1
|
Lu Z, Yan X, Fan G, Li L, Sun X, Lu H, Jin N, Liu H, Sun W. Molecular and serological investigations of Batai virus in cattle and goats in the border area of Yunnan, China (2021-2022). Front Vet Sci 2024; 11:1433699. [PMID: 39144073 PMCID: PMC11322338 DOI: 10.3389/fvets.2024.1433699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Batai virus (BATV), a zoonotic pathogen transmitted by mosquitoes, infects vertebrates, including livestock, birds, and humans. Although BATV has been detected and isolated in mosquitoes in Yunnan Province, China, there have been no reports of livestock infection. Thus, we conducted a molecular and serological investigation of BATV in cattle and goat sera collected in spring and autumn from 2021 to 2022 in Honghe Prefecture, Yunnan Province, on the China-Vietnam border. Methods We used indirect enzyme-linked immunosorbent assays and reverse transcription real-time PCR (RT-qPCR) to test 929 cattle and 973 goat serum samples. Results BATV antibodies were detected in 262/929 (28.2%) cattle and 263/973 (27.0%) goat serum samples. RT-qPCR did not detect BATV RNA. Discussion The positive rate of BATV serum antibodies in cattle and goats in Luxi County was higher compared with other areas, and it was also higher in autumn compared with spring, which may be related to climate, temperature, and mosquito density. Although our findings indicated the presence of BATV infection in livestock in the region, RT-qPCR did not detect BATV RNA. Therefore, BATV monitoring in cattle and goats should be heightened in autumn, and the scope of host monitoring should be expanded to clarify the hosts and vectors of BATV infection.
Collapse
Affiliation(s)
- Zishuo Lu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Xingxiu Yan
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Guiying Fan
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Lixia Li
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Xiutao Sun
- Honghe Animal Disease Prevention and Control Center, Mengzi, China
| | - Huijun Lu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Ningyi Jin
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Hao Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| |
Collapse
|
2
|
Wilkman L, Ahlm C, Evander M, Lwande OW. Mosquito-borne viruses causing human disease in Fennoscandia—Past, current, and future perspectives. Front Med (Lausanne) 2023; 10:1152070. [PMID: 37051217 PMCID: PMC10083265 DOI: 10.3389/fmed.2023.1152070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
Five different mosquito-borne viruses (moboviruses) significant to human disease are known to be endemic to Fennoscandia (Sindbis virus, Inkoo virus, Tahyna virus, Chatanga virus, and Batai virus). However, the incidence of mosquito-borne virus infections in Fennoscandia is unknown, largely due to underdiagnosing and lack of surveillance efforts. The Fennoscandian moboviruses are difficult to prevent due to their method of transmission, and often difficult to diagnose due to a lack of clear case definition criteria. Thus, many cases are likely to be mis-diagnosed, or even not diagnosed at all. Significant long-term effects, often in the form of malaise, rashes, and arthralgia have been found for some of these infections. Research into mobovirus disease is ongoing, though mainly focused on a few pathogens, with many others neglected. With moboviruses found as far north as the 69th parallel, studying mosquito-borne disease occurring in the tropics is only a small part of the whole picture. This review is written with the objective of summarizing current medically relevant knowledge of moboviruses occurring in Fennoscandia, while highlighting what is yet unknown and possibly overlooked.
Collapse
Affiliation(s)
- Lukas Wilkman
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
| | - Olivia Wesula Lwande
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
- *Correspondence: Olivia Wesula Lwande,
| |
Collapse
|
3
|
Mansfield KL, Folly AJ, Hernández-Triana LM, Sewgobind S, Johnson N. Batai Orthobunyavirus: An Emerging Mosquito-Borne Virus in Europe. Viruses 2022; 14:v14091868. [PMID: 36146674 PMCID: PMC9503884 DOI: 10.3390/v14091868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Batai virus (BATV) is a zoonotic orthobunyavirus transmitted by a wide range of mosquito vectors. The virus is distributed throughout Asia and parts of Africa and has been sporadically detected in several European countries. There is increasing evidence that BATV is emerging in Europe as a potential threat to both animal and human health, having been detected in mosquitoes, mammals, birds and humans. In recent years, serological surveillance in cattle, sheep and goats has suggested an antibody prevalence of up to 46% in European livestock, although human serological prevalence remains generally low. However, the recent and continued spread of invasive mosquito species into Europe may facilitate the establishment of competent populations of mosquitoes leading to increased BATV transmission. Migratory birds may also potentially facilitate the emergence of BATV in geographical locations where it was previously undetected. Although BATV has the potential to cause disease in humans and livestock, our understanding of the impact in wild animal populations is extremely limited. Therefore, there is a need for increased surveillance for BATV in mosquitoes, livestock, wild mammals and birds in Europe to understand the true impact of this virus.
