1
|
Estrogen receptor-1 is a key regulator of HIV-1 latency that imparts gender-specific restrictions on the latent reservoir. Proc Natl Acad Sci U S A 2018; 115:E7795-E7804. [PMID: 30061382 PMCID: PMC6099847 DOI: 10.1073/pnas.1803468115] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms leading to the creation and maintenance of the latent HIV reservoir remain incompletely understood. Unbiased shRNA screens showed that the estrogen receptor acts as a potent repressor of proviral reactivation in T cells. Antagonists of ESR-1 activate latent HIV-1 proviruses while agonists, including β-estradiol, potently block HIV reactivation. Using a well-matched set of male and female donors, we found that ESR-1 plays an important role in regulating HIV transcription in both sexes. However, women are much more responsive to estrogen and appear to harbor smaller inducible RNA reservoirs. Accounting for the impact of estrogen on HIV viral reservoirs will therefore be critical for devising curative therapies for women, a group representing 51% of global HIV infections. Unbiased shRNA library screens revealed that the estrogen receptor-1 (ESR-1) is a key factor regulating HIV-1 latency. In both Jurkat T cells and a Th17 primary cell model for HIV-1 latency, selective estrogen receptor modulators (SERMs, i.e., fulvestrant, raloxifene, and tamoxifen) are weak proviral activators and sensitize cells to latency-reversing agents (LRAs) including low doses of TNF-α (an NF-κB inducer), the histone deacetylase inhibitor vorinostat (soruberoylanilide hydroxamic acid, SAHA), and IL-15. To probe the physiologic relevance of these observations, leukapheresis samples from a cohort of 12 well-matched reproductive-age women and men on fully suppressive antiretroviral therapy were evaluated by an assay measuring the production of spliced envelope (env) mRNA (the EDITS assay) by next-generation sequencing. The cells were activated by T cell receptor (TCR) stimulation, IL-15, or SAHA in the presence of either β-estradiol or an SERM. β-Estradiol potently inhibited TCR activation of HIV-1 transcription, while SERMs enhanced the activity of most LRAs. Although both sexes responded to SERMs and β-estradiol, females showed much higher levels of inhibition in response to the hormone and higher reactivity in response to ESR-1 modulators than males. Importantly, the total inducible RNA reservoir, as measured by the EDITS assay, was significantly smaller in the women than in the men. We conclude that concurrent exposure to estrogen is likely to limit the efficacy of viral emergence from latency and that ESR-1 is a pharmacologically attractive target that can be exploited in the design of therapeutic strategies for latency reversal.
Collapse
|
2
|
Ragupathy V, Devadas K, Tang S, Wood O, Lee S, Dastyer A, Wang X, Dayton A, Hewlett I. Effect of sex steroid hormones on replication and transmission of major HIV subtypes. J Steroid Biochem Mol Biol 2013; 138:63-71. [PMID: 23542659 DOI: 10.1016/j.jsbmb.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND The HIV epidemic is expanding worldwide with an increasing number of distinct viral subtypes and circulating recombinant forms (CRFs). Out of 34 million adults living with HIV and AIDS, women account for one half of all HIV-1 infections worldwide. These gender differences in HIV pathogenesis may be attributed to sex hormones. Little is known about the role of sex hormone effects on HIV Subtypes pathogenesis. The aim of our study was to determine sex hormone effects on replication and transmissibility of HIV subtypes. METHODS Peripheral blood mononuclear cells (PBMC) and monocyte derived dendritic cells (MDDC) from male and female donors were infected with HIV subtypes A-D and CRF02_AG, CRF01_AE, MN (lab adapted), Group-O, Group-N and HIV-2 at a concentration of 5ng/ml of p24 or p27. Virus production was evaluated by measuring p24 and p27 levels in culture supernatants. Similar experiments were carried out in the presence of physiological concentrations of sex steroid hormones. R5/X4 expressions measured by flow cytometry and transmissibility was evaluated by transfer of HIV from primary dendritic cells (DC) to autologous donor PBMC. RESULTS Our results from primary PBMC and MDDC from male and female donors indicate in the absence of physiological concentrations of hormone treatment virus production was observed in three clusters; high replicating virus (subtype B and C), moderate replicative virus (subtype A, D, CRF01_AE, Group_N) and least replicative virus (strain MN). However, dose of sex steroid hormone treatment influenced HIV replication and transmission kinetics in PBMC, DCs and cell lines. Such effects were inconsistent between donors and HIV subtypes. Sex hormone effects on HIV entry receptors (CCR5/CXCR4) did not correlate with virus production. CONCLUSIONS Subtypes B and C showed higher replication in PBMC from males and females and were transmitted more efficiently through DC to male and female PBMC compared with other HIV-1 subtypes, HIV-1 Group O and HIV-2. These findings are consistent with increased worldwide prevalence of subtype B and C compared to other subtypes. Sex steroid hormones had variable effect on replication or transmission of different subtypes. These findings suggest that subtype, gender and sex hormones may play a crucial role in the replication and transmission of HIV.
