1
|
Li Q, Li H, Li Z, Wang Y. Vaccine and therapeutic agents against the respiratory syncytial virus: resolved and unresolved issue. MedComm (Beijing) 2024; 5:e70016. [PMID: 39575302 PMCID: PMC11581781 DOI: 10.1002/mco2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a predominant pathogen responsible for respiratory tract infections among infants, the elderly, and immunocompromised individuals. In recent years, significant progress has been made in innovative vaccines and therapeutic agents targeting RSV. Nevertheless, numerous challenges and bottlenecks persist in the prevention and treatment of RSV infections. This review will provide an overview of the resolved and unresolved issues surrounding the development of vaccines and therapeutic agents against RSV. As of September 2024, three RSV vaccines against acute lower respiratory infections (ALRI) have been approved globally. Additionally, there have been notable progress in the realm of passive immunoprophylactic antibodies, with the monoclonal antibody nirsevimab receiving regulatory approval for the prevention of RSV infections in infants. Furthermore, a variety of RSV therapeutic agents are currently under clinical investigation, with the potential to yield breakthrough advancements in the foreseeable future. This review delineates the advancements and challenges faced in vaccines and therapeutic agents targeting RSV. It aims to provide insights that will guide the development of effective preventive and control measures for RSV.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Huan Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Zhihua Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Youchun Wang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| |
Collapse
|
2
|
Mitra D, Afreen S, Das Mohapatra PK, Abdalla M. Inhibition of respiratory syncytial virus by Daclatasvir and its derivatives: synthesis of computational derivatives as a new drug development. J Biomol Struct Dyn 2024:1-23. [PMID: 38217429 DOI: 10.1080/07391102.2023.2300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 01/15/2024]
Abstract
The most common cause of respiratory tract illness in newborns and young children is the respiratory syncytial virus (RSV). There is no approved vaccination or specific antiviral medication for RSV infections. Here, an attempt has been made to explore the potential of currently marketed drugs as well as their probable derivatives to improve the possibility of developing stronger medications against RSV. From the 100 synthetic drug compounds library, the best drug molecule was identified through drug-likeness properties, toxicity, molecular docking and molecular dynamics simulations. Molecular Mechanics Generalized Born Surface Area (MM-GBSA) was also a method that was applied in this study. Daclatasvir showed the highest binding energy and appeared as the best drug to inhibit matrix protein and a fusion protein of RSV. Based on Daclatasvir, 40 computational derivatives were made. D28, D34 and D40 showed far better results than the actual drug. Changes in lipophilicity character increase the binding energy of derivatives. Molecular dynamic simulations showed their non-deviated, non-fluctuated and stable complex formation with target proteins. The high number of amino acid contacts throughout the trajectory increases the stability and effectiveness of derivatives. The key to producing a novel medicine to eradicate RSV is provided by derivatives. Daclatasvir will be employed as a potential RSV inhibitor up until that point.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, India
| | - Shagufta Afreen
- CAS Key laboratory of Biobased material, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, PR China
| | | | - Mohnad Abdalla
- Research Institute of Pediatrics, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, PR China
| |
Collapse
|
3
|
Mitra D, Paul M, Thatoi H, Das Mohapatra PK. Potentiality of bioactive compounds as inhibitor of M protein and F protein function of human respiratory syncytial virus. In Silico Pharmacol 2023; 12:5. [PMID: 38148755 PMCID: PMC10749291 DOI: 10.1007/s40203-023-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023] Open
Abstract