Collapse
|
4
|
Dolgova AS, Safonova MV, Faye O, Dedkov VG. Current View on Genetic Relationships within the Bunyamwera Serological Group. Viruses 2022; 14:v14061135. [PMID: 35746607 PMCID: PMC9227251 DOI: 10.3390/v14061135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The Bunyamwera serological group includes a number of geographically widespread viruses that are related but not identical and have serological cross-reactivity. As the first group members were obtained in the pre-sequencing era, their classifications (group attribution, species differentiation) were originally based on serological reactions. At the same time, the accuracy of the typing in each case depended on the variety of viruses that the researcher had as a comparison panel. With the advent of sequencing techniques, it has become customary to use identity thresholds (nucleotide or amino acid composition) as demarcation criteria for the interspecific differentiation of viral species. Identity thresholds are determined by the International Committee on Taxonomy of Viruses (ICTV) and are regularly reviewed. Similar criteria were established for the Orthobunyavirus genus, which includes members of the Bunyamwera serological group. On the basis of these criteria, the species attributions of some members of the serological group need to be clarified. For this purpose, we analyzed sequences (available in NCBI GenBank) of viruses belonging to the Bunyamwera serological group in order to clarify their phylogenetic positions on the basis of the current demarcation criteria established by the ICTV.
Collapse
Affiliation(s)
- Anna S. Dolgova
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 Saint Petersburg, Russia;
- Correspondence: ; Tel.: +7-812-233-2149
| | - Marina V. Safonova
- Anti-Plague Center, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 127490 Moscow, Russia;
| | - Oumar Faye
- Department of Virology, Institute Pasteur de Dakar, Dakar BP 220, Senegal;
| | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 Saint Petersburg, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
5
|
Hernández-Triana LM, Folly AJ, Barrero E, Lumley S, Del Mar Fernández de Marco M, Sewgobind S, McElhinney LM, Fooks AR, Johnson N. Oral susceptibility of aedine and culicine mosquitoes (Diptera: Culicidae) to Batai Orthobunyavirus. Parasit Vectors 2021; 14:566. [PMID: 34732254 PMCID: PMC8567561 DOI: 10.1186/s13071-021-05070-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Background A number of zoonotic mosquito-borne viruses have emerged in Europe in recent decades. Batai virus (BATV), a member of the genus Orthobunyavirus, is one example of a relatively newly emerged mosquito-borne virus, having been detected in mosquitoes and livestock. We conducted vector competency studies on three mosquito species at a low temperature to assess whether Aedes and Culex mosquito species are susceptible to infection with BATV. Methods Colonised lines of Aedes aegypti and Culex pipiens and a wild-caught species, Aedes detritus, were orally inoculated with BATV strain 53.2, originally isolated from mosquitoes trapped in Germany in 2009. Groups of blood-fed female mosquitoes were maintained at 20 °C for 7 or 14 days. Individual mosquitoes were screened for the presence of BATV in body, leg and saliva samples for evidence of infection, dissemination and transmission, respectively. BATV RNA was detected by reverse transcription-PCR, and positive results confirmed by virus isolation in Vero cells. Results Aedes detritus was highly susceptible to BATV, with an infection prevalence of ≥ 80% at both measurement time points. Disseminated infections were recorded in 30.7–41.6% of Ae. detritus, and evidence of virus transmission with BATV in saliva samples (n = 1, days post-infection: 14) was observed. Relatively lower rates of infection for Ae. aegypti and Cx. pipiens were observed, with no evidence of virus dissemination or transmission at either time point. Conclusions This study shows that Ae. detritus may be a competent vector for BATV at 20 °C, whereas Ae. aegypti and Cx. pipiens were not competent. Critically, the extrinsic incubation period appears to be ≤ 7 days for Ae. detritus, which may increase the onward transmissibility potential of BATV in these populations. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Luis M Hernández-Triana
- Vector-Borne Diseases Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, Surrey, UK.
