1
|
Nia GE, Nikpayam E, Farrokhi M, Bolhassani A, Meuwissen R. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200788. [PMID: 38596310 PMCID: PMC10976516 DOI: 10.1016/j.omton.2024.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Lung cancer's intractability is enhanced by its frequent resistance to (chemo)therapy and often high relapse rates that make it the leading cause of cancer death worldwide. Improvement of therapy efficacy is a crucial issue that might lead to a significant advance in the treatment of lung cancer. Oncolytic viruses are desirable combination partners in the developing field of cancer immunotherapy due to their direct cytotoxic effects and ability to elicit an immune response. Systemic oncolytic virus administration through intravenous injection should ideally lead to the highest efficacy in oncolytic activity. However, this is often hampered by the prevalence of host-specific, anti-viral immune responses. One way to achieve more efficient systemic oncolytic virus delivery is through better protection against neutralization by several components of the host immune system. Carrier cells, which can even have innate tumor tropism, have shown their appropriateness as effective vehicles for systemic oncolytic virus infection through circumventing restrictive features of the immune system and can warrant oncolytic virus delivery to tumors. In this overview, we summarize promising results from studies in which carrier cells have shown their usefulness for improved systemic oncolytic virus delivery and better oncolytic virus therapy against lung cancer.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Elahe Nikpayam
- Department of Regenerative and Cancer Biology, Albany Medical College, Albany, NY, USA
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ralph Meuwissen
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
- Ege University Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Sakhi H, Arabi M, Ghaemi A, Movafagh A, Sheikhpour M. Oncolytic viruses in lung cancer treatment: a review article. Immunotherapy 2024; 16:75-97. [PMID: 38112057 DOI: 10.2217/imt-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Lung cancer has a high morbidity rate worldwide due to its resistance to therapy. So new treatment options are needed to improve the outcomes of lung cancer treatment. This study aimed to evaluate the effectiveness of oncolytic viruses (OVs) as a new type of cancer treatment. In this study, 158 articles from PubMed and Scopus from 1994 to 2022 were reviewed on the effectiveness of OVs in the treatment of lung cancer. The oncolytic properties of eight categories of OVs and their interactions with treatment options were investigated. OVs can be applied as a promising immunotherapy option, as they are reproduced selectively in different types of cancer cells, cause tumor cell lysis and trigger efficient immune responses.
Collapse
Affiliation(s)
- Hanie Sakhi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Abolfazl Movafagh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
3
|
Wierzbicka A, Pawlina-Tyszko K, Świątkiewicz M, Szmatoła T, Oczkowicz M. Changes in miRNA expression in the lungs of pigs supplemented with different levels and forms of vitamin D. Mol Biol Rep 2023; 51:8. [PMID: 38085380 PMCID: PMC10716066 DOI: 10.1007/s11033-023-08940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- β pathway and pathways related to metabolism and synthesis of glycan.
Collapse
Affiliation(s)
- Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, Kraków, 30 248, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland.
| |
Collapse
|
4
|
Lundstrom K. Viral vectors engineered for gene therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:1-41. [PMID: 37541721 DOI: 10.1016/bs.ircmb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Gene therapy has seen major progress in recent years. Viral vectors have made a significant contribution through efficient engineering for improved delivery and safety. A large variety of indications such as cancer, cardiovascular, metabolic, hematological, neurological, muscular, ophthalmological, infectious diseases, and immunodeficiency have been targeted. Viral vectors based on adenoviruses, adeno-associated viruses, herpes simplex viruses, retroviruses including lentiviruses, alphaviruses, flaviviruses, measles viruses, rhabdoviruses, Newcastle disease virus, poxviruses, picornaviruses, reoviruses, and polyomaviruses have been used. Proof-of-concept has been demonstrated for different indications in animal models. Therapeutic efficacy has also been achieved in clinical trials. Several viral vector-based drugs have been approved for the treatment of cancer, and hematological, metabolic, and neurological diseases. Moreover, viral vector-based vaccines have been approved against COVID-19 and Ebola virus disease.
