training; (ii) Familiarization phase; and (iii) Experimental phase during which each subject had to perform EEG and EoG tasks. After completing each task, the NASA-TLX questionnaire and self-assessment manikin (SAM) were completed by the user. We found significant differences (p-value < 0.05) in heart rate variability (HRV) and skin conductance level (SCL) between participants during the use of the two different biosignal modalities (EEG, EoG) of the BNCI. This indicates that EEG control is associated with a higher level of stress (associated with a decrease in HRV) and mental work load (associated with a higher level of SCL) when compared to EoG control. In addition, HRV and SCL modulations correlated with the subject's workload perception and emotional responses assessed through NASA-TLX questionnaires and SAM.
Collapse
Affiliation(s)
- Francisco J. Badesa
- Miguel Hernández University of Elche, Av. Universidad w/n, Ed. Innova, 03202 Alicante, Spain; (J.M.C.); (N.G.-A.)
- Universidad de Cádiz, Av. de la Universidad n10, 11519 Puerto Real, Spain
- New technologies for Neurorehabilitation Lab., Av. de la Hospitalidad, s/n, 28054 Madrid, Spain
| | - Jorge A. Diez
- Miguel Hernández University of Elche, Av. Universidad w/n, Ed. Innova, 03202 Alicante, Spain; (J.M.C.); (N.G.-A.)
- New technologies for Neurorehabilitation Lab., Av. de la Hospitalidad, s/n, 28054 Madrid, Spain
| | - Jose Maria Catalan
- Miguel Hernández University of Elche, Av. Universidad w/n, Ed. Innova, 03202 Alicante, Spain; (J.M.C.); (N.G.-A.)
- New technologies for Neurorehabilitation Lab., Av. de la Hospitalidad, s/n, 28054 Madrid, Spain
| | - Emilio Trigili
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy; (E.T.); (S.C.); (N.V.)
| | - Francesca Cordella
- Unit of Advanced Robotics and Human-centred Technologies, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (F.C.); (L.Z.)
| | - Marius Nann
- Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University Hopsital of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany;
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy; (E.T.); (S.C.); (N.V.)
- IRCCS Fondazione Don Carlo Gnocchi, Via Alfonso Capecelatro 66, 20148 Milan, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56025 Pontedera, Pisa, Italy
| | - Surjo R. Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy (CCM), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Loredana Zollo
- Unit of Advanced Robotics and Human-centred Technologies, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (F.C.); (L.Z.)
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy; (E.T.); (S.C.); (N.V.)
- IRCCS Fondazione Don Carlo Gnocchi, Via Alfonso Capecelatro 66, 20148 Milan, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56025 Pontedera, Pisa, Italy
| | - Nicolas Garcia-Aracil
- Miguel Hernández University of Elche, Av. Universidad w/n, Ed. Innova, 03202 Alicante, Spain; (J.M.C.); (N.G.-A.)
- New technologies for Neurorehabilitation Lab., Av. de la Hospitalidad, s/n, 28054 Madrid, Spain
| |
Collapse
|
24
|
Moineau B, Myers M, Ali SS, Popovic MR, Hitzig SL. End-user and clinician perspectives on the viability of wearable functional electrical stimulation garments after stroke and spinal cord injury. Disabil Rehabil Assist Technol 2019; 16:241-250. [PMID: 31592679 DOI: 10.1080/17483107.2019.1668974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Functional electrical stimulation (FES), through repetitive training (FES-therapy) or continuous assistance (neuro-prosthesis), can restore motor function after paralysis due to spinal cord injury or stroke. With current technology, patients are often incapable of independently applying FES, thereby limiting its use. Novel FES-garments with embedded stimulation electrodes were developed in collaboration with Myant, Canada, to address this problem. The purpose of this study was to collect the views of future end-users to inform the refinement of the device design and to obtain insights on subsequent commercialization of this rehabilitation and assistive technology. METHODS A qualitative study was undertaken to determine the needs of potential users (patients and clinicians; n = 19). Participant took part in interviews or focus groups after a presentation of the garments. An inductive content analysis was used to generate the themes from the data and identify data saturation. RESULTS The identified themes and sub-themes were: (1) User Perspectives: users' characteristics (needs, limitations), expected benefits (beliefs), and anticipated problems (fears); (2) Device Design: technical features, usability, and disadvantages of the garment, cables, stimulator, software, and interface; (3) Acquisition Process: organizational procedures (acquisition and adoption steps); and (4) Business Model: financial and strategic aspects to facilitate commercialization and support users. CONCLUSIONS The insights obtained from end-users and clinicians provide guidelines to optimize the development of novel FES-garments, and strategies for bringing the device to the market. The themes identified can serve to inform other rehabilitation and assistive technology developers with processes and ideas on how to meet these groups' needs.IMPLICATIONS FOR REHABILITATIONParticipants with neurological paralysis have interest and critical views on new rehabilitation and assistive technology, and the repercussions of using new technologies to address their function, health and wellbeing.The FES-garment design presented appeared acceptable to the end-users, pending resolution of certain shortcomings (wiring, operating duration, robustness, easiness to don and doff).End-users and clinicians had specific views regarding the acquisition process of new technologies (training, customization, and follow-up/support), which are important to take into consideration to ensure broad stakeholders uptake.