| | - Arran J Folly
- Vector-Borne Diseases Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, Surrey, UK
| | - Elsa Barrero
- Vector-Borne Diseases Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, Surrey, UK
| | - Sarah Lumley
- Microbiology Services Division, Public Health England, Porton Down, Wiltshire, UK
| | - Maria Del Mar Fernández de Marco
- Vector-Borne Diseases Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, Surrey, UK
| | - Sanam Sewgobind
- Vector-Borne Diseases Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, Surrey, UK
| | - Lorraine M McElhinney
- Vector-Borne Diseases Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, Surrey, UK
| | - Anthony R Fooks
- Vector-Borne Diseases Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, Surrey, UK
| | - Nicholas Johnson
- Vector-Borne Diseases Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, Surrey, UK
| |
Collapse
|
6
|
Dutuze MF, Mayton EH, Macaluso JD, Christofferson RC. Comparative characterization of the reassortant Orthobunyavirus Ngari with putative parental viruses, Bunyamwera and Batai: in vitro characterization and ex vivo stability. J Gen Virol 2021; 102:001523. [PMID: 33258753 PMCID: PMC8116939 DOI: 10.1099/jgv.0.001523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
Bunyamwera (BUNV), Batai (BATV) and Ngari (NRIV) are mosquito-borne viruses that are members of the genus Orthobunyavirus in the order Bunyavirales. These three viruses are enveloped with single-stranded, negative-sense RNA genomes consiting of three segments, denoted as Small (S), Medium (M) and Large (L). Ngari is thought to be the natural reassortant progeny of Bunyamwera and Batai viruses. The relationship between these 'parental' viruses and the 'progeny' poses an interesting question, especially given that there is overlap in their respective transmission ecologies, but differences in their infection host ranges and pathogenesis. We compared the in vivo kinetics of these three viruses in a common laboratory system and found no significant difference in growth kinetics. There was, however, a tendency of BATV to have smaller plaques than either BUNV or NRIV. Furthermore, we determined that all three viruses are stable in extracellular conditions and retain infectivity for a week in non-cellular media, which has public health and biosafety implications. The study of this understudied group of viruses addresses a need for basic characterization of viruses that have not yet reached epidemic transmission intensity, but that have the potential due to their infectivity to both human and animal hosts. These results lay the groundwork for future studies of these neglected viruses of potential public and One Health importance.
Collapse
Affiliation(s)
- M. Fausta Dutuze
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Rwanda Institute of Conservation and Agriculture, Gashora, Bugesera, Rwanda
| | - E. Handly Mayton
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joshua D. Macaluso
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Makenov MT, Toure AH, Bayandin RB, Gladysheva AV, Shipovalov AV, Boumbaly S, Sacko N, Korneev MG, Yakovlev SA, Zhurenkova OB, Grigoreva YE, Fyodorova MV, Radyuk EV, Morozkin ES, Boiro MY, Matsvay A, Khafizov K, Karan LS. Ngari virus (Orthobunyavirus, Peribunyaviridae) in ixodid ticks collected from cattle in Guinea. Acta Trop 2021; 214:105790. [PMID: 33309594 DOI: 10.1016/j.actatropica.2020.105790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/27/2022]
Abstract
Ngari virus is a mosquito-borne virus belonging to the genus Orthobunyavirus (Peribunyaviridae family). This virus is pathogenic to humans and causes severe illness. Ngari virus is present in several African countries, including Madagascar. Here, we report the detection of Ngari virus in ixodid ticks collected from cows in Guinea. A tick survey was conducted in March-November of 2018 in six regions of Guinea. The sample comprised 710 pools, with a total of 2067 ticks belonging to five species collected from 197 cows. At the initial stage, we screened a subsample of tick pools of vector-borne viruses with a multiplex genus-specific primer panel. In the second stage of the study, we narrowed the search and screened all the samples by qPCR for the detection of Ngari virus. All positive samples were sequenced with primers flanking Ngari virus-specific fragments on the S and M segments. We found Ngari virus in 12 pools that were formed from engorged ticks collected from livestock in three villages of the Kindia and Kankan regions. Sequencing of the S and M segments confirmed that the detected viruses belong to Ngari virus, and the viruses were most similar to the strain Adrar, which was isolated in Mauritania. We detected viral RNA in ticks of the following species: Amblyomma variegatum, Rhipicephalus geigyi, and Rh. (Boophilus) spp. There is no evidence that ixodid ticks are competent vectors of the Ngari virus. Most likely, the ticks obtained the virus through blood from an infected host. The study of engorged ticks can be recommended as a simpler approach for the wide screening of the Ngari virus and subsequent testing of cattle and mosquitos in those locations where the PCR-positive ticks were collected.
Collapse
|
8
|
Yanase T, Murota K, Hayama Y. Endemic and Emerging Arboviruses in Domestic Ruminants in East Asia. Front Vet Sci 2020; 7:168. [PMID: 32318588 PMCID: PMC7154088 DOI: 10.3389/fvets.2020.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Epizootic congenital abnormalities caused by Akabane, Aino, and Chuzan viruses have damaged the reproduction of domestic ruminants in East Asia for many years. In the past, large outbreaks of febrile illness related to bovine ephemeral fever and Ibaraki viruses severely affected the cattle industry in that region. In recent years, vaccines against these viruses have reduced the occurrence of diseases, although the viruses are still circulating and have occasionally caused sporadic and small-scaled epidemics. Over a long-term monitoring period, many arboviruses other than the above-mentioned viruses have been isolated from cattle and Culicoides biting midges in Japan. Several novel arboviruses that may infect ruminants (e.g., mosquito- and tick-borne arboviruses) were recently reported in mainland China based on extensive surveillance. It is noteworthy that some are suspected of being associated with cattle diseases. Malformed calves exposed to an intrauterine infection with orthobunyaviruses (e.g., Peaton and Shamonda viruses) have been observed. Epizootic hemorrhagic disease virus serotype 6 caused a sudden outbreak of hemorrhagic disease in cattle in Japan. Unfortunately, the pathogenicity of many other viruses in ruminants has been uncertain, although these viruses potentially affect livestock production. As global transportation grows, the risk of an accidental incursion of arboviruses is likely to increase in previously non-endemic areas. Global warming will also certainly affect the distribution and active period of vectors, and thus the range of virus spreads will expand to higher-latitude regions. To prevent anticipated damages to the livestock industry, the monitoring system for arboviral circulation and incursion should be strengthened; moreover, the sharing of information and preventive strategies will be essential in East Asia.
