1
|
Belkina D, Karpova D, Porotikova E, Lifanov I, Vinogradova S. Grapevine Virome of the Don Ampelographic Collection in Russia Has Concealed Five Novel Viruses. Viruses 2023; 15:2429. [PMID: 38140672 PMCID: PMC10747563 DOI: 10.3390/v15122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, an analysis of the virome of 51 grapevines from the Don ampelographic collection named after Ya. I. Potapenko (Russia) was performed using high-throughput sequencing of total RNA. A total of 20 previously described grapevine viruses and 4 viroids were identified. The most detected were grapevine rupestris stem pitting-associated virus (98%), hop stunt viroid (98%), grapevine Pinot gris virus (96%), grapevine yellow speckle viroid 1 (94%), and grapevine fleck virus (GFkV, 80%). Among the economically significant viruses, the most present were grapevine leafroll-associated virus 3 (37%), grapevine virus A (24%), and grapevine leafroll-associated virus 1 (16%). For the first time in Russia, a grapevine-associated tymo-like virus (78%) was detected. After a bioinformatics analysis, 123 complete or nearly complete viral genomes and 64 complete viroid genomes were assembled. An analysis of the phylogenetic relationships with reported global isolates was performed. We discovered and characterized the genomes of five novel grapevine viruses: bipartite dsRNA grapevine alphapartitivirus (genus Alphapartitivirus, family Partitiviridae), bipartite (+) ssRNA grapevine secovirus (genus Fabavirus, family Secoviridae) and three (+) ssRNA grapevine umbra-like viruses 2, -3, -4 (which phylogenetically occupy an intermediate position between representatives of the genus Umbravirus and umbravirus-like associated RNAs).
Collapse
Affiliation(s)
- Daria Belkina
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Daria Karpova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Elena Porotikova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Ilya Lifanov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| |
Collapse
|
2
|
Nita M, Jones T, McHenry D, Bush E, Oliver C, Kawaguchi A, Nita A, Katori M. A NitroPure Nitrocellulose Membrane-Based Grapevine Virus Sampling Kit: Development and Deployment to Survey Japanese Vineyards and Nurseries. Viruses 2023; 15:2102. [PMID: 37896878 PMCID: PMC10612103 DOI: 10.3390/v15102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
We developed a NitroPure Nitrocellulose (NPN) membrane-based method for sampling and storing grapevine sap for grapevine virus detection. We devised an efficient nucleic acid extraction method for the NPN membrane, resulting in 100% amplification success for grapevine leafroll-associated virus 2 (GLRaV2) and 3 (GLRaV3), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A, grapevine virus B, and grapevine red blotch virus (GRBV). This method also allowed the storage of recoverable nucleic acid for 18 months at room temperature. We created a sampling kit to survey GLRaV2, GLRaV3, and GRBV in Japanese vineyards. We tested the kits in the field in 2018 and then conducted mail-in surveys in 2020-2021. The results showed a substantial prevalence of GLRaV3, with 48.5% of 132 sampled vines being positive. On the other hand, only 3% of samples tested positive for GLRaV2 and none for GRBV.
Collapse
Affiliation(s)
- Mizuho Nita
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
- Department of Law and Economics, Shinshu University, Nagano 390-8621, Japan
| | - Taylor Jones
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Diana McHenry
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Elizabeth Bush
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Charlotte Oliver
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Akira Kawaguchi
- National Agriculture and Food Research Organization (NARO), Western Region Agricultural Research Center, Hiroshima 721-8514, Japan
| | - Akiko Nita
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Miyuki Katori
- Department of Law and Economics, Shinshu University, Nagano 390-8621, Japan
| |
Collapse
|
3
|
Gomez Talquenca S, Alonso R, Luna F, Lanza Volpe M, Buscema F. Occurrence of Nine Grapevine Viruses in Commercial Vineyards of Mendoza, Argentina. Viruses 2023; 15:177. [PMID: 36680217 PMCID: PMC9861613 DOI: 10.3390/v15010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Grapevine is a widely grown fruit crop that is seriously affected by different viruses, reducing grape yield and quality, as well as threatening profitability. Vineyard disease management requires accurate identification of viral infections. This study aimed to survey the presence of ten grapevine viruses in four geographic sites in the Mendoza province of Argentina. Two hundred twenty-three composite cane samples from 1060 plants of six cultivars were collected from 26 blocks distributed across 11 vineyards. The cane samples were screened by RT-PCR for the following viruses: grapevine leafroll-associated viruses 1-4 (GLRaV 1, 2, 3, and 4), grapevine fanleaf virus (GFLV), grapevine fleck virus (GFkV), grapevine virus A (GVA) and B (GVB), grapevine rupestris stem pitting associated virus (GRSPaV), and arabis mosaic virus (ArMV). The results showed an uneven occurrence of viruses through the sampled regions, with GRSPaV being prevalent (71.1%), followed by GFLV (28.9%), GFkV (20.6%), and GLRaV-2 (14.7%). GVB was not detected. This study revealed a moderate prevalence of viruses associated with economically impactful diseases in the vineyards surveyed.