Collapse
Affiliation(s)
- Bastien Moineau
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,CRANIA, University Health Network, Toronto, ON, Canada.,Myant Inc, Etobicoke, ON, Canada
| | - Matthew Myers
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,CRANIA, University Health Network, Toronto, ON, Canada
| | - Saima Shaheen Ali
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,CRANIA, University Health Network, Toronto, ON, Canada
| | - Milos R Popovic
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,CRANIA, University Health Network, Toronto, ON, Canada
| | - Sander L Hitzig
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,St-John's Rehab Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Occupational Science and Occupational Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Staffa M, Giordano M, Ficuciello F. A WiSARD Network Approach for a BCI-Based Robotic Prosthetic Control. Int J Soc Robot 2019. [DOI: 10.1007/s12369-019-00576-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Abstract
Purpose: To conduct a survey on the research and development of cable-driven rehabilitation devices (CDRDs). Method: This review searches in the databases of PubMed, IEEE Xplore Digital Library, Science Direct, and Google Scholar using various combinations of the following keywords: cable, wire, rehabilitation, assistance, therapy, training, robot, elastic, and pneumatic. Searches in the above databases for references cited by the above-searched references are also conducted to include a larger context of CDRDs. Results: CDRDs are classified into four categories, namely, serial exoskeleton-based, parallel exoskeleton-based, serial end-effector-based, and parallel end-effector-based CDRDs. Each category of CDRDs are further grouped based on the part of the human body to be rehabilitated. All four categories of CDRDs are examined and compared and their advantages and shortcomings are discussed based on popular rehabilitation requirements on weight, adaptability, versatility, misalignment, and safety. Open issues of CDRDs are also discussed.Conclusions: Each category of CDRDs has its own advantages and shortcomings. The selection of a CDRD highly depends on the specific application. Regarding the convenience of setting up a CDRD for rehabilitation, parallel CDRDs usually have better adaptability than serial ones. However, uncertainties come with parallel CDRDs, which makes the control of parallel CDRDs more challenging. Moreover, the strategy of inherent safety has a great potential to further improve the safety of CDRDs.Implications for rehabilitationCDRDs (and general RRDs) can deliver high-intensity training while therapists usually cannot. With up-to-date human-robot interaction techniques (e.g., virtual reality), CDRDs are more interesting and motivating to trainees than conventional manual rehabilitation therapies. CDRDs also provide financial benefits in the long-run. Currently existing RRDs available for clinical practice are mainly designed for the rehabilitation of shoulders, elbows, and knees. Parallel exoskeleton-based CDRDs can also be used for the rehabilitation of many other parts of trainees. Thus, CDRDs extend the coverage of RRDs in rehabilitation. Owing to their simple structures and light weights, CDRDs can be portable and used for rehabilitation at home. In this way, CDRDs can improve the duration and intensity of rehabilitation for those with limited access to rehabilitation institutes. As well known, the higher intensity of training leads to a higher rate of recovery.
Collapse
Affiliation(s)
- Hao Xiong
- School of Engineering Technology, Purdue University, West Lafayette, IN, USA
| | - Xiumin Diao
- School of Engineering Technology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
27
|
Lunardini F, Antonietti A, Casellato C, Pedrocchi A. Synergy-Based Myocontrol of a Multiple Degree-of-Freedom Humanoid Robot for Functional Tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:5108-5112. [PMID: 31947008 DOI: 10.1109/embc.2019.8857809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the context of sensor-based human-robot interaction, a particularly promising solution is represented by myoelectric control schemes based on synergy-derived signals. We developed and tested on healthy subjects a synergy-based control to achieve simultaneous, continuous actuation of three degrees of freedom of a humanoid robot, while performing functional reach-to-grasp movements. The control scheme exploits subject-specific muscle synergies extracted from eleven upper limb muscles through an easy semi-supervised calibration phase, and computes online activation coefficients to actuate the robot joints. The humanoid robot was able to well reproduce the subjects' motion, which consisted in free multi-degree-of-freedom reach-to-grasp movements at self-paced speeds. Furthermore, the synergy-based online control significantly outperformed a traditional muscle-pair approach (that uses a pair of antagonist muscles for each joint), in terms of decreased error, increased correlation, and peak correlation between the subjects' and the robot's joint angles. The delay introduced by the two algorithms was comparable. This work is a proof-of-concept for an intuitive and robust myocontrol interface, without the need for any training and practice. It has several potential applications, especially for functional assistive engaging devices in children with social and motor impairments.