The human respiratory syncytial virus (RSV) creates a pandemic every year in several countries in the world. Lack of target therapeutics and absence of vaccines have prompted scientists to create novel vaccines or small chemical treatments against RSV's numerous targets. The matrix (M) protein and fusion (F) glycoprotein of RSV are well characterized and attractive drug targets. Five bioactive compounds from Alnus japonica (Thunb.) Steud. were taken into consideration as lead compounds. Drug-likeness characters of them showed the drugs are non-toxic and non-mutagenic and mostly lipophobic. Molecular docking reveals that all bioactive compounds have better binding and better inhibitory effect than ribavirin which is currently used against RSV. Praecoxin A appeared as the best lead compound between them. It creates 7 different types of bonds with amino acids of M protein and 5 different types of bonds with amino acids of F protein. Van der Waals interactions highly influenced the binding energies. Molecular dynamic simulations represent the non-deviated and less fluctuating nature of praecoxin A. Principal Component Analysis showed praecoxin A complex with RSV matrix protein is more stable than ribavirin complex. This study will help to develop a new drug to inhibit RSV. All ligands were minimized through semi-empirical PM3 process with MOPAC. Toxicity was tested by ProTox-II server. Molecular docking studies were carried out using AutoDock 4.2. Molecular dynamics simulations for 100 ns were carried out through GROMACS 5.12 MD and GROMOS96 43a1 force field. The graphs were produced by GROMACS's XMGrace program. Graphical abstract
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, West Bengal 733134 India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003 India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003 India
| | | |
Collapse
|
4
|
Chen F, Park HR, Ji HJ, Kwon Y, Kim MK, Song JY, Ahn KB, Seo HS. Gamma Irradiation-Inactivated Respiratory Syncytial Virus Vaccine Provides Protection but Exacerbates Pulmonary Inflammation by Switching from Prefusion to Postfusion F Protein. Microbiol Spectr 2023; 11:e0135823. [PMID: 37272801 PMCID: PMC10434263 DOI: 10.1128/spectrum.01358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 06/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a common respiratory pathogen that causes lower respiratory diseases among infants and elderly people. Moreover, formalin-inactivated RSV (FI-RSV) vaccine induces serious enhanced respiratory disease (ERD). Radiation has been investigated as an alternative approach for producing inactivated or live-attenuated vaccines, which enhance the antigenicity and heterogeneous protective effects of vaccines compared with conventional formalin inactivation. In this study, we developed an RSV vaccine using gamma irradiation and analyzed its efficacy against RSV vaccine-induced ERD in a mouse model. Although gamma irradiation-inactivated RSV (RI-RSV) carbonylation was lower than FI-RSV carbonylation and RI-RSV showed a significant antibody production and viral clearance, RI-RSV caused more obvious body weight loss, pulmonary eosinophil infiltration, and pulmonary mucus secretion. Further, the conversion of prefusion F (pre-F) to postfusion F (post-F) was significant for both RI-RSV and FI-RSV, while that of RI-RSV was significantly higher than that of FI-RSV. We found that the conversion from pre- to post-F during radiation was caused by radiation-induced reactive oxygen species. Although we could not propose an effective RSV vaccine manufacturing method, we found that ERD was induced by RSV vaccine by various biochemical effects that affect antigen modification during RSV vaccine manufacturing, rather than simply by the combination of formalin and alum. Therefore, these biochemical actions should be considered in future developments of RSV vaccine. IMPORTANCE Radiation inactivation for viral vaccine production has been known to elicit a better immune response than other inactivation methods due to less surface protein damage. However, we found in this study that radiation-inactivated RSV (RI-RSV) vaccine induced a level of immune response similar to that induced by formalin-inactivated RSV (FI-RSV). Although RI-RSV vaccine showed less carbonylation than FI-RSV, it induced more conformational changes from pre-F to post-F due to the gamma radiation-induced reactive oxygen species response, which may be a key factor in RI-RSV-induced ERD. Therefore, ERD induced by RSV vaccine may be due to pre-F to post-F denaturation by random protein modifications caused by external stress. Our findings provide new ideas for inactivated vaccines for RSV and other viruses and confirm the importance of pre-F in RSV vaccines.
Collapse
Affiliation(s)
- Fengjia Chen
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Hae-Ran Park
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Hyun Jung Ji
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yeongkag Kwon
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Min-Kyu Kim
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ki Bum Ahn
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Seibersdorf, Austria
| | - Ho Seong Seo
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Elveborg S, Monteil VM, Mirazimi A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022; 11:271. [PMID: 35215213 PMCID: PMC8879476 DOI: 10.3390/pathogens11020271] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here.