Collapse
Affiliation(s)
- Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| |
Collapse
|
9
|
Xia H, Liu R, Zhao L, Sun X, Zheng Z, Atoni E, Hu X, Zhang B, Zhang G, Yuan Z. Characterization of Ebinur Lake Virus and Its Human Seroprevalence at the China-Kazakhstan Border. Front Microbiol 2020; 10:3111. [PMID: 32082268 PMCID: PMC7002386 DOI: 10.3389/fmicb.2019.03111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, rapidly increasing trade and travel across the China–Kazakhstan border has increased the potential risk of the introduction and exportation of vectors and their related diseases. The Ebinur Lake Nature Reserve is located in Xinjiang Uygur Autonomous Region, near the China–Kazakhstan border, with a suitable ecosystem for mosquito breeding. In our previous work, a novel Orthobunyavirus species named Ebinur Lake virus (EBIV) was isolated in the reserve. To gain insights into the potential risk of EBIV in this region, we conducted a study that aimed to clearly outline EBIV’s biological characteristics and its human seroprevalence in this region. Phylogenetically, the analysis of all three segments of EBIV demonstrated that it belongs to the genus Orthobunyavirus, which is clustered in the Bunyamwera serogroup. EBIV replicated efficiently and caused cytopathic effects (CPEs) in vertebrate cells. The survival rates of the EBIV-challenged mice were 0 and 20% when inoculated with viral concentrations ≥104 or 102 plaque-forming units, respectively. For EBIV-infected mice, internal bleeding and pathological changes were observed. In addition, the overall immunoglobulin M (IgM) antibody [1:4 by immunofluorescence assay (IFA)], immunoglobulin G (IgG) antibody (1:10 by IFA), and neutralizing antibody [90% plaque reduction neutralization test (PRNT)] prevalence was 8.05, 12.3, and 0.95%, respectively, in the studied residents. In summary, EBIV is a new member of the Bunyamwera serogroup and is able to competently infect cells derived from mosquitoes, rodents, monkeys, or humans. Furthermore, EBIV caused severe disease and even death in challenged Kunming mice, and the antibodies against EBIV have been detected in local residents, indicating that the virus is a potential animal or human pathogen.
Collapse
Affiliation(s)
- Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ran Liu
- Illumina (China), Beijing, China
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Sun
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhong Zheng
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Guilin Zhang
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Huang YJS, Higgs S, Vanlandingham DL. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front Microbiol 2019; 10:22. [PMID: 30728812 PMCID: PMC6351451 DOI: 10.3389/fmicb.2019.00022] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Hundreds of viruses, designated as arboviruses, are transmitted by arthropod vectors in complex transmission cycles between the virus, vertebrate host, and the vector. With millions of human and animal infections per year, it is critical to improve our understanding of the interactions between the biological and environmental factors that play a critical role in pathogenesis, disease outcomes, and transmission of arboviruses. This review focuses on mosquito-borne arboviruses and discusses current knowledge of the factors and underlying mechanisms that influence infection and transmission of arboviruses and discusses critical factors and pathways that can potentially become targets for intervention and therapeutics.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
11
|
Ziegler U, Groschup MH, Wysocki P, Press F, Gehrmann B, Fast C, Gaede W, Scheuch DE, Eiden M. Seroprevalance of Batai virus in ruminants from East Germany. Vet Microbiol 2018; 227:97-102. [PMID: 30473359 DOI: 10.1016/j.vetmic.2018.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 01/21/2023]
Abstract
Batai virus (BATV), a mosquito-transmitted Orthobunyavirus, was first detected in Southwest Germany in anopheline and culicine mosquitoes in 2009. However, little is known about the exposure to BATV infections for farm animals and humans in Germany as almost no systematic surveillance or infection studies have been carried out to date. This may explain why clinical symptoms in animals or humans have not been reported so far. Therefore and since BATV has meanwhile been detected repeatedly in different mosquito species in several regions of Germany, we performed a surveillance study by assaying more than 1300 blood samples from ruminants (goats, bovines, sheep) from six different federal states covering the years 2013 to 2016. Samples were investigated by BATV-specific real-time polymerase chain reaction as well as by virus neutralisation test. BATV-specific RNA was not detected, whereas BATV-specific antibodies were found in livestock from various geographic regions. We have determined the seroprevalence of 38.8% for goats, 44.7% for sheep and 36.4% for bovines in Saxony-Anhalt. The seroprevalence of goats from Brandenburg was 38.6% and of goats from Saxony 28.4%. These results confirm the levels of seroprevalence to BATV, suggesting endemic circulation, in different regions and indicate that ruminants are potential hosts of BATV in East Germany. Furthermore, the role of BATV as segment donor in disease emergence events should not be overlooked.