Collapse
|
5
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
6
|
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22:40. [PMID: 36810079 PMCID: PMC9942077 DOI: 10.1186/s12943-023-01740-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 259.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 02/23/2023] Open
Abstract
Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Collapse
Affiliation(s)
- Aritraa Lahiri
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Avik Maji
- grid.416241.4Department of Radiation Oncology, N. R. S. Medical College & Hospital, 138 A.J.C. Bose Road, Kolkata, 700014 India
| | - Pravin D. Potdar
- grid.414939.20000 0004 1766 8488Department of Molecular Medicine and Stem Cell Biology, Jaslok Hospital and Research Centre, Mumbai, 400026 India
| | - Navneet Singh
- grid.415131.30000 0004 1767 2903Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Purvish Parikh
- Department of Clinical Hematology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan 302022 India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012 India
| | - Bharti Bisht
- grid.19006.3e0000 0000 9632 6718Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Anubhab Mukherjee
- Esperer Onco Nutrition Pvt Ltd, 4BA, 4Th Floor, B Wing, Gundecha Onclave, Khairani Road, Sakinaka, Andheri East, Mumbai, Maharashtra, 400072, India.
| | - Manash K. Paul
- grid.19006.3e0000 0000 9632 6718Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA ,grid.411639.80000 0001 0571 5193Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
7
|
Lundstrom K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr Gene Ther 2023; 23:111-134. [PMID: 36154608 DOI: 10.2174/1566523222666220921112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Viral vectors have been proven useful in a broad spectrum of gene therapy applications due to their possibility to accommodate foreign genetic material for both local and systemic delivery. The wide range of viral vectors has enabled gene therapy applications for both acute and chronic diseases. Cancer gene therapy has been addressed by the delivery of viral vectors expressing anti-tumor, toxic, and suicide genes for the destruction of tumors. Delivery of immunostimulatory genes such as cytokines and chemokines has also been applied for cancer therapy. Moreover, oncolytic viruses specifically replicating in and killing tumor cells have been used as such for tumor eradication or in combination with tumor killing or immunostimulatory genes. In a broad meaning, vaccines against infectious diseases and various cancers can be considered gene therapy, which has been highly successful, not the least for the development of effective COVID-19 vaccines. Viral vector-based gene therapy has also demonstrated encouraging and promising results for chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, and hemophilia. Preclinical gene therapy studies in animal models have demonstrated proof-of-concept for a wide range of disease indications. Clinical evaluation of drugs and vaccines in humans has showed high safety levels, good tolerance, and therapeutic efficacy. Several gene therapy drugs such as the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, lentivirus-based treatment of SCID-X1 disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease, and adenovirus-based vaccines against COVID-19 have been developed.
Collapse
|
8
|
Lundstrom K. Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. Int J Mol Sci 2022; 23:ijms232415622. [PMID: 36555262 PMCID: PMC9779410 DOI: 10.3390/ijms232415622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Self-replicating RNA viruses have become attractive delivery vehicles for therapeutic applications. They are easy to handle, can be rapidly produced in large quantities, and can be delivered as recombinant viral particles, naked or nanoparticle-encapsulated RNA, or plasmid DNA-based vectors. The self-replication of RNA in infected host cells provides the means for generating much higher transgene expression levels and the possibility to apply substantially reduced amounts of RNA to achieve similar expression levels or immune responses compared to conventional synthetic mRNA. Alphaviruses and flaviviruses, possessing a single-stranded RNA genome of positive polarity, as well as measles viruses and rhabdoviruses with a negative-stranded RNA genome, have frequently been utilized for therapeutic applications. Both naturally and engineered oncolytic self-replicating RNA viruses providing specific replication in tumor cells have been evaluated for cancer therapy. Therapeutic efficacy has been demonstrated in animal models. Furthermore, the safe application of oncolytic viruses has been confirmed in clinical trials. Multiple myeloma patients treated with an oncolytic measles virus (MV-NIS) resulted in increased T-cell responses against the measles virus and several tumor-associated antigen responses and complete remission in one patient. Furthermore, MV-CEA administration to patients with ovarian cancer resulted in a stable disease and more than doubled the median overall survival.