Collapse
Affiliation(s)
- Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Torres NI, Castilla V, Wachsman M. DHEA inhibits measles virus through a mechanism independent of its ability to modulate the Raf/MEK/ERK signaling pathway. Future Virol 2012. [DOI: 10.2217/fvl.12.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Despite the existence of an effective vaccine, measles infection is still frequent in many developing countries with reduced health infrastructure, and it is one of the major causes of child death globally. In the past decade numerous outbreaks have occurred in developed countries, giving a fresh impetus to antiviral research against measles virus. The aim of this study was to investigate the antiviral activity of the natural steroid hormone DHEA against measles virus and the role of the Raf/MEK/ERK signaling pathway in viral multiplication and DHEA’s antiviral activity. Materials & methods: The antiviral activity of DHEA and two ERK modulators, UO126 and anisomycin, was determined using a virus yield reduction assay. Furthermore, we studied DHEA’s virucidal activity and the viral multiplication step affected by the compound. The effect of virus infection on the Raf/MEK/ERK pathway and the activity of those compounds against measles virus spread and induced cytopathic effect were studied using western blot and indirect immunofluorescence. Results & conclusion: We found that DHEA and UO126 are active against measles virus and that they are able to diminish virus-induced cytopathic effects. Also, our study showed that early events in the viral multiplication cycle trigger ERK activation, suggesting that DHEA, a Raf/MEK/ERK modulator, may not exert its antiviral activity through the modulation of this pathway. Our results may provide a first step in the development of new antiviral agents against measles virus.
Collapse
Affiliation(s)
- Nicolás I Torres
- Laboratorio de Virología. Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología. Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428, Buenos Aires, Argentina
| | - Mónica Wachsman
- Laboratorio de Virología. Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428, Buenos Aires, Argentina
| |
Collapse
|
4
|
In vitro antiviral activity of dehydroepiandrosterone, 17 synthetic analogs and ERK modulators against herpes simplex virus type 1. Antiviral Res 2012; 95:37-48. [PMID: 22584352 DOI: 10.1016/j.antiviral.2012.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/24/2012] [Accepted: 05/01/2012] [Indexed: 11/22/2022]
Abstract
In the present study the in vitro antiviral activity of dehydroepiandrosterone (DHEA) and 17 synthetic derivatives against herpes simplex type 1 (HSV-1) was determined. DHEA, epiandrosterone (EA), two synthetic DHEA analogs and three synthetic EA analogs showed a selective inhibitory effect on HSV in vitro multiplication. DHEA and E2, a synthetic derivative of EA, were not found to be virucidal to cell-free HSV-1 and did not impair virus adsorption or penetration. We determined that treatment with both compounds decreased viral protein synthesis. Moreover, inhibitory effect of DHEA and E2 on extracellular viral titer was stronger than the inhibition found on total viral infectivity, suggesting that the antiherpetic activity of these compounds may also be in part due to an inhibition in virus formation and release. Since DHEA is a known Raf/MEK/ERK signaling pathway activator, we studied the role of this pathway on HSV-1 infection. ERK1/2 phosphorylation was stimulated in HSV-1 infected cultures. UO126, a Raf/MEK/ERK signaling pathway inhibitor, impaired viral multiplication, while anisomycin, an activator of this pathway, enhanced it. Treatment with DHEA 6 h before infection enhanced HSV-1 multiplication. On the contrary, pre-treatment with E2, which does not modulate Raf/MEK/ERK signaling pathway, did not produce an increase of viral replication. Taking together these results, the antiviral activity of DHEA seems to occur via a mechanism independent of its ability to modulate ERK phosphorylation.