Collapse
Affiliation(s)
- Ute Ziegler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Patrick Wysocki
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Franziska Press
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Bernd Gehrmann
- Landesamt für Verbraucherschutz Sachsen-Anhalt, Fachbereich Veterinärmedizin, Haferbreiter Weg 132-135, D-39576, Stendal, Germany
| | - Christine Fast
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Wolfgang Gaede
- Landesamt für Verbraucherschutz Sachsen-Anhalt, Fachbereich Veterinärmedizin, Haferbreiter Weg 132-135, D-39576, Stendal, Germany
| | - Dorothee E Scheuch
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Yadav PD, Chaubal GY, Shete AM, Mourya DT. A mini-review of Bunyaviruses recorded in India. Indian J Med Res 2018; 145:601-610. [PMID: 28948950 PMCID: PMC5644294 DOI: 10.4103/ijmr.ijmr_1871_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Newly emerging and re-emerging viral infections are of major public health concern. Bunyaviridae family of viruses comprises a large group of animal viruses. Clinical symptoms exhibited by persons infected by viruses belonging to this family vary from mild-to-severe diseases i.e., febrile illness, encephalitis, haemorrhagic fever and acute respiratory illness. Several arthropods-borne viruses have been discovered and classified at serological level in India in the past. Some of these are highly pathogenic as the recent emergence and spread of Crimean-Congo haemorrhagic fever virus and presence of antibodies against Hantavirus in humans in India have provided evidences that it may become one of the emerging diseases in this country. For many of the discovered viruses, we still need to study their relevance to human and animal health. Chittoor virus, a variant of Batai virus; Ganjam virus, an Asian variant of Nairobi sheep disease virus; tick-borne viruses such as Bhanja, Palma and mosquito-borne viruses such as Sathuperi, Thimiri, Umbre and Ingwavuma viruses have been identified as the members of this family. As Bunyaviruses are three segmented RNA viruses, they can reassort the segments into genetically distinct viruses in target cells. This ability is believed to play a major role in evolution, pathogenesis and epidemiology of the viruses. Here, we provide a comprehensive overview of discovery, emergence and distribution of Bunyaviruses in India.
Collapse
Affiliation(s)
- Pragya D Yadav
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, India
| | - Gouri Y Chaubal
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, India
| | - Anita M Shete
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, India
| | - Devendra T Mourya
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
13
|
A Systematic Review of the Natural Virome of Anopheles Mosquitoes. Viruses 2018; 10:v10050222. [PMID: 29695682 PMCID: PMC5977215 DOI: 10.3390/v10050222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed. It is also possible that anophelines may be inherently less competent arbovirus vectors than culicines, but if true, the biological basis would warrant further study. This systematic review contributes a context to characterize the biology, knowledge gaps, and potential public health risk of Anopheles viruses.
Collapse
|
14
|
Dutuze MF, Nzayirambaho M, Mores CN, Christofferson RC. A Review of Bunyamwera, Batai, and Ngari Viruses: Understudied Orthobunyaviruses With Potential One Health Implications. Front Vet Sci 2018; 5:69. [PMID: 29707545 PMCID: PMC5906542 DOI: 10.3389/fvets.2018.00069] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
Abstract
Bunyamwera (BUNV), Batai (BATV), and Ngari (NRIV) are mosquito-borne viruses of the Bunyamwera serogroup in the Orthobunyavirus genus of the Bunyaviridae family. These three viruses have been found to cause disease in both livestock animals, avian species, and humans. Thus, these viruses pose a potential threat to human public health, animal health, and food security. This is especially the case in the developing nations, where BUNV and NRIV are found, mainly in Africa. BUNV and BATV are fairly well characterized, while NRIV is not well characterized owing to only sporadic detection in human and animal populations in Africa. Reassortment is common among bunyaviruses, but NRIV is believed to be the only natural reassortant of the Bunyamwera serogroup. It resulted from a combination of BUNV S and L segments and the BATV M segment. This indicates at least some level co-circulation of BUNV and BATV, which have no historically been reported to overlap in geographic distributions. But as these viruses are undercharacterized, there remains a gap in the understanding of how such reassortment could occur, and the consequences of such. Due to their combined wide range of hosts and vectors, geographic distributions, potential severity of associated diseases, and potential for transmissibility between vertebrate hosts, these viruses represent a significant gap in knowledge with important One Health implications. The goal of this review is to report available knowledge of and identify potential future directions for study of these viruses. As these are collectively understudied viruses, there is a relative paucity of data; however, we use available studies to discuss different perspectives in an effort to promote a better understanding of these three viruses and the public and One Health threat(s) they may pose.