Collapse
|
9
|
Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, Sekawi Z. The evaluation expression of non-coding RNAs in response to HSV-G47∆ oncolytic virus infection in glioblastoma multiforme cancer stem cells. J Neurovirol 2022; 28:566-582. [PMID: 35951174 DOI: 10.1007/s13365-022-01089-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Mehdi Shafa
- Cell Therapy process development, Lonza Houston Inc, Houston, TX, USA
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia.
| |
Collapse
|
10
|
Li Z, Feiyue Z, Gaofeng L, Haifeng L. Lung cancer and oncolytic virotherapy--enemy's enemy. Transl Oncol 2022; 27:101563. [PMID: 36244134 PMCID: PMC9561464 DOI: 10.1016/j.tranon.2022.101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the malignant tumors that seriously threaten human health worldwide, while the covid-19 virus has become people's nightmare after the coronavirus pandemic. There are too many similarities between cancer cells and viruses, one of the most significant is that both of them are our enemies. The strategy to take the advantage of the virus to beat cancer cells is called Oncolytic virotherapy. When immunotherapy represented by immune checkpoint inhibitors has made remarkable breakthroughs in the clinical practice of lung cancer, the induction of antitumor immunity from immune cells gradually becomes a rapidly developing and promising strategy of cancer therapy. Oncolytic virotherapy is based on the same mechanisms that selectively kill tumor cells and induce systemic anti-tumor immunity, but still has a long way to go before it becomes a standard treatment for lung cancer. This article provides a comprehensive review of the latest progress in oncolytic virotherapy for lung cancer, including the specific mechanism of oncolytic virus therapy and the main types of oncolytic viruses, and the combination of oncolytic virotherapy and existing standard treatments. It aims to provide new insights and ideas on oncolytic virotherapy for lung cancer.
Collapse
Affiliation(s)
- Zhang Li
- Department of Oncology, Gejiu People's Hospital, The Fifth Affiliated Hospital of Kunming Medical University, China
| | - Zhang Feiyue
- Department of Oncology, Yuxi People's Hospital, The Sixth Affiliated Hospital of Kunming Medical University, China
| | - Li Gaofeng
- Department of Thoracic Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, China
| | - Liang Haifeng
- Department of Oncology, Gejiu People's Hospital, The Fifth Affiliated Hospital of Kunming Medical University, China,Corresponding author.
| |
Collapse
|
11
|
Suryawanshi YR, Nace RA, Russell SJ, Schulze AJ. MicroRNA-detargeting proves more effective than leader gene deletion for improving safety of oncolytic Mengovirus in a nude mouse model. Mol Ther Oncolytics 2021; 23:1-13. [PMID: 34589580 PMCID: PMC8455367 DOI: 10.1016/j.omto.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
A dual microRNA-detargeted oncolytic Mengovirus, vMC24NC, proved highly effective against a murine plasmacytoma in an immunocompetent syngeneic mouse model; however, there remains the concern of escape mutant development and the potential for toxicity in severely immunocompromised cancer patients when it is used as an oncolytic virus. Therefore, we sought to compare the safety and efficacy profiles of an attenuated Mengovirus containing a virulence gene deletion versus vMC24NC in an immunodeficient xenograft mouse model of human glioblastoma. A Mengovirus construct, vMC24ΔL, wherein the gene coding for the leader protein, a virulence factor, was deleted, was used for comparison. The vMC24ΔL induced significant levels of toxicity following treatment of subcutaneous human glioblastoma (U87-MG) xenografts as well as when injected intracranially in athymic nude mice, reducing the overall survival. The in vivo toxicity of vMC24ΔL was associated with viral replication in nervous and cardiac tissue. In contrast, microRNA-detargeted vMC24NC demonstrated excellent efficacy against U87-MG subcutaneous xenografts and improved overall survival significantly compared to that of control mice without toxicity. These results reinforce microRNA-detargeting as an effective strategy for ameliorating unwanted toxicities of oncolytic picornaviruses and substantiate vMC24NC as an ideal candidate for clinical development against certain cancers in both immunocompetent and immunodeficient hosts.