Collapse
|
5
|
Herschhorn A, Finzi A, Jones DM, Courter JR, Sugawara A, Smith AB, Sodroski JG. An inducible cell-cell fusion system with integrated ability to measure the efficiency and specificity of HIV-1 entry inhibitors. PLoS One 2011; 6:e26731. [PMID: 22069466 PMCID: PMC3206054 DOI: 10.1371/journal.pone.0026731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/03/2011] [Indexed: 11/19/2022] Open
Abstract
HIV-1 envelope glycoproteins (Envs) mediate virus entry by fusing the viral and target cell membranes, a multi-step process that represents an attractive target for inhibition. Entry inhibitors with broad-range activity against diverse isolates of HIV-1 may be extremely useful as lead compounds for the development of therapies or prophylactic microbicides. To facilitate the identification of such inhibitors, we have constructed a cell-cell fusion system capable of simultaneously monitoring inhibition efficiency and specificity. In this system, effector cells stably express a tetracycline-controlled transactivator (tTA) that enables tightly inducible expression of both HIV-1 Env and the Renilla luciferase (R-Luc) reporter protein. Target cells express the HIV-1 receptors, CD4 and CCR5, and carry the firefly luciferase (F-Luc) reporter gene under the control of a tTA-responsive promoter. Thus, Env-mediated fusion of these two cell types allows the tTA to diffuse to the target cell and activate the expression of the F-Luc protein. The efficiency with which an inhibitor blocks cell-cell fusion is measured by a decrease in the F-Luc activity, while the specificity of the inhibitor is evaluated by its effect on the R-Luc activity. The system exhibited a high dynamic range and high Z'-factor values. The assay was validated with a reference panel of inhibitors that target different steps in HIV-1 entry, yielding inhibitory concentrations comparable to published virus inhibition data. Our system is suitable for large-scale screening of chemical libraries and can also be used for detailed characterization of inhibitory and cytotoxic properties of known entry inhibitors.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andres Finzi
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akihiro Sugawara
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph G. Sodroski
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Romanutti C, Bruttomesso AC, Castilla V, Bisceglia JA, Galagovsky LR, Wachsman MB. In vitro antiviral activity of dehydroepiandrosterone and its synthetic derivatives against vesicular stomatitis virus. Vet J 2008; 182:327-35. [PMID: 18682333 DOI: 10.1016/j.tvjl.2008.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 11/26/2022]
Abstract
In this work the antiviral activity of 20 dehydroepiandrosterone (DHEA) analogs with different substituents at positions C-3, C-15, C-16 and C-17 were evaluated against vesicular stomatitis virus (VSV) in Vero cell cultures. The selectivity indexes (SI) obtained with DHEA and epiandrosterone (EA) were 50 and 72.6, respectively. The work showed that the compounds 21-norpregna-5,17(20)-dien-3beta,16alpha-diyl-diacetate, 17,17-ethylendioxyandrostan-5,15-dien-3beta-ol and 3beta-hydroxypregn-17(20)-en-16-one had higher SI values than ribavirin, which was used as a reference drug. The antiviral mode of action of DHEA was also investigated against VSV replication in Vero cells, and time of addition experiments showed that DHEA mainly affected a late event in the virus growth cycle. Analysis of RNA and protein synthesis indicated that DHEA adversely affected positive strand RNA synthesis and viral mature particle formation.
