1
|
Su L, Huang W, Neill FH, Estes MK, Atmar RL, Palzkill T. Mapping human norovirus antigens during infection reveals the breadth of the humoral immune response. NPJ Vaccines 2023; 8:87. [PMID: 37280322 PMCID: PMC10242225 DOI: 10.1038/s41541-023-00683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Human noroviruses (HuNoV) are the leading cause of acute gastroenteritis worldwide. The humoral immune response plays an important role in clearing HuNoV infections and elucidating the antigenic landscape of HuNoV during an infection can shed light on antibody targets to inform vaccine design. Here, we utilized Jun-Fos-assisted phage display of a HuNoV genogroup GI.1 genomic library and deep sequencing to simultaneously map the epitopes of serum antibodies of six individuals infected with GI.1 HuNoV. We found both unique and common epitopes that were widely distributed among both nonstructural proteins and the major capsid protein. Recurring epitope profiles suggest immunodominant antibody footprints among these individuals. Analysis of sera collected longitudinally from three individuals showed the presence of existing epitopes in the pre-infection sera, suggesting these individuals had prior HuNoV infections. Nevertheless, newly recognized epitopes surfaced seven days post-infection. These new epitope signals persisted by 180 days post-infection along with the pre-infection epitopes, suggesting a persistent production of antibodies recognizing epitopes from previous and new infections. Lastly, analysis of a GII.4 genotype genomic phage display library with sera of three persons infected with GII.4 virus revealed epitopes that overlapped with those identified in GI.1 affinity selections, suggesting the presence of GI.1/GII.4 cross-reactive antibodies. The results demonstrate that genomic phage display coupled with deep sequencing can characterize HuNoV antigenic landscapes from complex polyclonal human sera to reveal the timing and breadth of the human humoral immune response to infection.
Collapse
Affiliation(s)
- Lynn Su
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wanzhi Huang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
The Antigenic Topology of Norovirus as Defined by B and T Cell Epitope Mapping: Implications for Universal Vaccines and Therapeutics. Viruses 2019; 11:v11050432. [PMID: 31083353 PMCID: PMC6563215 DOI: 10.3390/v11050432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.
Collapse
|
3
|
Tokuhara D. Challenges in developing mucosal vaccines and antibodies against infectious diarrhea in children. Pediatr Int 2018; 60:214-223. [PMID: 29290097 DOI: 10.1111/ped.13497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Infectious diarrhea in children can be life-threatening and imposes a large economic burden on healthcare systems, therefore more effective prophylactic and therapeutic drugs are needed urgently. Because most of the pathogens responsible for childhood diarrhea infect the gastrointestinal mucosa, providing protective immunity at the mucosal surface is an ideal way to control pathogen invasion and toxic activity. Mucosal (e.g. oral, nasal) vaccines are superior to systemic (subcutaneous or intramuscular) vaccination for conferring both mucosal and systemic pathogen-specific immune responses. Therefore, great efforts has been focused on the development of cost-effective mucosal vaccines for the past 50 years. Recent progress in plant genetic engineering has revolutionized the production of inexpensive and safe recombinant vaccine antigens. For example, rice plant biotechnology has facilitated the development of a cold-chain-free rice-based oral subunit vaccine against Vibrio cholerae. Furthermore, this technology has led to the creation of a rice-based oral antibody for prophylaxis and treatment of rotavirus gastroenteritis. This review summarizes current perspectives regarding the mucosal immune system and the development of mucosal vaccines and therapeutic antibodies, particularly rice-based products, and discusses future prospects regarding mucosal vaccines for children.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Abenoku, Osaka, Japan
| |
Collapse
|
4
|
Melnik S, Neumann AC, Karongo R, Dirndorfer S, Stübler M, Ibl V, Niessner R, Knopp D, Stoger E. Cloning and plant-based production of antibody MC10E7 for a lateral flow immunoassay to detect [4-arginine]microcystin in freshwater. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:27-38. [PMID: 28421663 PMCID: PMC5785354 DOI: 10.1111/pbi.12746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Antibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]-microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user-friendly tests for on-site analysis, requires a sensitive but also cost-effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass-assisted cloning strategy and expressed a scFv (single-chain variable fragment) format of this antibody in yeast and a chimeric full-size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production. The specific antigen-binding activity of the purified antibody was verified by surface plasmon resonance spectroscopy and ELISA, confirming the same binding specificity as its hybridoma-derived counterpart. The plant-derived antibody was used to design a lateral flow immunoassay (dipstick) for the sensitive detection of [Arg4]-microcystins at concentrations of 100-300 ng/L in freshwater samples collected at different sites. Plant-based production will likely reduce the cost of the antibody, currently the most expensive component of the dipstick immunoassay, and will allow the development of further antibody-based analytical devices and water purification adsorbents for the efficient removal of toxic contaminants.