Collapse
Affiliation(s)
- Yogesh R. Suryawanshi
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 1 Street S.W., Rochester, MN 55905, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 1 Street S.W., Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 1 Street S.W., Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Autumn J. Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 1 Street S.W., Rochester, MN 55905, USA
| |
Collapse
|
12
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
13
|
Alvanegh AG, Ganji SM, Kamel A, Tavallaie M, Rafati A, Arpanaei A, Dorostkar R, Ghaleh HEG. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomed Pharmacother 2021; 140:111755. [PMID: 34044282 DOI: 10.1016/j.biopha.2021.111755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is known as the second leading cause of cancer death. Finding ways to detect early-stage lung cancer can remarkably increase the survival rate. Biomarkers such as microRNAs can be helpful in cancer diagnosis, predicting its prognosis, and patients' chances of survival. Numerous studies have confirmed the correlation between microRNA expression and the likelihood of patients surviving after treatment. Consequently, it is necessary to study the expression profile of microRNAs during and after treatment. Oncolytic virotherapy and nanotherapy are two neoteric methods that use various vectors to deliver microRNAs into cancer cells. Although these treatments have not yet entered into the clinical trials, much progress has been made in this area. Analyzing the expression profile of microRNAs after applying nanotherapy and oncolytic virotherapy can evaluate the effectiveness of these methods. This review refers to the studies conducted about these two approaches. The advantages and disadvantages of these methods in delivery and affecting microRNA expression patterns are discussed below.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Kamel
- Cellular and Molecular Research Center, Basic health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Rafati
- Instructor of Human Genetics, Laboratory Sciences, School of Medical Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | |
Collapse
|
14
|
Ekeke CN, Russell KL, Joubert K, Bartlett DL, Luketich JD, Soloff AC, Guo ZS, Lotze MT, Dhupar R. Fighting Fire With Fire: Oncolytic Virotherapy for Thoracic Malignancies. Ann Surg Oncol 2021; 28:2715-2727. [PMID: 33575873 PMCID: PMC8043873 DOI: 10.1245/s10434-020-09477-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Thoracic malignancies are associated with high mortality rates. Conventional therapy for many of the patients with thoracic malignancies is obviated by a high incidence of locoregional recurrence and distant metastasis. Fortunately, developments in immunotherapy provide effective strategies for both local and systemic treatments that have rapidly advanced during the last decade. One promising approach to cancer immunotherapy is to use oncolytic viruses, which have the advantages of relatively high tumor specificity, selective replication-mediated oncolysis, enhanced antigen presentation, and potential for delivery of immunogenic payloads such as cytokines, with subsequent elicitation of effective antitumor immunity. Several oncolytic viruses including adenovirus, coxsackievirus B3, herpes virus, measles virus, reovirus, and vaccinia virus have been developed and applied to thoracic cancers in preclinical murine studies and clinical trials. This review discusses the current state of oncolytic virotherapy in lung cancer, esophageal cancer, and metastatic malignant pleural effusions and considers its potential as an emergent therapeutic for these patients.