Collapse
|
28
|
Smith C, Kenney L, Howard D, Waring K, Sun M, Luckie H, Hardiker N, Cotterill S. Prediction of setup times for an advanced upper limb functional electrical stimulation system. J Rehabil Assist Technol Eng 2019; 5:2055668318802561. [PMID: 31191957 PMCID: PMC6531802 DOI: 10.1177/2055668318802561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Introduction Rehabilitation devices take time to don, and longer or unpredictable setup time impacts on usage. This paper reports on the development of a model to predict setup time for upper limb functional electrical stimulation. Methods Participants' level of impairment (Fugl Meyer-Upper Extremity Scale), function (Action Research Arm Test) and mental status (Mini Mental Scale) were measured. Setup times for each stage of the setup process and total setup times were recorded. A predictive model of setup time was devised using upper limb impairment and task complexity. Results Six participants with stroke were recruited, mean age 60 (±17) years and mean time since stroke 9.8 (±9.6) years. Mean Fugl Meyer-Upper Extremity score was 31.1 (±6), Action Research Arm Test 10.4 (±7.9) and Mini Mental Scale 26.1 (±2.7). Linear regression analysis showed that upper limb impairment and task complexity most effectively predicted setup time (51% as compared with 39%) (F(2,21) = 12.782, adjusted R2 = 0.506; p < .05). Conclusions A model to predict setup time based on upper limb impairment and task complexity accounted for 51% of the variation in setup time. Further studies are required to test the model in real-world settings and to identify other contributing factors.
Collapse
Affiliation(s)
- Christine Smith
- Department of Allied Health Professions, Sheffield Hallam University, Sheffield, UK
| | - Laurence Kenney
- School of Health Sciences, University of Salford, Salford, UK
| | - David Howard
- School of Computing, Science and Engineering, University of Salford, Salford, UK
| | - Karen Waring
- School of Health Sciences, University of Salford, Salford, UK
| | - Minxgu Sun
- School of Health Sciences, University of Salford, Salford, UK
| | - Helen Luckie
- School of Health Sciences, University of Salford, Salford, UK
| | - Nicholas Hardiker
- School of Nursing, Midwifery, Social Work & Social Sciences, University of Salford, Salford, UK
| | - Sarah Cotterill
- Research & Development Department, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
29
|
Kögel J, Schmid JR, Jox RJ, Friedrich O. Using brain-computer interfaces: a scoping review of studies employing social research methods. BMC Med Ethics 2019; 20:18. [PMID: 30845952 PMCID: PMC6407281 DOI: 10.1186/s12910-019-0354-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background The rapid expansion of research on Brain-Computer Interfaces (BCIs) is not only due to the promising solutions offered for persons with physical impairments. There is also a heightened need for understanding BCIs due to the challenges regarding ethics presented by new technology, especially in its impact on the relationship between man and machine. Here we endeavor to present a scoping review of current studies in the field to gain insight into the complexity of BCI use. By examining studies related to BCIs that employ social research methods, we seek to demonstrate the multitude of approaches and concerns from various angles in considering the social and human impact of BCI technology. Methods For this scoping review of research on BCIs’ social and ethical implications, we systematically analyzed six databases, encompassing the fields of medicine, psychology, and the social sciences, in order to identify empirical studies on BCIs. The search yielded 73 publications that employ quantitative, qualitative, or mixed methods. Results Of the 73 publications, 71 studies address the user perspective. Some studies extend to consideration of other BCI stakeholders such as medical technology experts, caregivers, or health care professionals. The majority of the studies employ quantitative methods. Recurring themes across the studies examined were general user opinion towards BCI, central technical or social issues reported, requests/demands made by users of the technology, the potential/future of BCIs, and ethical aspects of BCIs. Conclusions Our findings indicate that while technical aspects of BCIs such as usability or feasibility are being studied extensively, comparatively little in-depth research has been done on the self-image and self-experience of the BCI user. In general there is also a lack of focus or examination of the caregiver’s perspective. Electronic supplementary material The online version of this article (10.1186/s12910-019-0354-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Kögel
- Institute of Ethics, History and Theory of Medicine, LMU Munich, Lessingstr. 2, D-80336, Munich, Germany.