Collapse
Affiliation(s)
- Stanislav Melnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Cathrine Neumann
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Ryan Karongo
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Sebastian Dirndorfer
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Martin Stübler
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
5
|
Koromyslova AD, Hansman GS. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization. PLoS Pathog 2017; 13:e1006636. [PMID: 29095961 PMCID: PMC5667739 DOI: 10.1371/journal.ppat.1006636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to function as novel therapeutic agents against human noroviruses. We determined the binding sites of six novel human norovirus specific Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) using X-ray crystallography. The unique Nanobody recognition epitopes were correlated with their potential neutralizing capacities. We showed that one Nanobody (Nano-26) bound numerous genogroup II genotypes and interacted with highly conserved capsid residues. Four Nanobodies (Nano-4, Nano-26, Nano-27, and Nano-42) bound to occluded regions on the intact particles and impaired normal capsid morphology and particle integrity. One Nanobody (Nano-14) bound contiguous to the HBGA pocket and interacted with several residues involved in binding HBGAs. We found that the Nanobodies delivered multiple inhibition mechanisms, which included steric obstruction, allosteric interference, and disruption of the capsid stability. Our data suggested that the HBGA pocket might not be an ideal target for drug development, since the surrounding region is highly variable and inherently suffers from lack of conservation among the genetically diverse genotypes. Instead, we showed that the capsid contained other highly susceptible regions that could be targeted for virus inhibition.
Collapse
Affiliation(s)
- Anna D. Koromyslova
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (ADK); (GSH)
| | - Grant S. Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (ADK); (GSH)
| |
Collapse
|
6
|
Huang W, Samanta M, Crawford SE, Estes MK, Neill FH, Atmar RL, Palzkill T. Identification of human single-chain antibodies with broad reactivity for noroviruses. Protein Eng Des Sel 2014; 27:339-49. [PMID: 24946948 PMCID: PMC4191442 DOI: 10.1093/protein/gzu023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 04/19/2014] [Accepted: 05/23/2014] [Indexed: 11/14/2022] Open
Abstract
Norovirus infections are a common cause of gastroenteritis and new methods to rapidly diagnose norovirus infections are needed. The goal of this study was to identify antibodies that have broad reactivity of binding to various genogroups of norovirus. A human scFv phage display library was used to identify two antibodies, HJT-R3-A9 and HJT-R3-F7, which bind to both genogroups I and II norovirus virus-like particles (VLPs). Mapping experiments indicated that the HJT-R3-A9 clone binds to the S-domain while the HJT-R3-F7 clone binds the P-domain of the VP1 capsid protein. In addition, a family of scFv antibodies was identified by elution of phage libraries from the GII.4 VLP target using a carbohydrate that serves as an attachment factor for norovirus on human cells. These antibodies were also found to recognize both GI and GII VLPs in enzyme-linked immunosorbent assay (ELISA) experiments. The HJT-R3-A9, HJT-R3-F7 and scFv antibodies identified with carbohydrate elution were shown to detect antigen from a clinical sample known to contain GII.4 norovirus but not a negative control sample. Finally, phages displaying the HJT-R3-A9 scFv can be used directly to detect both GI.1 and GII.4 norovirus from stool samples, which has the potential to simplify and reduce the cost of diagnostics based on antibody-based ELISA methods.