Collapse
Affiliation(s)
- M Fausta Dutuze
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.,College of Agriculture and Animal Sciences and Veterinary Medicine, University of Rwanda, Kigali, Rwanda
| | | | - Christopher N Mores
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | |
Collapse
|
15
|
Xia H, Wang Y, Atoni E, Zhang B, Yuan Z. Mosquito-Associated Viruses in China. Virol Sin 2018; 33:5-20. [PMID: 29532388 PMCID: PMC5866263 DOI: 10.1007/s12250-018-0002-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/05/2017] [Indexed: 10/30/2022] Open
Abstract
Mosquitoes are classified into approximately 3500 species and further grouped into 41 genera. Epidemiologically, they are considered to be among the most important disease vectors in the world and they can harbor a wide variety of viruses. Several mosquito viruses are considered to be of significant medical importance and can cause serious public health issues throughout the world. Such viruses are Japanese encephalitis virus (JEV), dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV). Others are the newly recognized mosquito viruses such as Banna virus (BAV) and Yunnan orbivirus (YNOV) with unclear medical significance. The remaining mosquito viruses are those that naturally infect mosquitoes but do not appear to infect humans or other vertebrates. With the continuous development and improvement of mosquito and mosquito-associated virus surveillance systems in China, many novel mosquito-associated viruses have been discovered in recent years. This review aims to systematically outline the history, characteristics, distribution, and/or current epidemic status of mosquito-associated viruses in China.
Collapse
Affiliation(s)
- Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
16
|
Zhu Y, Zhang R, Zhang B, Zhao T, Wang P, Liang G, Cheng G. Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nat Commun 2017; 8:1262. [PMID: 29093445 PMCID: PMC5665997 DOI: 10.1038/s41467-017-01244-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/30/2017] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes are hematophagous insects that carry-on and transmit many human viruses. However, little information is available regarding the common mechanisms underlying the infection of mosquitoes by these viruses. In this study, we reveal that the hematophagous nature of mosquitoes contributes to arboviral infection after a blood meal, which suppresses antiviral innate immunity by activating the GABAergic pathway. dsRNA-mediated interruption of the GABA signaling and blockage of the GABAA receptor by the specific inhibitors both significantly impaired arbovirus replication. Consistently, inoculation of GABA enhanced arboviral infection, indicating that GABA signaling facilitates the arboviral infection of mosquitoes. The ingestion of blood by mosquitoes resulted in robust GABA production from glutamic acid derived from blood protein digestion. The oral introduction of glutamic acid increased virus acquisition by mosquitoes via activation of the GABAergic system. Our study reveals that blood meals enhance arbovirus replication in mosquitoes through activation of the GABAergic system. Transmission of many human viruses depends on replication in their mosquito vectors. Here, Zhu et al. show that glutamic acid digested from the blood meal activates GABA signaling, resulting in suppression of antiviral innate immunity and increased virus replication in mosquitoes.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,Institute of pathogenic organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Rudian Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Bei Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Penghua Wang
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Viral Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310000, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Institute of pathogenic organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
17
|
Briese T, Williams DT, Kapoor V, Diviney SM, Certoma A, Wang J, Johansen CA, Chowdhary R, Mackenzie JS, Lipkin WI. Analysis of Arbovirus Isolates from Australia Identifies Novel Bunyaviruses Including a Mapputta Group Virus from Western Australia That Links Gan Gan and Maprik Viruses. PLoS One 2016; 11:e0164868. [PMID: 27764175 PMCID: PMC5072647 DOI: 10.1371/journal.pone.0164868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
The Mapputta group comprises antigenically related viruses indigenous to Australia and Papua New Guinea that are included in the family Bunyaviridae but not currently assigned to a specific genus. We determined and analyzed the genome sequences of five Australian viruses isolated from mosquitoes collected during routine arbovirus surveillance in Western Australia (K10441, SW27571, K13190, and K42904) and New South Wales (12005). Based on matching sequences of all three genome segments to prototype MRM3630 of Trubanaman virus (TRUV), NB6057 of Gan Gan virus (GGV), and MK7532 of Maprik virus (MPKV), isolates K13190 and SW27571 were identified as TRUV, 12005 as GGV, and K42904 as a Mapputta group virus from Western Australia linking GGV and MPKV. The results confirmed serum neutralization data that had linked SW27571 to TRUV. The fifth virus, K10441 from Willare, was most closely related to Batai orthobunyavirus, presumably representing an Australian variant of the virus. Phylogenetic analysis also confirmed the close relationship of our TRUV and GGV isolates to two other recently described Australian viruses, Murrumbidgee virus and Salt Ash virus, respectively. Our findings indicate that TRUV has a wide circulation throughout the Australian continent, demonstrating for the first time its presence in Western Australia. Similarly, the presence of a virus related to GGV, which had been linked to human disease and previously known only from the Australian southeast, was demonstrated in Western Australia. Finally, a Batai virus isolate was identified in Western Australia. The expanding availability of genomic sequence for novel Australian bunyavirus variants supports the identification of suitably conserved or diverse primer-binding target regions to establish group-wide as well as virus-specific nucleic acid tests in support of specific diagnostic and surveillance efforts throughout Australasia.