Collapse
Affiliation(s)
- Simon Elveborg
- Department of Clinical Microbiology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Vanessa M. Monteil
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
- National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
6
|
Mathew S, Taleb S, Eid AH, Althani AA, Yassine HM. In silico virtual screening of lead compounds for major antigenic sites in respiratory syncytial virus fusion protein. EMERGENT MATERIALS 2021; 5:295-305. [PMID: 33969268 PMCID: PMC8090912 DOI: 10.1007/s42247-021-00213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is a leading ubiquitous respiratory pathogen in newborn infants, young children, and the elderly, with no vaccine available to date. The viral fusion glycoprotein (RSV F) plays an essential role in the infection process, and it is a primary target of neutralizing antibodies, making it an attractive site for vaccine development. With this in view, there is a persistent need to identify selective antiviral drugs against RSV, targeting the major antigenic sites on the F protein. We aimed to conduct a robust in silico high-throughput drug screening of one million compounds to explore potential inhibitors that bind the major antigenic site Ø and site II on RSV F protein, which are the main target of neutralizing antibodies (NAb). We utilized the three-dimensional crystallographic structure of both antigenic site Ø on pre-F and antigenic II on post-F to screen for potential anti-RSV inhibitors. A library of one million small compounds was docked to explore lead binders in the major antigenic sites by using virtual lab bench CLC Drug Discovery. We also performed Quantitative Structure-Activity and Relationship (QSAR) for the lead best binders known for their antiviral activity. Among one million tested ligands, seven ligands (PubChem ID: 3714418, 24787350, 49828911, 24802036, 79824892, 49726463, and 3139884) were identified as the best binders to neutralizing epitopes site Ø and four ligands (PubChem ID: 865999, 17505357, 24802036, and 24285058) to neutralizing epitopes site II, respectively. These binders exhibited significant interactions with neutralizing epitopes on RSV F, with an average of six H bonds, docking energy of - 15.43 Kcal·mol-1, and minimum interaction energy of - 7.45 Kcal·mol-1. Using in silico virtual screening, we identified potential RSV inhibitors that bind two major antigenic sites on the RSV F protein. Using structure-based design and combination-based drug therapy, identified molecules could be modified to generate the next generation anti-RSV drugs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42247-021-00213-6.
Collapse
Affiliation(s)
- Shilu Mathew
- Biomedical Research Center, Qatar University, Doha, 2713 Qatar
| | - Sara Taleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Asmaa A. Althani
- Biomedical Research Center, Qatar University, Doha, 2713 Qatar
- College of Health Sciences, Qatar University, Doha, 2713 Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, 2713 Qatar
- College of Health Sciences, Qatar University, Doha, 2713 Qatar
| |
Collapse
|
7
|
Ferla S, Manganaro R, Benato S, Paulissen J, Neyts J, Jochmans D, Brancale A, Bassetto M. Rational modifications, synthesis and biological evaluation of new potential antivirals for RSV designed to target the M2-1 protein. Bioorg Med Chem 2020; 28:115401. [PMID: 32143992 DOI: 10.1016/j.bmc.2020.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 11/27/2022]
Abstract
Respiratory syncytial virus (RSV) is the main cause of lower respiratory tract diseases in infants and young children, with potentially serious and fatal consequences associated with severe infections. Despite extensive research efforts invested in the identification of therapeutic measures, no vaccine is currently available, while treatment options are limited to ribavirin and palivizumab, which both present significant limitations. While clinical and pre-clinical candidates mainly target the viral fusion protein, the nucleocapsid protein or the viral polymerase, our focus has been the identification of new antiviral compounds targeting the viral M2-1 protein, thanks to the presence of a zinc-ejecting group in their chemical structure. Starting from an anti-RSV hit we had previously identified with an in silico structure-based approach, we have designed, synthesised and evaluated a new series of dithiocarbamate analogues, with which we have explored the antiviral activity of this scaffold. The findings presented in this work may provide the basis for the identification of a new antiviral lead to treat RSV infections.
Collapse
Affiliation(s)
- Salvatore Ferla
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK.