Collapse
Affiliation(s)
- Wanzhi Huang
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Moumita Samanta
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Gerdts V, Mutwiri G, Richards J, van Drunen Littel-van den Hurk S, Potter AA. Carrier molecules for use in veterinary vaccines. Vaccine 2012; 31:596-602. [PMID: 23219438 DOI: 10.1016/j.vaccine.2012.11.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/16/2012] [Accepted: 11/25/2012] [Indexed: 11/27/2022]
Abstract
The practice of immunization of animals and humans has been carried out for centuries and is generally accepted as the most cost effective and sustainable method of infectious disease control. Over the past 20 years there have been significant changes in our ability to produce antigens by conventional extraction and purification, recombinant DNA and synthesis. However, many of these products need to be combined with carrier molecules to generate optimal immune responses. This review covers selected topics in the development of carrier technologies for use in the veterinary vaccine field, including glycoconjugate and peptide vaccines, microparticle and nanoparticle formulations, and finally virus-like particles.
Collapse
Affiliation(s)
- Volker Gerdts
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | |
Collapse
|
8
|
Salavatifar M, Amin S, Jahromi ZM, Rasgoo N, Rastgoo N, Arbabi M. Green fluorescent-conjugated anti-CEA single chain antibody for the detection of CEA-positive cancer cells. Hybridoma (Larchmt) 2011; 30:229-38. [PMID: 21707357 DOI: 10.1089/hyb.2011.0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to World Health Organization (WHO), cancer is a leading cause of death worldwide, accounting for 7.4 million deaths (around 13% of all deaths) in 2004. Monoclonal/recombinant antibodies, which specifically target clinical biomarkers of disease, have increasingly been applied as powerful tools in cancer imaging and therapy, a fact that is highlighted by some nine FDA-approved monoclonal antibodies (MAbs) or their immunoconjugates (as of December 2008) for use in cancer treatment. In this study, five monoclonal antibodies (MAbs) were generated and characterized against carcinoembryonic antigen (CEA), which is widely used clinically as both a blood and tissue tumor marker of epithelial malignancy. Variable domains (VH and VL) of one the stable MAbs with highest affinity were PCR-amplified and assembled as single-chain antibody fragment (scFv). Following the cloning and expression of scFv antibody fragments in Escherichia coli, the functional binding and specificity of the recombinant antibody were confirmed by ELISA. To develop a direct in vitro detection of CEA-positive cancer cells, scFv DNA was genetically fused to enhanced green fluorescent protein (EGFP) gene and expressed in bacteria. The chimeric fluorescent protein is able to specifically detect CEA-positive cell lines; no cross-reactivity was observed with a negative control cell line. This strategy will likely allow the establishment of a rapid, single-step detection assay of CEA, which is considered to be one of the best predictors of malignancy among all other tumor markers.
Collapse
|
9
|
Vashist S, Bailey D, Putics A, Goodfellow I. Model systems for the study of human norovirus Biology. Future Virol 2009; 4:353-367. [PMID: 21516251 DOI: 10.2217/fvl.09.18] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relative contribution of norovirus to disease burden on society has only recently been established and they are now established as a major cause of gastroenteritis in the developed world. However, despite the medical relevance of these viruses, an efficient in vitro cell culture system for human noroviruses has yet to be developed. As a result, much of our knowledge on the basic mechanisms of norovirus biology has come from studies using other members of the Caliciviridae family of small positive stranded RNA viruses. Here we aim to summarise the recent advances in the field, highlighting how model systems have played a key role in increasing our knowledge of this prevalent pathogen.
Collapse
|