Collapse
Affiliation(s)
- Chigozirim N Ekeke
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kira L Russell
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyla Joubert
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James D Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adam C Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Immunology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Surgical Services Division, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Wang H. Anti-NMDA Receptor Encephalitis, Vaccination and Virus. Curr Pharm Des 2020; 25:4579-4588. [PMID: 31820697 DOI: 10.2174/1381612825666191210155059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune disorder. The symptoms range from psychiatric symptoms, movement disorders, cognitive impairment, and autonomic dysfunction. Previous studies revealed that vaccination might induce this disease. A few cases were reported to be related to H1N1 vaccine, tetanus/diphtheria/pertussis and polio vaccine, and Japanese encephalitis vaccine. Although vaccination is a useful strategy to prevent infectious diseases, in a low risk, it may trigger serious neurological symptoms. In addition to anti-NMDA receptor encephalitis, other neurological diseases were reported to be associated with a number of vaccines. In this paper, the anti-NMDA receptor encephalitis cases related to a number of vaccines and other neurological symptoms that might be induced by these vaccines were reviewed. In addition, anti-NMDA receptor encephalitis cases that were induced by virus infection were also reviewed.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Kennedy EM, Farkaly T, Grzesik P, Lee J, Denslow A, Hewett J, Bryant J, Behara P, Goshert C, Wambua D, De Almeida A, Jacques J, Deavall D, Rottman JB, Glorioso JC, Finer MH, Haines BB, Quéva C, Lerner L. Design of an Interferon-Resistant Oncolytic HSV-1 Incorporating Redundant Safety Modalities for Improved Tolerability. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:476-490. [PMID: 32953982 PMCID: PMC7479328 DOI: 10.1016/j.omto.2020.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Development of next-generation oncolytic viruses requires the design of vectors that are potently oncolytic, immunogenic in human tumors, and well tolerated in patients. Starting with a joint-region deleted herpes simplex virus 1 (HSV-1) to create large transgene capability, we retained a single copy of the ICP34.5 gene, introduced mutations in UL37 to inhibit retrograde axonal transport, and inserted cell-type-specific microRNA (miRNA) target cassettes in HSV-1 genes essential for replication or neurovirulence. Ten miRNA candidates highly expressed in normal tissues and with low or absent expression in malignancies were selected from a comprehensive profile of 800 miRNAs with an emphasis on protection of the nervous system. Among the genes essential for viral replication identified using a small interfering RNA (siRNA) screen, we selected ICP4, ICP27, and UL8 for miRNA attenuation where a single miRNA is sufficient to potently attenuate viral replication. Additionally, a neuron-specific miRNA target cassette was introduced to control ICP34.5 expression. This vector is resistant to type I interferon compared to ICP34.5-deleted oncolytic HSVs, and in cancer cell lines, the oncolytic activity of the modified vector is equivalent to its parental virus. In vivo, this vector potently inhibits tumor growth while being well tolerated, even at high intravenous doses, compared to parental wild-type HSV-1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
17
|
Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med 2020; 14:160-184. [PMID: 32146606 PMCID: PMC7101593 DOI: 10.1007/s11684-020-0750-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.
Collapse
|
18
|
Liu H, Xue YC, Deng H, Mohamud Y, Ng CS, Chu A, Lim CJ, Lockwood WW, Jia WWG, Luo H. MicroRNA Modification of Coxsackievirus B3 Decreases Its Toxicity, while Retaining Oncolytic Potency against Lung Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:207-218. [PMID: 32123721 PMCID: PMC7036525 DOI: 10.1016/j.omto.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
We recently discovered that coxsackievirus B3 (CVB3) is a potent oncolytic virus against KRAS mutant lung adenocarcinoma. Nevertheless, the evident toxicity restricts the use of wild-type (WT)-CVB3 for cancer therapy. The current study aims to engineer the CVB3 to decrease its toxicity and to extend our previous research to determine its safety and efficacy in treating TP53/RB1 mutant small-cell lung cancer (SCLC). A microRNA-modified CVB3 (miR-CVB3) was generated via inserting multiple copies of tumor-suppressive miR-145/miR-143 target sequences into the viral genome. In vitro experiments revealed that miR-CVB3 retained the ability to infect and lyse KRAS mutant lung adenocarcinoma and TP53/RB1-mutant SCLC cells, but with a markedly reduced cytotoxicity toward cardiomyocytes. In vivo study using a TP53/RB1-mutant SCLC xenograft model demonstrated that a single dose of miR-CVB3 via systemic administration resulted in a significant tumor regression. Most strikingly, mice treated with miR-CVB3 exhibited greatly attenuated cardiotoxicities and decreased viral titers compared to WT-CVB3-treated mice. Collectively, we generated a recombinant CVB3 that is powerful in destroying both KRAS mutant lung adenocarcinoma and TP53/RB1-mutant SCLC, with a negligible toxicity toward normal tissues. Future investigation is needed to address the issue of genome instability of miR-CVB3, which was observed in ~40% of mice after a prolonged treatment.