| | - Jennifer R Schmid
- Institute of Ethics, History and Theory of Medicine, LMU Munich, Lessingstr. 2, D-80336, Munich, Germany
| | - Ralf J Jox
- Institute of Ethics, History and Theory of Medicine, LMU Munich, Lessingstr. 2, D-80336, Munich, Germany
| | - Orsolya Friedrich
- Institute of Ethics, History and Theory of Medicine, LMU Munich, Lessingstr. 2, D-80336, Munich, Germany
| |
Collapse
|
30
|
Damian MS, Wijdicks EFM. The clinical management of neuromuscular disorders in intensive care. Neuromuscul Disord 2018; 29:85-96. [PMID: 30639065 DOI: 10.1016/j.nmd.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Life-threatening neuromuscular disorders affect a small, but growing group of patients in the intensive care unit who present special management problems, as well as great therapeutic opportunities. In inflammatory conditions, a cure is often possible, and for chronic, genetic or degenerative conditions, achieving the previous level of function is the target. Neuromuscular experts and intensivists need to cooperate closely to achieve the best possible outcomes. They need to acquire a very specific set of skills, including both a thorough understanding of the mechanics of ventilation as well as familiarity with the diagnostic categories of genetic and of autoimmune diseases. This review of the clinical management of adult neuromuscular disease in the ICU aims to provide an overview of the most important conditions encountered in the ICU and a practical approach to their diagnosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Maxwell S Damian
- Neurology and Neurointensive Care, Cambridge University Hospitals and Ipswich Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Eelco F M Wijdicks
- Neurology Division of Critical Care Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Frolov AA, Kozlovskaya IB, Biryukova EV, Bobrov PD. Use of Robotic Devices in Post-Stroke Rehabilitation. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11055-018-0668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Wolf DN, Schearer EM. Holding Static Arm Configurations With Functional Electrical Stimulation: A Case Study. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2044-2052. [PMID: 30130233 DOI: 10.1109/tnsre.2018.2866226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Functional electrical stimulation (FES) is a promising solution for restoring functional motion to individuals with paralysis, but the potential for achieving any desired full-arm reaching motion has not been realized. We present a combined feedforward-feedback controller capable of automatically calculating and applying the necessary muscle stimulations to hold the wrist of an individual with high tetraplegia in a desired static position. We used the controller to hold a complete arm configuration to maintain a series of static wrist positions. The average distance to the target wrist position, or accuracy, was 2.9 cm. The precision is defined as the radius of the 95% confidence ellipsoid for the final positions of a set of trials with the same muscle stimulations and starting position. The average precision was 3.7 cm. The control architecture used in this study to hold static positions has the potential to control arbitrary reaching motions.
Collapse
|
33
|
Manna SK, Dubey VN. Comparative study of actuation systems for portable upper limb exoskeletons. Med Eng Phys 2018; 60:1-13. [PMID: 30122472 DOI: 10.1016/j.medengphy.2018.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/26/2018] [Accepted: 07/29/2018] [Indexed: 11/19/2022]
Abstract
During the last two decades, a large variety of upper limb exoskeletons have been developed. Out of these, majority are platform based systems which might be the reason for not being widely adopted for post-stroke rehabilitation. Despite the potential benefits of platform-based exoskeletons as being rugged and reliable, stroke patients prefer to have a portable and user-friendly device that they can take home. However, the types of actuator as well as the actuation mechanism used in the exoskeleton are the inhibiting factors why portable exoskeletons are mostly non-existent for patient use. This paper presents a quantitative analysis of the actuation systems available for developing portable upper arm exoskeletons with their specifications. Finally, it has been concluded from this research that there are not many stand-alone arm exoskeletons which can provide all forms of rehabilitation, therefore, a generic solution has been proposed as the rehabilitation strategy to get best out of the portable arm exoskeletons.
Collapse
Affiliation(s)
- Soumya K Manna
- Faculty of Science and Technology, Bournemouth University Talbot Campus, Poole BH12 5BB, United Kingdom.
| | - Venketesh N Dubey
- Faculty of Science and Technology, Bournemouth University Talbot Campus, Poole BH12 5BB, United Kingdom.