Collapse
Affiliation(s)
- Sebastian Gomez Talquenca
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Mendoza, Luján de Cuyo 5505, Mendoza, Argentina
| | - Rodrigo Alonso
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Chacras de Coria 5507, Mendoza, Argentina
| | - Facundo Luna
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Mendoza, Luján de Cuyo 5505, Mendoza, Argentina
| | - Melisa Lanza Volpe
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Mendoza, Luján de Cuyo 5505, Mendoza, Argentina
| | - Fernando Buscema
- Catena Institute of Wine (CIW), Bodega Catena Zapata, Agrelo 5509, Mendoza, Argentina
| |
Collapse
|
4
|
Rivadeneira M, Galván MZ, Abán M, Semke RE, Rivadeneira J, Lanza Volpe M, Gomez Talquenca S. Survey for Major Grapevine Viruses in Commercial Vineyards of Northwestern Argentina. PLANTS (BASEL, SWITZERLAND) 2022; 11:1720. [PMID: 35807671 PMCID: PMC9268931 DOI: 10.3390/plants11131720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
This study aimed to survey the occurrence of eight grapevine viruses in commercial vineyards located in the Calchaquíes Valleys in the northwest region of Argentina. A total of 103 samples of mature canes of vines showing either none or some viral-like symptoms were randomly collected. The samples were tested by RT-PCR/PCR-based assays for the screening of the following viruses: Grapevine fanleaf virus (GFLV), Grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4), Grapevine virus A (GVA), Grapevine rupestris stem pitting-associated viruses (GRSPaV), and Grapevine red blotch virus (GRBV). Sixty percent of the analyzed samples showed infection with some of the analyzed viruses, except GRBV. GLRaV-3 and GFLV were the most frequent viruses, present in 34% and 21% of the positive samples, respectively. This study represents the first survey report of the presence of grapevine viruses in the region of the Calchaquíes Valleys and contributes to the knowledge to maintain the sanitary status of commercial vineyards in Argentina.
Collapse
Affiliation(s)
- Mónica Rivadeneira
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Ruta Nacional 68 Km 172 (4403) Cerrillos, Salta 4403, Argentina; (M.Z.G.); (M.A.); (J.R.)