Collapse
Affiliation(s)
- Huitao Liu
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Haoyu Deng
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chen Seng Ng
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Axel Chu
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - William W G Jia
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
20
|
Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Manag Res 2019; 11:969-979. [PMID: 30774425 PMCID: PMC6349084 DOI: 10.2147/cmar.s191696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
miRNAs are single-stranded small RNAs that do not encode proteins. They can combine complementarily with the 3′-UTRs of target gene mRNA molecules to promote targeted mRNA degradation or inhibit mRNA translation, thereby regulating gene expression at the post-transcriptional level. MiRNAs participate in regulation of cell cycling, growth, apoptosis, differentiation, and stress responses. MiRNA-145 (miR-145) is a tumor suppressor that targets various tumor-specific genes and proteins, thereby influencing related signaling pathways. MiR-145 not only regulates tumor growth, invasion, and metastasis, but is also important for tumor angiogenesis and tumor stem cell proliferation. Here, we review the roles and mechanisms of miR-145 in the diagnosis and treatment of malignant tumors. Published data confirm that miR-145 expression in various tumors is significantly lower than that in normal tissues and that overexpression of miR-145 inhibits the growth of different tumor cells, significantly reduces the ability of tumors to spread, and improves sensitivity to chemotherapeutic drugs. We conclude that miR-145 is a potential marker for use in the early diagnosis and prognostic evaluation of patients with cancer, has a role as a tumor suppressor, and is a promising cancer treatment target candidate.
Collapse
Affiliation(s)
- Dong Ye
- Department of Otorhinolaryngology - Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China, .,Department of Otorhinolaryngology -Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology -Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shuihong Zhou
- Department of Otorhinolaryngology - Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| |
Collapse
|
21
|
|
22
|
Lundstrom K. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics 2018; 12:43-60. [PMID: 29445265 PMCID: PMC5810530 DOI: 10.2147/btt.s140114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec.
Collapse
|
23
|
Abstract
Gene therapy based on viral vectors has demonstrated steady progress recently, not only in the area of cancers. A multitude of viral vectors has been engineered for both preventive and therapeutic applications. Two main approaches comprise of viral vector-based delivery of toxic or anticancer genes or immunization with anticancer antigens. Tumor growth inhibition and tumor regression have been observed, providing improved survival rates in animal tumor models. Furthermore, vaccine-based cancer immunotherapy has demonstrated both tumor regression and protection against challenges with lethal doses of tumor cells. Several clinical trials with viral vectors have also been conducted. Additionally, viral vector-based cancer drugs have been approved. This review gives an overview of different viral vector systems and their applications in cancer gene therapy.
Collapse
|
24
|
Shayestehpour M, Moghim S, Salimi V, Jalilvand S, Yavarian J, Romani B, Mokhtari-Azad T. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy. Virus Res 2017; 240:207-214. [PMID: 28867494 DOI: 10.1016/j.virusres.2017.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 11/28/2022]
Abstract
MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID50. No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells.
Collapse
Affiliation(s)
- Mohammad Shayestehpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Bizhan Romani
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada; Cellular & Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 6135715794, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran.
| |
Collapse
|
25
|
Bofill-De Ros X, Rovira-Rigau M, Fillat C. Implications of MicroRNAs in Oncolytic Virotherapy. Front Oncol 2017; 7:142. [PMID: 28725635 PMCID: PMC5495989 DOI: 10.3389/fonc.2017.00142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are an abundant class of small non-coding RNA molecules (~22 nt) that can repress gene expression. Deregulation of certain miRNAs is widely recognized as a robust biomarker for many neoplasms, as well as an important player in tumorigenesis and the establishment of tumoral microenvironments. The downregulation of specific miRNAs in tumors has been exploited as a mechanism to provide selectivity to oncolytic viruses or gene-based therapies. miRNA response elements recognizing miRNAs expressed in specific tissues, but downregulated in tumors, have been inserted into the 3′UTR of viral genes to promote the degradation of these viral mRNAs in healthy tissue, but not in tumor cells. Consequently, oncolytic virotherapy-associated toxicities were diminished, while therapeutic activity in tumor cells was preserved. However, viral infections themselves can modulate the miRNome of the host cell, and such miRNA changes under infection impact the normal viral lifecycle. Thus, there is a miRNA-mediated interplay between virus and host cell, affecting both viral and cellular activities. Moreover, the outcome of such interactions may be cell type or condition specific, suggesting that the impact on normal and tumoral cells may differ. Here, we provide an insight into the latest developments in miRNA-based viral engineering for cancer therapy, following the most recent discoveries in miRNA biology. Furthermore, we report on the relevance of miRNAs in virus–host cell interaction, and how such knowledge can be exploited to improve the control of viral activity in tumor cells.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