| | - Roberto Manganaro
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Sara Benato
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Jasmine Paulissen
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Marcella Bassetto
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK; Department of Chemistry, Swansea University, Swansea, UK
| |
Collapse
|
8
|
Beauchemin CAA, Kim YI, Yu Q, Ciaramella G, DeVincenzo JP. Uncovering critical properties of the human respiratory syncytial virus by combining in vitro assays and in silico analyses. PLoS One 2019; 14:e0214708. [PMID: 30986239 PMCID: PMC6464176 DOI: 10.1371/journal.pone.0214708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many aspects of the respiratory syncytial virus (RSV) are still poorly understood. Yet these knowledge gaps have had and could continue to have adverse, unintended consequences for the efficacy and safety of antivirals and vaccines developed against RSV. Mathematical modelling was used to test and evaluate hypotheses about the rate of loss of RSV infectivity and the mechanisms and kinetics of RSV infection spread in SIAT cells in vitro. While the rate of loss of RSV integrity, as measured via qRT-PCR, is well-described by an exponential decay, the latter mechanism failed to describe the rate at which RSV A Long loses infectivity over time in vitro based on the data presented herein. This is unusual given that other viruses (HIV, HCV, influenza) have been shown to lose their infectivity exponentially in vitro, and indeed an exponential rate of loss of infectivity is always assumed in mathematical modelling and experimental analyses. The infectivity profile of RSV in HEp-2 and SIAT cells remained consistent over the course of an RSV infection, over time and a large range of infectivity. However, SIAT cells were found to be ∼ 100× less sensitive to RSV infection than HEp-2 cells. In particular, we found that RSV spreads inefficiently in SIAT cells, in a manner we show is consistent with the establishment of infection resistance in uninfected cells. SIAT cells are a good in vitro model in which to study RSV in vivo dissemination, yielding similar infection timescales. However, the higher sensitivity of HEp-2 cells to RSV together with its RSV infectivity profile being similar to that of SIAT cells, makes HEp-2 cells more suitable for quantifying RSV infectivity over the course of in vitro RSV infections in SIAT cells. Our findings highlight the importance and urgency of resolving the mechanisms at play in the dissemination of RSV infections in vitro, and the processes by which this infectivity is lost.
Collapse
Affiliation(s)
- Catherine A. A. Beauchemin
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Research Program at RIKEN, Wako, Saitama, Japan
- * E-mail:
| | - Young-In Kim
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee, United States of America
| | - Qin Yu
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, United States of America
| | - Giuseppe Ciaramella
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, United States of America
| | - John P. DeVincenzo
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
9
|
Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:425-432. [PMID: 29197728 PMCID: PMC5727346 DOI: 10.1016/j.ijpddr.2017.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
Giardiasis, the infestation of the intestinal tract by Giardia lamblia, is one of the most prevalent parasitosis worldwide. Even though effective therapies exist for it, the problems associated with its use indicate that new therapeutic options are needed. It has been shown that disulfiram eradicates trophozoites in vitro and is effective in vivo in a murine model of giardiasis; disulfiram inactivation of carbamate kinase by chemical modification of an active site cysteine has been proposed as the drug mechanism of action. The triosephosphate isomerase from G. lamblia (GlTIM) has been proposed as a plausible target for the development of novel antigiardial pharmacotherapies, and chemical modification of its cysteine 222 (C222) by thiol-reactive compounds is evidenced to inactivate the enzyme. Since disulfiram is a cysteine modifying agent and GlTIM can be inactivated by modification of C222, in this work we tested the effect of disulfiram over the recombinant and trophozoite-endogenous GlTIM. The results show that disulfiram inactivates GlTIM by modification of its C222. The inactivation is species-specific since disulfiram does not affect the human homologue enzyme. Disulfiram inactivation induces only minor conformational changes in the enzyme, but substantially decreases its stability. Recombinant and endogenous GlTIM inactivates similarly, indicating that the recombinant protein resembles the natural enzyme. Disulfiram induces loss of trophozoites viability and inactivation of intracellular GlTIM at similar rates, suggesting that both processes may be related. It is plausible that the giardicidal effect of disulfiram involves the inactivation of more than a single enzyme, thus increasing its potential for repurposing it as an antigiardial drug. Disulfiram inactivates efficiently the triosephosphate isomerase of Giardia lamblia. Inactivation is species-specific; the human enzyme is insusceptible to disulfiram. Recombinant and GlTIM extracted from trophozoites inactivates similarly. Disulfiram inhibits endogenous GlTIM and trophozoite viability simultaneously. Disulfiram is a promissory option for drug repurposing against giardiasis.