| | - Marta Zulema Galván
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Ruta Nacional 68 Km 172 (4403) Cerrillos, Salta 4403, Argentina; (M.Z.G.); (M.A.); (J.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, J.M. Leguizamón 366, Salta 4400, Argentina
| | - Marina Abán
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Ruta Nacional 68 Km 172 (4403) Cerrillos, Salta 4403, Argentina; (M.Z.G.); (M.A.); (J.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, J.M. Leguizamón 366, Salta 4400, Argentina
| | - Rosa Elena Semke
- Centro de Desarrollo Vitícola del Valle Calchaquí, Cafayate, Salta 4427, Argentina;
| | - Josefina Rivadeneira
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Ruta Nacional 68 Km 172 (4403) Cerrillos, Salta 4403, Argentina; (M.Z.G.); (M.A.); (J.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, J.M. Leguizamón 366, Salta 4400, Argentina
| | - Melisa Lanza Volpe
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA, Mendoza 5602, Argentina;
| | | |
Collapse
|
5
|
Song Y, Hanner RH, Meng B. Genome-wide screening of novel RT-qPCR reference genes for study of GLRaV-3 infection in wine grapes and refinement of an RNA isolation protocol for grape berries. PLANT METHODS 2021; 17:110. [PMID: 34711253 PMCID: PMC8554853 DOI: 10.1186/s13007-021-00808-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Grapevine, as an essential fruit crop with high economic values, has been the focus of molecular studies in diverse areas. Two challenges exist in the grapevine research field: (i) the lack of a rapid, user-friendly and effective RNA isolation protocol for mature dark-skinned berries and, (ii) the lack of validated reference genes that are stable for quantification of gene expression across desired experimental conditions. Successful isolation of RNA with sufficient yield and quality is essential for downstream analyses involving nucleic acids. However, ripe berries of dark-skinned grape cultivars are notoriously challenging in RNA isolation due to high contents of polyphenolics, polysaccharides, RNase and water. RESULTS We have optimized an RNA isolation protocol through modulating two factors at the lysis step that could impact results of RNA isolation - 2-ME concentration and berry mass. By finding the optimal combination among the two factors, our refined protocol was highly effective in isolating total RNA with high yield and quality from whole mature berries of an array of dark-skinned wine grape cultivars. Our protocol takes a much shorter time to complete, is highly effective, and eliminates the requirement for hazardous organic solvents. We have also shown that the resulting RNA preps were suitable for multiple downstream analyses, including the detection of viruses and amplification of grapevine genes using reverse transcription-polymerase chain reaction (RT-PCR), gene expression analysis via quantitative reverse transcription PCR (RT-qPCR), and RNA Sequencing (RNA-Seq). By using RNA-Seq data derived from Cabernet Franc, we have identified seven novel reference gene candidates (CYSP, NDUFS8, YLS8, EIF5A2, Gluc, GDT1, and EF-Hand) with stable expression across two tissue types, three developmental stages and status of infection with grapevine leafroll-associated virus 3 (GLRaV-3). We evaluated the stability of these candidate genes together with two conventional reference genes (actin and NAD5) using geNorm, NormFinder and BestKeeper. We found that the novel reference gene candidates outperformed both actin and NAD5. The three most stable reference genes were CYSP, NDUFS8 and YSL8, whereas actin and NAD5 were among the least stable. We further tested if there would be a difference in RT-qPCR quantification results when the most stable (CYSP) and the least stable (actin and NAD5) genes were used for normalization. We concluded that both actin and NAD5 led to erroneous RT-qPCR results in determining the statistical significance and fold-change values of gene expressional change. CONCLUSIONS We have formulated a rapid, safe and highly effective protocol for isolating RNA from recalcitrant berry tissue of wine grapes. The resulting RNA is of high quality and suitable for RT-qPCR and RNA-Seq. We have identified and validated a set of novel reference genes based on RNA-Seq dataset. We have shown that these new reference genes are superior over actin and NAD5, two of the conventional reference genes commonly used in early studies.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada.
| | - Robert H Hanner
- Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
6
|
Vondras AM, Lerno L, Massonnet M, Minio A, Rowhani A, Liang D, Garcia J, Quiroz D, Figueroa‐Balderas R, Golino DA, Ebeler SE, Al Rwahnih M, Cantu D. Rootstock influences the effect of grapevine leafroll-associated viruses on berry development and metabolism via abscisic acid signalling. MOLECULAR PLANT PATHOLOGY 2021; 22:984-1005. [PMID: 34075700 PMCID: PMC8295520 DOI: 10.1111/mpp.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 05/14/2023]
Abstract
Grapevine leafroll-associated virus (GLRaV) infections are accompanied by symptoms influenced by host genotype, rootstock, environment, and which individual or combination of GLRaVs is present. Using a dedicated experimental vineyard, we studied the responses to GLRaVs in ripening berries from Cabernet Franc grapevines grafted to different rootstocks and with zero, one, or pairs of leafroll infection(s). RNA sequencing data were mapped to a high-quality Cabernet Franc genome reference assembled to carry out this study and integrated with hormone and metabolite abundance data. This study characterized conserved and condition-dependent responses to GLRaV infection(s). Common responses to GLRaVs were reproduced in two consecutive years and occurred in plants grafted to different rootstocks in more than one infection condition. Though different infections were inconsistently distinguishable from one another, the effects of infections in plants grafted to different rootstocks were distinct at each developmental stage. Conserved responses included the modulation of genes related to pathogen detection, abscisic acid (ABA) signalling, phenylpropanoid biosynthesis, and cytoskeleton remodelling. ABA, ABA glucose ester, ABA and hormone signalling-related gene expression, and the expression of genes in several transcription factor families differentiated the effects of GLRaVs in berries from Cabernet Franc grapevines grafted to different rootstocks. These results support that ABA participates in the shared responses to GLRaV infection and differentiates the responses observed in grapevines grafted to different rootstocks.