26
|
Lv X, Zhao K, Lan Y, Li Z, Ding N, Su J, Lu H, Song D, Gao F, He W. miR-21a-5p Contributes to Porcine Hemagglutinating Encephalomyelitis Virus Proliferation via Targeting CASK-Interactive Protein1 In vivo and vitro. Front Microbiol 2017; 8:304. [PMID: 28298907 PMCID: PMC5331037 DOI: 10.3389/fmicb.2017.00304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/14/2017] [Indexed: 12/13/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that can cause nervous symptoms in piglets with muscle tremors, hind limb paralysis, and nystagmus. Whether some factors affect virus replication and proliferation had not been fully understood in the course of nerve damage caused by PHEV infection. In recent years, some reports suggested that miRNA might play a key regulatory role in viral infection. In this study, we found the miR-21a-5p is notably up-regulated in the brains of mice and N2a cells infected with PHEV, and it down-regulated the expression of CASK-interactive protein1 (Caskin1) by directly targeting the 3′-UTR of Caskin1 using a Dual-Luciferase reporter assay. The over-expression of miR-21a-5p or Caskin1 knockdown in the host significantly contributes to PHEV proliferation. Conversely, the silencing of miR-21a-5p by miR-21a-5p inhibitors suppressed the virus proliferation. Taken together, our results indicate that Caskin1 is the direct target gene of miR-21a-5p, and it is advantageous to virus proliferation by down-regulating Caskin1. These findings may help in the development of strategies for therapeutic applications.
Collapse
Affiliation(s)
- Xiaoling Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Ning Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Jingjing Su
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| |
Collapse
|
27
|
Wang H. Anti-NMDA Receptor Encephalitis and Vaccination. Int J Mol Sci 2017; 18:ijms18010193. [PMID: 28106787 PMCID: PMC5297824 DOI: 10.3390/ijms18010193] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Abstract
Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
28
|
Targeting MicroRNAs in Cancer Gene Therapy. Genes (Basel) 2017; 8:genes8010021. [PMID: 28075356 PMCID: PMC5295016 DOI: 10.3390/genes8010021] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate in regulating gene expression by targeting multiple molecules. Early studies have shown that the expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is well acknowledged that such variation is involved in almost all biological processes, including cell proliferation, mobility, survival and differentiation. Increasing experimental data indicate that miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a goal to improve outcomes of cancer treatment. In our present study, we review the function of miRNAs in tumorigenesis and development, and discuss the latest clinical applications and strategies of therapy targeting miRNAs in cancer.
Collapse
|
29
|
Dash AS, Patel MR. Viroimmunotherapy of Thoracic Cancers. Biomedicines 2017; 5:biomedicines5010002. [PMID: 28536345 PMCID: PMC5423488 DOI: 10.3390/biomedicines5010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 02/04/2023] Open
Abstract
Thoracic cancers, including non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), and malignant pleural mesothelioma (MM), cause the highest rate of cancer mortality worldwide. Most of these deaths are as a result of NSCLC; however, prognoses for the other two diseases remain as some of the poorest of any cancers. Recent advances in immunotherapy, specifically immune checkpoint inhibitors, have begun to help a small population of patients with advanced lung cancer. People who respond to these immune therapies generally have a durable response and many see dramatic decreases in their disease. However, response to immune therapies remains relatively low. Therefore, intense research is now underway to rationally develop combination therapies to expand the range of patients who will respond to and benefit from immune therapy. One promising approach is with oncolytic viruses. These oncolytic viruses (OVs) have been found to be selective for or have been engineered to preferentially infect and kill cancer cells. In pre-clinical models of different thoracic cancers, it has been found that these viruses can induce immunogenic cell death, increase the number of immune mediators brought into the tumor microenvironment and broaden the neoantigen-specific T cell response. We will review here the literature regarding the application of virotherapy toward augmenting immune responses in thoracic cancers.