| |
Collapse
|
34
|
Intelligent Multimodal Framework for Human Assistive Robotics Based on Computer Vision Algorithms. SENSORS 2018; 18:s18082408. [PMID: 30042372 PMCID: PMC6111334 DOI: 10.3390/s18082408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023]
Abstract
Assistive technologies help all persons with disabilities to improve their accessibility in all aspects of their life. The AIDE European project contributes to the improvement of current assistive technologies by developing and testing a modular and adaptive multimodal interface customizable to the individual needs of people with disabilities. This paper describes the computer vision algorithms part of the multimodal interface developed inside the AIDE European project. The main contribution of this computer vision part is the integration with the robotic system and with the other sensory systems (electrooculography (EOG) and electroencephalography (EEG)). The technical achievements solved herein are the algorithm for the selection of objects using the gaze, and especially the state-of-the-art algorithm for the efficient detection and pose estimation of textureless objects. These algorithms were tested in real conditions, and were thoroughly evaluated both qualitatively and quantitatively. The experimental results of the object selection algorithm were excellent (object selection over 90%) in less than 12 s. The detection and pose estimation algorithms evaluated using the LINEMOD database were similar to the state-of-the-art method, and were the most computationally efficient.
Collapse
|
35
|
Crea S, Nann M, Trigili E, Cordella F, Baldoni A, Badesa FJ, Catalán JM, Zollo L, Vitiello N, Aracil NG, Soekadar SR. Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Sci Rep 2018; 8:10823. [PMID: 30018334 PMCID: PMC6050229 DOI: 10.1038/s41598-018-29091-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
Arm and finger paralysis, e.g. due to brain stem stroke, often results in the inability to perform activities of daily living (ADLs) such as eating and drinking. Recently, it was shown that a hybrid electroencephalography/electrooculography (EEG/EOG) brain/neural hand exoskeleton can restore hand function to quadriplegics, but it was unknown whether such control paradigm can be also used for fluent, reliable and safe operation of a semi-autonomous whole-arm exoskeleton restoring ADLs. To test this, seven abled-bodied participants (seven right-handed males, mean age 30 ± 8 years) were instructed to use an EEG/EOG-controlled whole-arm exoskeleton attached to their right arm to perform a drinking task comprising multiple sub-tasks (reaching, grasping, drinking, moving back and releasing a cup). Fluent and reliable control was defined as average 'time to initialize' (TTI) execution of each sub-task below 3 s with successful initializations of at least 75% of sub-tasks within 5 s. During use of the system, no undesired side effects were reported. All participants were able to fluently and reliably control the vision-guided autonomous whole-arm exoskeleton (average TTI 2.12 ± 0.78 s across modalities with 75% successful initializations reached at 1.9 s for EOG and 4.1 s for EEG control) paving the way for restoring ADLs in severe arm and hand paralysis.
Collapse
Affiliation(s)
- Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Fondazione Don Carlo Gnocchi, Milan, Italy.
| | - Marius Nann
- Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany
| | - Emilio Trigili
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Francesca Cordella
- Unit of Biomedical Robotics and Biomicrosystems, University Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Baldoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Francisco Javier Badesa
- Applied Robotics, Departamento de Ingeniería en Automática, Electrónica, Arquitectura y Redes de Computadores, Universidad de Cádiz, Cádiz, Spain
| | - José Maria Catalán
- Biomedical Neuroengineering, Departamento de Ingenieria de Sistemas y Automática, Universidad Miguel Hernandez de Elche, Elche, Spain
| | - Loredana Zollo
- Unit of Biomedical Robotics and Biomicrosystems, University Campus Bio-Medico of Rome, Rome, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Nicolas Garcia Aracil
- Biomedical Neuroengineering, Departamento de Ingenieria de Sistemas y Automática, Universidad Miguel Hernandez de Elche, Elche, Spain
| | - Surjo R Soekadar
- Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany.
- Clinical Neurotechnology Laboratory, Neuroscience Research Center (NWFZ) & Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Abstract
Neuromodulation, or the utilization of advanced technology for targeted electrical or chemical neuronal stimulation or inhibition, has been expanding in several neurological subspecialties. In the past decades, immune-modulating therapy has been the main focus of multiple sclerosis (MS) research with little attention to neuromodulation. However, with the recent advances in disease-modifying therapies, it is time to shift the focus of MS research to neuromodulation and restoration of function as with other neurological subspecialties. Preliminary research supports the value of intrathecal baclofen pump and functional electrical stimulation in improving spasticity and motor function in MS patients. Deep brain stimulation can improve MS-related tremor and trigeminal neuralgia. Spinal cord stimulation has been shown to be effective against MS-related pain and bladder dysfunction. Bladder overactivity also responds to sacral neuromodulation and posterior tibial nerve stimulation. Despite limited data in MS, transcranial magnetic stimulation and brain-computer interface are promising neuromodulatory techniques for symptom mitigation and neurorehabilitation of MS patients. In this review, we provide an overview of the available neuromodulatory techniques and the evidence for their use in MS.