Collapse
Affiliation(s)
- Amanda M. Vondras
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Larry Lerno
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Mélanie Massonnet
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Andrea Minio
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Adib Rowhani
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dingren Liang
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jadran Garcia
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Daniela Quiroz
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Deborah A. Golino
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Susan E. Ebeler
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Maher Al Rwahnih
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
7
|
Song Y, Hanner RH, Meng B. Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes. Viruses 2021; 13:v13040593. [PMID: 33807294 PMCID: PMC8066071 DOI: 10.3390/v13040593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
8
|
Donda BP, Jarugula S, Naidu RA. An Analysis of the Complete Genome Sequence and Subgenomic RNAs Reveals Unique Features of the Ampelovirus, Grapevine leafroll-associated virus 1. PHYTOPATHOLOGY 2017; 107:1069-1079. [PMID: 28686140 DOI: 10.1094/phyto-02-17-0061-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite being the first closterovirus documented in grapevines (Vitis sp.), the molecular biology of Grapevine leafroll-associated virus 1 (GLRaV-1, genus Ampelovirus, family Closteroviridae) is still in its infancy. In this study, the complete genome sequence of two GLRaV-1 isolates was determined to be 18,731 (isolate WA-CH) and 18,946 (isolate WA-PN) nucleotides (nt). The genome of WA-CH and WA-PN isolates encodes nine putative open reading frames (ORFs) and the arrangement of these ORFs in both isolates was similar to that of Australian and Canadian isolates. In addition to two divergent copies of the coat protein (CP), the genome of GLRaV-1 isolates contain CP-homologous domain in four genes, making the virus unique among Closteroviridae members. The 5' and 3' nontranslated regions (NTRs) of WA-CH and WA-PN isolates showed differences in size and sequence composition, with 5' NTR having variable number of ∼65-nt-long repeats. Using the 5' NTR sequences, a reverse transcription-polymerase chain reaction and restriction fragment length polymorphism method was developed to distinguish GLRaV-1 variants in vineyards. Northern analysis of total RNA from GLRaV-1-infected grapevine samples revealed three subgenomic RNAs (sgRNAs), corresponding tentatively to CP, p21, and p24 ORFs, present at higher levels, with p24 sgRNA observed at relatively higher abundance than the other two sgRNAs. The 5' terminus of sgRNAs corresponding to CP, CPd1, CPd2, p21, and p24 were mapped to the virus genome and the leader sequence for these five sgRNAs determined to be 68, 27, 15, 49, and 18 nt, respectively. Taken together, this study provided a foundation for further elucidation of the comparative molecular biology of closteroviruses infecting grapevines.
Collapse
Affiliation(s)
- Bhanu Priya Donda
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| | - Sridhar Jarugula
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| | - Rayapati A Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| |
Collapse
|
9
|
Alabi OJ, Casassa LF, Gutha LR, Larsen RC, Henick-Kling T, Harbertson JF, Naidu RA. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar. PLoS One 2016; 11:e0149666. [PMID: 26919614 PMCID: PMC4769264 DOI: 10.1371/journal.pone.0149666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/17/2016] [Indexed: 12/26/2022] Open
Abstract
Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.