Collapse
Affiliation(s)
- Carina Romanutti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, C1428EGA, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
Acosta EG, Bruttomesso AC, Bisceglia JA, Wachsman MB, Galagovsky LR, Castilla V. Dehydroepiandrosterone, epiandrosterone and synthetic derivatives inhibit Junin virus replication in vitro. Virus Res 2008; 135:203-12. [PMID: 18462821 DOI: 10.1016/j.virusres.2008.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
In the present paper the in vitro antiviral activity of dehydroepiandrosterone (DHEA), epiandrosterone (EA) and 16 synthetic derivatives against Junin virus (JUNV) replication in Vero cells was studied. DHEA and EA caused a selective inhibition of the replication of JUNV and other members of the Arenaviridae family such as Pichinde virus and Tacaribe virus. The compounds were not virucidal to cell-free JUNV. The impairment of viral replication was not due to an inhibitory effect of the steroids on virus adsorption or internalization. An inhibitory effect of the compounds on JUNV protein synthesis and both intracellular and extracellular virus production was demonstrated. A partial inhibitory action on cell surface expression of JUNV glycoprotein G1 was also detected on DHEA- and EA-treated cultures. Like DHEA and EA, three compounds obtained from EA by chemical synthesis showed selectivity indexes higher than ribavirin, the only antiviral compound that has shown partial efficacy against arenavirus infections.
Collapse
Affiliation(s)
- Eliana G Acosta
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, C1428EGA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
8
|
Parris GE. Clinically significant cancer evolves from transient mutated and/or aneuploid neoplasia by cell fusion to form unstable syncytia that give rise to ecologically viable parasite species. Med Hypotheses 2005; 65:846-50. [PMID: 16023792 DOI: 10.1016/j.mehy.2005.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 05/31/2005] [Indexed: 12/15/2022]
Abstract
Following the idea of Duesberg and Rasnick (Cell Motil Cytoskeleton 2000; 47:81-107) that cancer is a separate species of organism, the ecology of cancer as a parasite is examined. The most important ecological feature of cancer is its ability to evolve. The mutation hypothesis and the "unstable genome" hypothesis of cancer evolution are considered but neither of these current hypotheses is believed to adequately explain how cancer successfully evolves. In particular, either of these processes alone should lead to extinction of the cell line before a clinically significant neoplasm is achieved. Moreover, the term "unstable genome" probably should be replaced by "labile genome" because cancer genomes must be stable enough to reproduce themselves through many generations if the clone is to expand. The key step in productive evolution of undetectable neoplasia into clinically significant cancer is hypothesized to be sex-like resorting of chromosomes from different cells (e.g., normal and abnormal cells). The sex-like process begins with cell fusion to form a syncytium, which may be stable (producing multinucleated giant cells seen in many tumors) or which may undergo "mitotic catastrophe" to produce polyploidy cells. The nuclei of polyploid cells may undergo a process called "neosis" in which they form buds and undergo karyokinesis followed by cytokinesis to yield karyoplasts (small cells with little cytoplasm) that found new cancer clone lines. Although both mutations and unstable (aneuploid) genomes are seen as dead ends in cancer evolution (i.e., using only these modes of genome modification, cancers would not likely advance to clinical significance before becoming extinct), they each produce transient genetic material, which can be incorporated into stable genomes with aggressive (i.e., ecologically fit) phenotypes by cell fusion. It is proposed that inhibition of cell fusion (or other steps in this sex-like process) concurrent with classical chemotherapy might prevent evolution of the clones and recurrence of the cancer. Similarly, active suppression of viruses or other conditions that catalyze cell fusion should also slow down evolution of cancer clones.
Collapse
|