Collapse
Affiliation(s)
- Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Cleveland, OH, USA/School of Medicine, Case Western Reserve University, Cleveland, OH, USA/Neurology Department, Alexandria University, Alexandria, Egypt
| | - Eddie Hill
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Junaid Siddiqui
- Movement Disorders, University of Missouri- School of Medicine, Columbia, MO, USA
| | - Alessandro Serra
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Cleveland, OH, USA/School of Medicine, Case Western Reserve University, Cleveland, OH, USA/Multiple Sclerosis Center of Excellence, Cleveland VA Medical Center Hub Site, East Cleveland, OH, USA
| | - Benjamin Walter
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA/Parkinson's and Movement Disorders Center, University Hospitals of Cleveland, Cleveland, OH, USA
| |
Collapse
|
37
|
Wolf DN, Schearer EM. Evaluating an open-loop functional electrical stimulation controller for holding the shoulder and elbow configuration of a paralyzed arm. IEEE Int Conf Rehabil Robot 2018; 2017:789-794. [PMID: 28813916 DOI: 10.1109/icorr.2017.8009344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional electrical stimulation (FES) is a promising solution for restoring functional motion to individuals with paralysis, but the potential for achieving full-arm reaching motions with FES for various desired tasks has not been realized. We present an open-loop controller capable of calculating and applying the necessary muscle stimulations to hold the wrist of an individual with high tetraplegia at any desired position. We used the controller to hold the wrist at a series of static positions. The controller was capable of discriminating between different wrist positions. The average distance to the target wrist position, or accuracy, was 7.7 cm. The average radius of the 95% confidence ellipsoid for a set of trials with the same muscle stimulations, or precision, was 6.7 cm. Adding feedback or online model updates will likely improve the accuracy for tasks requiring finer control. The controller is a good first step to controlling full-arm motions with FES.
Collapse
|
38
|
Crema A, Malesevic N, Furfaro I, Raschella F, Pedrocchi A, Micera S. A Wearable Multi-Site System for NMES-Based Hand Function Restoration. IEEE Trans Neural Syst Rehabil Eng 2018; 26:428-440. [DOI: 10.1109/tnsre.2017.2703151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Agarwal P, Deshpande AD. Subject-Specific Assist-as-Needed Controllers for a Hand Exoskeleton for Rehabilitation. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2017.2768124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Rabelo M, de Moura Jucá RVB, Lima LAO, Resende-Martins H, Bó APL, Fattal C, Azevedo-Coste C, Fachin-Martins E. Overview of FES-Assisted Cycling Approaches and Their Benefits on Functional Rehabilitation and Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:561-583. [DOI: 10.1007/978-981-13-1435-3_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Sternowski K, Perone K. Uses of Electrical Stimulation for the Rehabilitation of People with Multiple Sclerosis: A Review. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2017. [DOI: 10.1007/s40141-017-0157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Gandolla M, Costa A, Aquilante L, Gfoehler M, Puchinger M, Braghin F, Pedrocchi A. BRIDGE - Behavioural reaching interfaces during daily antigravity activities through upper limb exoskeleton: Preliminary results. IEEE Int Conf Rehabil Robot 2017; 2017:1007-1012. [PMID: 28813953 DOI: 10.1109/icorr.2017.8009381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
People with neuromuscular diseases such as muscular dystrophy experience a distributed and evolutive weakness in the whole body. Recent technological developments have changed the daily life of disabled people strongly improving the perceived quality of life, mostly concentrating on powered wheelchairs, so to assure autonomous mobility and respiratory assistance, essential for survival. The key concept of the BRIDGE project is to contrast the everyday experience of losing functions by providing them of a system able to exploit the best their own residual capabilities in arm movements so to keep them functional and autonomous as much as possible. BRIDGE is composed by a light, wearable and powered five degrees of freedom upper limb exoskeleton under the direct control of the user through a joystick or gaze control. An inverse kinematic model allows to determine joints position so to track patient desired hand position. BRIDGE prototype has been successfully tested in simulation environment, and by a small group of healthy volunteers. Preliminary results show a good tracking performance of the implemented control scheme. The interaction procedure was easy to understand, and the interaction with the system was successful.
Collapse
|
43
|
Stocum DL. Mechanisms of urodele limb regeneration. REGENERATION (OXFORD, ENGLAND) 2017; 4:159-200. [PMID: 29299322 PMCID: PMC5743758 DOI: 10.1002/reg2.92] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb?