Collapse
Affiliation(s)
- Alexander S Dash
- Department of Biology, Macalester College, St. Paul, MN 55105, USA.
| | - Manish R Patel
- Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Reale A, Messa L, Vitiello A, Loregian A, Palù G. 4th European Seminars in Virology on Oncogenic and Oncolytic Viruses, in Bertinoro (Bologna), Italy. J Cell Physiol 2016; 232:2641-2648. [PMID: 27859242 DOI: 10.1002/jcp.25692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022]
Abstract
The 4th European Seminars in Virology (EuSeV), which was focused on oncogenic and oncolytic viruses, was held in Bertinoro (Bologna), Italy, from June 10 to 12, 2016. This article summarizes the plenary lectures and aims to illustrate the main topics discussed at 4th EuSeV, which brought together knowledge and expertise in the field of oncogenic and oncolytic viruses from all over the world. The meeting was divided in two parts, "Mechanisms of Viral Oncogenesis" and "Viral Oncolysis and Immunotherapy," which were both focused on dissecting the complex and multi-factorial interplay between cancer and human viruses and on exploring new anti-cancer strategies. J. Cell. Physiol. 232: 2641-2648, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
31
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
32
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
33
|
Hu H, Qiu Y, Guo M, Huang Y, Fang L, Peng Z, Ji W, Xu Y, Shen S, Yan Y, Huang X, Zheng J, Su C. Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models. Oncotarget 2015; 6:1079-89. [PMID: 25473902 PMCID: PMC4359218 DOI: 10.18632/oncotarget.2835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022] Open
Abstract
The patient-derived tumor xenograft (PDTX) models can reproduce a similar natural genetic background and similar biological behaviors to tumor cells in patients, which is conducive to the assessment of personalized cancer treatment. In this study, to verify the targeting and effectiveness of the therapeutic strategy using a Survivin promoter-regulated oncolytic adenovirus expressing Hsp70, the PDTX models of hepatocellular carcinoma (HCC) were established in nude mice and the cytokine-induced killer (CIK) cells were intravenously infused into mice to partially reconstruct the mouse immune function. The results demonstrated that, either the immune anti-tumor effect caused by CIK cell infusion or the oncolytic effect generated by oncolytic adenovirus replication was very limited. However, the synergistic tumor inhibitory effect was significantly enhanced after treatments with oncolytic adenovirus expressing Hsp70 combined with CIK cells. Oncolytic adenovirus mediated the specific expression of Hsp70 in cancer tissues allowed the CIK chemotaxis, and induce the infiltration of CD3+ T cells in tumor stroma, thereby exhibiting anti-tumor activity. The anti-tumor effect was more effective for the highly malignant tumor xenografts with highly Survivin expression. This strategy can synergistically activate multiple anti-tumor mechanisms and exert effective anti-tumor activities that have a significant inhibitory effect against the growth of HCC xenografts.
Collapse
Affiliation(s)
- Huanzhang Hu
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Military Area, Fuzhou, China.,Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yinghe Qiu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Minggao Guo
- Department of Surgery, Shanghai Sixth People Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yao Huang
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Lin Fang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Zhangxiao Peng
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Weidan Ji
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yang Xu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Shuwen Shen
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yan Yan
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xuandong Huang
- Department of Oncological Surgery, Second People's Hospital of Huai'an, Jiangsu Province, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Changqing Su
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China.Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
34
|
Sokolowski NA, Rizos H, Diefenbach RJ. Oncolytic virotherapy using herpes simplex virus: how far have we come? Oncolytic Virother 2015; 4:207-19. [PMID: 27512683 PMCID: PMC4918397 DOI: 10.2147/ov.s66086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncolytic virotherapy exploits the properties of human viruses to naturally cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV) has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future.
Collapse
Affiliation(s)
- Nicolas As Sokolowski
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| |
Collapse
|
35
|
Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q, Li Z, Su C. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60. [PMID: 24473833 PMCID: PMC3960197 DOI: 10.18632/oncotarget.1430] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Internal Medicine, No. 117 Hospital of Chinese PLA, Hangzhou 310004, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|