Collapse
Affiliation(s)
- Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail: (TB); (DTW)
| | - David T. Williams
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail: (TB); (DTW)
| | - Vishal Kapoor
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Sinead M. Diviney
- School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Andrea Certoma
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jianning Wang
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cheryl A. Johansen
- The Arbovirus Surveillance and Research Laboratory, University of Western Australia, Nedlands, Western Australia, Australia
| | - Rashmi Chowdhary
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
18
|
Zhang L, Zhang Q, Wang J, An N, Cao Y, Fu G, Hu X, Huang Y, Su J. Characterization of Batai virus isolated from a domestic Muscovy duck (Cairina moschate). Virus Genes 2016; 53:121-125. [PMID: 27734222 DOI: 10.1007/s11262-016-1400-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
Abstract
Batai virus (BATV) belongs to the genus Orthobunyavirus of the family Bunyaviridae. It has been isolated from mosquitos, pigs, cattle, and humans throughout Africa, Asia, and Europe, and causes clinical signs in domestic animals and humans. Here, we report the isolation of BATV from a domestic duck flock. Genome sequence analysis revealed clustering of this isolate in the Africa-Asia lineage. The virus replicated in mosquitos and vertebrate host cells, showing different phenotypic characteristics, and showed the potential to infect mice. This is the first report of BATV in domestic birds and indicates the wide circulation of BATV in China.
Collapse
Affiliation(s)
- Lijiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qingshui Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Na An
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yanxin Cao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Camp JV, Nowotny N. Rapid detection of European orthobunyaviruses by reverse transcription loop-mediated isothermal amplification assays. J Virol Methods 2016; 236:252-257. [PMID: 27491341 DOI: 10.1016/j.jviromet.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022]
Abstract
The development of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assays are described herein for the detection of two orthobunyaviruses (Bunyaviridae), which represent the two main serogroups found in mosquitoes in Central Europe. The RT-LAMP assays were optimized for the detection of Ťahyňa virus (a California encephalitis group virus found in Aedes sp or Ochlerotatus sp mosquitoes) and Batai virus (also called Čalovo virus, a Bunyamwera group virus found in Anopheles maculipennis s.l. mosquitoes) nucleic acid using endemic European virus isolates. The sensitivity of the RT-LAMP assays was determined to be comparable to that of conventional tests, with a limit of detection<0.1 pfu per reaction. The assays can be performed in 60min under isothermal conditions using very simple equipment. Furthermore, it was possible to proceed with the assays without nucleic acid extraction, albeit at a 100-fold loss of sensitivity. The RT-LAMP assays are a sensitive, cost-efficient method for both arbovirus surveillance as well as diagnostic laboratories to detect the presence of these endemic orthobunyaviruses.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute for Virology, University of Veterinary Medicine, Vienna, Austria.
| | - Norbert Nowotny
- Institute for Virology, University of Veterinary Medicine, Vienna, Austria; Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
20
|
Kato T, Yanase T, Suzuki M, Katagiri Y, Ikemiyagi K, Takayoshi K, Shirafuji H, Ohashi S, Yoshida K, Yamakawa M, Tsuda T. Monitoring for bovine arboviruses in the most southwestern islands in Japan between 1994 and 2014. BMC Vet Res 2016; 12:125. [PMID: 27342576 PMCID: PMC4921034 DOI: 10.1186/s12917-016-0747-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/16/2016] [Indexed: 11/12/2022] Open
Abstract
Background In Japan, epizootic arboviral infections have severely impacted the livestock industry for a long period. Akabane, Aino, Chuzan, bovine ephemeral fever and Ibaraki viruses have repeatedly caused epizootic abnormal births and febrile illness in the cattle population. In addition, Peaton, Sathuperi, Shamonda and D’Aguilar viruses and epizootic hemorrhagic virus serotype 7 have recently emerged in Japan and are also considered to be involved in abnormal births in cattle. The above-mentioned viruses are hypothesized to circulate in tropical and subtropical Asia year round and to be introduced to temperate East Asia by long-distance aerial dispersal of infected vectors. To watch for arbovirus incursion and assess the possibility of its early warning, monitoring for arboviruses was conducted in the Yaeyama Islands, located at the most southwestern area of Japan, between 1994 and 2014. Results Blood sampling was conducted once a year, in the autumn, in 40 to 60 healthy cattle from the Yaeyama Islands. Blood samples were tested for arboviruses. A total of 33 arboviruses including Akabane, Peaton, Chuzan, D’ Aguilar, Bunyip Creek, Batai and epizootic hemorrhagic viruses were isolated from bovine blood samples. Serological surveillance for the bovine arboviruses associated with cattle diseases in young cattle (ages 6–12 months: had only been alive for one summer) clearly showed their frequent incursion into the Yaeyama Islands. In some cases, the arbovirus incursions could be detected in the Yaeyama Islands prior to their spread to mainland Japan. Conclusions We showed that long-term surveillance in the Yaeyama Islands could estimate the activity of bovine arboviruses in neighboring regions and may provide a useful early warning for likely arbovirus infections in Japan. The findings in this study could contribute to the planning of prevention and control for bovine arbovirus infections in Japan and cooperative efforts among neighboring countries in East Asia. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0747-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima, 891-0105, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima, 891-0105, Japan.