Collapse
Affiliation(s)
- David L. Stocum
- Department of BiologyIndiana University−Purdue University Indianapolis723 W. Michigan StIndianapolisIN 46202USA
| |
Collapse
|
44
|
Ambrosini E, Ferrante S, Zajc J, Bulgheroni M, Baccinelli W, d'Amico E, Schauer T, Wiesener C, Russold M, Gfoehler M, Puchinger M, Weber M, Becker S, Krakow K, Rossini M, Proserpio D, Gasperini G, Molteni F, Ferrigno G, Pedrocchi A. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: First results of the RETRAINER project. IEEE Int Conf Rehabil Robot 2017; 2017:56-61. [PMID: 28813793 DOI: 10.1109/icorr.2017.8009221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combined use of Functional Electrical Stimulation (FES) and robotic technologies is advocated to improve rehabilitation outcomes after stroke. This work describes an arm rehabilitation system developed within the European project RETRAINER. The system consists of a passive 4-degrees-of-freedom exoskeleton equipped with springs to provide gravity compensation and electromagnetic brakes to hold target positions. FES is integrated in the system to provide additional support to the most impaired muscles. FES is triggered based on the volitional EMG signal of the same stimulated muscle; in order to encourage the active involvement of the patient the volitional EMG is also monitored throughout the task execution and based on it a happy or sad emoji is visualized at the end of each task. The control interface control of the system provides a GUI and multiple software tools to organize rehabilitation exercises and monitor rehabilitation progress. The functionality and the usability of the system was evaluated on four stroke patients. All patients were able to use the system and judged positively its wearability and the provided support. They were able to trigger the stimulation based on their residual muscle activity and provided different levels of active involvement in the exercise, in agreement with their level of impairment. A randomized controlled trial aimed at evaluating the effectiveness of the RETRAINER system to improve arm function after stroke is currently ongoing.
Collapse
|
45
|
|
46
|
Nessi F, Beretta E, Gatti C, Ferrigno G, De Momi E. Gesteme-free context-aware adaptation of robot behavior in human–robot cooperation. Artif Intell Med 2016; 74:32-43. [DOI: 10.1016/j.artmed.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 11/26/2022]
|
47
|
Gandolla M, Ferrante S, Ferrigno G, Baldassini D, Molteni F, Guanziroli E, Cotti Cottini M, Seneci C, Pedrocchi A. Artificial neural network EMG classifier for functional hand grasp movements prediction. J Int Med Res 2016; 45:1831-1847. [PMID: 27677300 PMCID: PMC5805179 DOI: 10.1177/0300060516656689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution. Methods Multiple degrees-of-freedom hand grasp movements (i.e. pinching, grasp an object, grasping) were predicted by means of surface EMG signals, recorded from 10 bipolar EMG electrodes arranged in a circular configuration around the forearm 2-3 cm from the elbow. Two cascaded artificial neural networks were then exploited to detect the patient's motion intention from the EMG signal window starting from the electrical activity onset to movement onset (i.e. electromechanical delay). Results The proposed approach was tested on eight healthy control subjects (4 females; age range 25-26 years) and it demonstrated a mean ± SD testing performance of 76% ± 14% for correctly predicting healthy users' motion intention. Two post-stroke patients tested the controller and obtained 79% and 100% of correctly classified movements under testing conditions. Conclusion A task-selection controller was developed to estimate the intended movement from the EMG measured during the electromechanical delay.
Collapse
Affiliation(s)
- Marta Gandolla
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Simona Ferrante
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Giancarlo Ferrigno
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Davide Baldassini
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Franco Molteni
- 2 Villa Beretta Rehabilitation Centre, Valduce Hospital, Costamasnaga, Italy
| | - Eleonora Guanziroli
- 2 Villa Beretta Rehabilitation Centre, Valduce Hospital, Costamasnaga, Italy
| | | | | | - Alessandra Pedrocchi
- 1 Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| |
Collapse
|
48
|
Bó APL, da Fonseca LO, de Sousa ACC. FES-induced co-activation of antagonist muscles for upper limb control and disturbance rejection. Med Eng Phys 2016; 38:1176-1184. [PMID: 27514278 DOI: 10.1016/j.medengphy.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
Abstract
Control systems for human movement based on Functional Electrical Stimulation (FES) have shown to provide excellent performance in different experimental setups. Nevertheless, there is still a limited number of such applications available today on worldwide markets, indicating poor performance in real settings, particularly for upper limb rehabilitation and assistance. Based on these premises, in this paper we explore the use of an alternative control strategy based on co-activation of antagonist muscles using FES. Although co-contraction may accelerate fatigue when compared to single-muscle activation, knowledge from motor control indicate it may be useful for some applications. We have performed a simulation and experimental study designed to evaluate whether controllers that integrate such features can modulate joint impedance and, by doing so, improving performance with respect to disturbance rejection. The simulation results, obtained using a novel model including proprioceptive feedback and anatomical data, indicate that both stiffness and damping components of joint impedance may be modulated by using FES-induced co-activation of antagonist muscles. Preliminary experimental trials were conducted on four healthy subjects using surface electrodes. While the simulation investigation predicted a maximum 494% increase in joint stiffness for wrist flexion/extension, experiments provided an average elbow stiffness increase of 138% using lower stimulation intensity. Closed-loop experiments in which disturbances were applied have demonstrated that improved behavior may be obtained, but increased joint stiffness and other issues related to simultaneous stimulation of antagonist muscles may indeed produce greater errors.