Collapse
Affiliation(s)
- Olufemi J. Alabi
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
| | - L. Federico Casassa
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Linga R. Gutha
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
| | - Richard C. Larsen
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Thomas Henick-Kling
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - James F. Harbertson
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Rayapati A. Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Al Rwahnih M, Daubert S, Golino D, Islas C, Rowhani A. Comparison of Next-Generation Sequencing Versus Biological Indexing for the Optimal Detection of Viral Pathogens in Grapevine. PHYTOPATHOLOGY 2015; 105:758-63. [PMID: 25689518 DOI: 10.1094/phyto-06-14-0165-r] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A bioassay is routinely used to determine the viral phytosanitary status of commercial grapevine propagation material in many countries around the world. That test is based on the symptoms developed in the field by specific indicator host plants that are graft-inoculated from the vines being tested. We compared the bioassay against next-generation sequencing (NGS) analysis of grapevine material. NGS is a laboratory procedure that catalogs the genomic sequences of the viruses and other pathogens extracted as DNA and RNA from infected vines. NGS analysis was found to be superior to the standard bioassay in detection of viruses of agronomic significance, including virus infections at low titers. NGS was also found to be superior to the bioassay in its comprehensiveness, the speed of its analysis, and for the discovery of novel, uncharacterized viruses.
Collapse
Affiliation(s)
- Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis 95616
| | - Steve Daubert
- Department of Plant Pathology, University of California, Davis 95616
| | - Deborah Golino
- Department of Plant Pathology, University of California, Davis 95616
| | - Christina Islas
- Department of Plant Pathology, University of California, Davis 95616
| | - Adib Rowhani
- Department of Plant Pathology, University of California, Davis 95616
| |
Collapse
|
11
|
Naidu RA, Maree HJ, Burger JT. Grapevine leafroll disease and associated viruses: a unique pathosystem. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:613-34. [PMID: 26243729 DOI: 10.1146/annurev-phyto-102313-045946] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grapevine leafroll is the most complex and intriguing viral disease of grapevine (Vitis spp.). Several monopartite closteroviruses (family Closteroviridae) from grapevines have been molecularly characterized, yet their role in disease etiology is not completely resolved. Hence, these viruses are currently designated under the umbrella term of Grapevine leafroll-associated viruses (GLRaVs). This review examines our current understanding of the genetically divergent GLRaVs and highlights the emerging picture of several unique aspects of the leafroll disease pathosystem. A systems biology approach using contemporary technologies in molecular biology, -omics, and cell biology aids in exploring the comparative molecular biology of GLRaVs and deciphering the complex network of host-virus-vector interactions to bridge the gap between genomics and phenomics of leafroll disease. In addition, grapevine-infecting closteroviruses have a great potential as designer viruses to pursue functional genomics and for the rational design of novel disease intervention strategies in this agriculturally important perennial fruit crop.
Collapse
Affiliation(s)
- Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350;
| | | | | |
Collapse
|
12
|
Naidu R, Rowhani A, Fuchs M, Golino D, Martelli GP. Grapevine Leafroll: A Complex Viral Disease Affecting a High-Value Fruit Crop. PLANT DISEASE 2014; 98:1172-1185. [PMID: 30699617 DOI: 10.1094/pdis-08-13-0880-fe] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grapevine (Vitis spp.) is one of the most widely grown fruit crops in the world. It is a deciduous woody perennial vine for which the cultivation of domesticated species began approximately 6,000 to 8,000 years ago in the Near East. Grapevines are broadly classified into red- and white-berried cultivars based on their fruit skin color, although yellow, pink, crimson, dark blue, and black-berried cultivars also exist. Grapevines can be subject to attacks by many different pests and pathogens, including graft-transmissible agents such as viruses, viroids, and phytoplasmas. Among the virus and virus-like diseases, grapevine leafroll disease (GLD) is by far the most widespread and economically damaging viral disease of grapevines in many regions around the world. The global expansion of the grape and wine industry has seen a parallel increase in the incidence and economic impact of GLD. Despite the fact that GLD was recognized as a potential threat to grape production for several decades, our knowledge of the nature of the disease is still quite limited due to a variety of challenges related to the complexity of this virus disease, the association of several distinct GLD-associated viruses, and contrasting symptoms in red- and white-berried cultivars. In view of the growing significance of GLD to wine grape production worldwide, this feature article provides an overview of the state of knowledge on the biology and epidemiology of the disease and describes management strategies currently deployed in vineyards.
Collapse
Affiliation(s)
| | | | - Marc Fuchs
- Cornell University, New York State Agricultural Experiment Station, Geneva
| | | | - Giovanni P Martelli
- Università degli Studi di Bari "Aldo Moro" and Istituto di Virologia Vegetale del CNR, UOS Bari, Bari, Italy
| |
Collapse
|