| | - Moemi Suzuki
- Okinawa Prefectural Institute of Animal Health, 1-24-29 Kohagura, Naha, Okinawa, 900-0024, Japan
| | - Yoshito Katagiri
- Okinawa Prefectural Institute of Animal Health, 1-24-29 Kohagura, Naha, Okinawa, 900-0024, Japan
| | - Kazufumi Ikemiyagi
- Yaeyama Livestock Hygiene Service Center, 1-2 Miyara, Ishigaki, Okinawa, 907-0022, Japan
| | - Katsunori Takayoshi
- Okinawa Prefectural Institute of Animal Health, 1-24-29 Kohagura, Naha, Okinawa, 900-0024, Japan
| | - Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima, 891-0105, Japan
| | - Seiichi Ohashi
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kazuo Yoshida
- Exotic Disease Research Station, National Institute of Animal Health, 6-20-1 Josuihoncho, Kodaira, Tokyo, 187-0222, Japan
| | - Makoto Yamakawa
- Exotic Disease Research Station, National Institute of Animal Health, 6-20-1 Josuihoncho, Kodaira, Tokyo, 187-0222, Japan
| | - Tomoyuki Tsuda
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
21
|
Liu H, Li XT, Hu B, Zhang L, Xue XH, Lv S, Lu RG, Shi N, Yan XJ. Development of Reverse Transcription Loop-Mediated Isothermal Amplification for Rapid Detection of Batai Virus in Cattle and Mosquitoes. Vector Borne Zoonotic Dis 2016; 16:415-22. [PMID: 27027481 DOI: 10.1089/vbz.2015.1882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Batai virus (BATV) is an arthropod-borne single-stranded RNA virus belonging to the genus Orthobunyavirus of the family Bunyaviridae that is primarily transmitted by mosquitoes. Methods for detecting BATV are currently limited to serological surveillance, virus isolation, and conventional reverse transcription-polymerase chain reaction (RT-PCR) assay. In this study, we sought to develop a BATV detection assay that needs no specialized equipment and is highly specific, sensitive, and simple. We first developed and optimized a reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of BATV that uses two pairs of primers to amplify a conserved region of the BATV M gene. The optimal reaction conditions for this RT-LAMP BATV detection assay were 40 min at 65°C. The amplification products could be visualized directly for color changes. This RT-LAMP method has a detection limit of 2.86 copies/μL and a sensitivity that was approximately 10- and 100-fold greater than real-time and conventional RT-PCR, respectively. RT-LAMP for BATV detection showed no cross-reactivity with other viruses and its sensitivity was validated with cattle blood and mosquito specimens. Our results suggest that this RT-LAMP method was simpler and faster than conventional RT-PCR or real-time RT-PCR. Moreover, RT-LAMP represents a potential tool to test for BATV in clinical and mosquito samples, especially in rural areas of China. This method also shows promise as a diagnostic tool due to its rapid and sensitive detection without the need for sophisticated equipment or complicated protocols.
Collapse
Affiliation(s)
- Hao Liu
- 1 Division of Infectious Diseases of Special Economic Animal, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xin Tong Li
- 1 Division of Infectious Diseases of Special Economic Animal, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Hu
- 2 Division of Infectious Diseases of Special Economic Animal, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lei Zhang
- 2 Division of Infectious Diseases of Special Economic Animal, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiang-Hong Xue
- 2 Division of Infectious Diseases of Special Economic Animal, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Lv
- 2 Division of Infectious Diseases of Special Economic Animal, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rong-Guang Lu
- 2 Division of Infectious Diseases of Special Economic Animal, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ning Shi
- 2 Division of Infectious Diseases of Special Economic Animal, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xi-Jun Yan
- 2 Division of Infectious Diseases of Special Economic Animal, Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
22
|
Surveillance of Batai virus in bovines from Germany. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:672-3. [PMID: 25878253 DOI: 10.1128/cvi.00082-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022]
Abstract
To estimate the veterinary importance of Batai virus (BATV), we investigated the presence of BATV-specific antibodies and BATV RNA in 548 bovines from southwest Germany, and we demonstrated that 3 cattle serum samples contained BATV-neutralizing antibodies, resulting in a seroprevalence of 0.55%. Thus, our results confirm local transmission and indicate cattle as potential hosts of BATV in southwest Germany.
Collapse
|