Collapse
Affiliation(s)
- Antônio Padilha L Bó
- Laboratory of Automation and Robotics, Electrical Engineering Department, University of Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasília, Brazil.
| | - Lucas O da Fonseca
- Laboratory of Automation and Robotics, Electrical Engineering Department, University of Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasília, Brazil
| | - Ana Carolina C de Sousa
- Laboratory of Automation and Robotics, Electrical Engineering Department, University of Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasília, Brazil
| |
Collapse
|
49
|
Vidaurre C, Klauer C, Schauer T, Ramos-Murguialday A, Müller KR. EEG-based BCI for the linear control of an upper-limb neuroprosthesis. Med Eng Phys 2016; 38:1195-1204. [PMID: 27425203 DOI: 10.1016/j.medengphy.2016.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/18/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
Assistive technologies help patients to reacquire interacting capabilities with the environment and improve their quality of life. In this manuscript we present a feasibility study in which healthy users were able to use a non-invasive Motor Imagery (MI)-based brain computer interface (BCI) to achieve linear control of an upper-limb functional electrical stimulation (FES) controlled neuro-prosthesis. The linear control allowed the real-time computation of a continuous control signal that was used by the FES system to physically set the stimulation parameters to control the upper-limb position. Even if the nature of the task makes the operation very challenging, the participants achieved a mean selection accuracy of 82.5% in a target selection experiment. An analysis of limb kinematics as well as the positioning precision was performed, showing the viability of using a BCI-FES system to control upper-limb reaching movements. The results of this study constitute an accurate use of an online non-invasive BCI to operate a FES-neuroprosthesis setting a step toward the recovery of the control of an impaired limb with the sole use of brain activity.
Collapse
Affiliation(s)
- Carmen Vidaurre
- Machine Learning Group, Computer Science Faculty, Berlin Institute of Technology, Berlin, Germany.
| | - Christian Klauer
- Control Systems Group, Berlin Institute of Technology, Berlin, Germany
| | - Thomas Schauer
- Control Systems Group, Berlin Institute of Technology, Berlin, Germany
| | - Ander Ramos-Murguialday
- Institute for Medical Psychology and Behavioral Neurobiology (IMP), University of Tübingen, Tübingen 72076, Germany; TECNALIA, San Sebastian, Spain
| | - Klaus-Robert Müller
- Machine Learning Group, Computer Science Faculty, Berlin Institute of Technology, Berlin, Germany; Bernstein Focus: Neurotechnology, Berlin, Germany; Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| |
Collapse
|
50
|
Bos RA, Haarman CJ, Stortelder T, Nizamis K, Herder JL, Stienen AH, Plettenburg DH. A structured overview of trends and technologies used in dynamic hand orthoses. J Neuroeng Rehabil 2016; 13:62. [PMID: 27357107 PMCID: PMC4928331 DOI: 10.1186/s12984-016-0168-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/10/2016] [Indexed: 11/10/2022] Open
Abstract
The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different devices. A large and diverse solution space is formed by the various mechatronic components which are used in these devices. They are the result of making complex design choices within the constraints imposed by the application, the environment and the patient's individual needs. Several review studies exist that cover the details of specific disciplines which play a part in the developmental cycle. However, a general collection of all endeavors around the world and a structured overview of the solution space which integrates these disciplines is missing. In this study, a total of 165 individual dynamic hand orthoses were collected and their mechatronic components were categorized into a framework with a signal, energy and mechanical domain. Its hierarchical structure allows it to reach out towards the different disciplines while connecting them with common properties. Additionally, available arguments behind design choices were collected and related to the trends in the solution space. As a result, a comprehensive overview of the used mechatronic components in dynamic hand orthoses is presented.
Collapse
Affiliation(s)
- Ronald A. Bos
- />Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft The Netherlands
| | - Claudia J.W. Haarman
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
| | - Teun Stortelder
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
| | - Kostas Nizamis
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
| | - Just L. Herder
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
- />Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft The Netherlands
| | - Arno H.A. Stienen
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
- />Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N. Michigan Ave. Suite 1100, Chicago, 60611 IL USA
| | - Dick H. Plettenburg
- />Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft The Netherlands
| |
Collapse
|