Collapse
|
10
|
Teske KA, Hadden MK. Methyllysine binding domains: Structural insight and small molecule probe development. Eur J Med Chem 2017; 136:14-35. [DOI: 10.1016/j.ejmech.2017.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
11
|
Shook BC, Lin K. Recent Advances in Developing Antiviral Therapies for Respiratory Syncytial Virus. Top Curr Chem (Cham) 2017; 375:40. [DOI: 10.1007/s41061-017-0129-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/01/2017] [Indexed: 01/23/2023]
|
12
|
Bailly B, Richard CA, Sharma G, Wang L, Johansen L, Cao J, Pendharkar V, Sharma DC, Galloux M, Wang Y, Cui R, Zou G, Guillon P, von Itzstein M, Eléouët JF, Altmeyer R. Targeting human respiratory syncytial virus transcription anti-termination factor M2-1 to inhibit in vivo viral replication. Sci Rep 2016; 6:25806. [PMID: 27194388 PMCID: PMC4872165 DOI: 10.1038/srep25806] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/22/2016] [Indexed: 01/05/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is a leading cause of acute lower respiratory tract infection in infants, elderly and immunocompromised individuals. To date, no specific antiviral drug is available to treat or prevent this disease. Here, we report that the Smoothened receptor (Smo) antagonist cyclopamine acts as a potent and selective inhibitor of in vitro and in vivo hRSV replication. Cyclopamine inhibits hRSV through a novel, Smo-independent mechanism. It specifically impairs the function of the hRSV RNA-dependent RNA polymerase complex notably by reducing expression levels of the viral anti-termination factor M2-1. The relevance of these findings is corroborated by the demonstration that a single R151K mutation in M2-1 is sufficient to confer virus resistance to cyclopamine in vitro and that cyclopamine is able to reduce virus titers in a mouse model of hRSV infection. The results of our study open a novel avenue for the development of future therapies against hRSV infection.
Collapse
Affiliation(s)
- B Bailly
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China.,Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.,Shandong University-Helmholtz Institute of Biotechnology, Qingdao, 266101, P.R. China
| | - C-A Richard
- INRA, Unité de Virologie et Immunologie Moléculaires (UR892), Jouy-en-Josas, 78352, France
| | - G Sharma
- CombinatoRx-Singapore, 138667, Singapore
| | - L Wang
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China
| | | | - J Cao
- Shandong University-Helmholtz Institute of Biotechnology, Qingdao, 266101, P.R. China.,Qingdao Municipal Center for Disease Control &Prevention, Qingdao, 266033, P.R. China
| | | | - D-C Sharma
- CombinatoRx-Singapore, 138667, Singapore
| | - M Galloux
- INRA, Unité de Virologie et Immunologie Moléculaires (UR892), Jouy-en-Josas, 78352, France
| | - Y Wang
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China
| | - R Cui
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China
| | - G Zou
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China
| | - P Guillon
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - M von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - J-F Eléouët
- INRA, Unité de Virologie et Immunologie Moléculaires (UR892), Jouy-en-Josas, 78352, France
| | - R Altmeyer
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China.,Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.,Shandong University-Helmholtz Institute of Biotechnology, Qingdao, 266101, P.R. China.,CombinatoRx-Singapore, 138667, Singapore.,CombinatoRx, Cambridge, MA 02142, USA.,Qingdao Municipal Center for Disease Control &Prevention, Qingdao, 266033, P.R. China
| |
Collapse
|
13
|
Chalcogen bonding interactions between reducible sulfur and selenium compounds and models of zinc finger proteins. J Inorg Biochem 2016; 157:94-103. [DOI: 10.1016/j.jinorgbio.2016.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 02/04/2023]
|
14
|
Assessing Uncertainty in A2 Respiratory Syncytial Virus Viral Dynamics. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:567589. [PMID: 26451163 PMCID: PMC4584223 DOI: 10.1155/2015/567589] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/30/2015] [Indexed: 11/18/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia in children younger than 1 year of age in the United States. Moreover, RSV is being recognized more often as a significant cause of respiratory illness in older adults. Although RSV has been studied both clinically and in vitro, a quantitative understanding of the infection dynamics is still lacking. In this paper, we study the effect of uncertainty in the main parameters of a viral kinetics model of RSV. We first characterize the RSV replication cycle and extract parameter values by fitting the mathematical model to in vivo data from eight human subjects. We then use Monte Carlo numerical simulations to determine how uncertainty in the parameter values will affect model predictions. We find that uncertainty in the infection rate, eclipse phase duration, and infectious lifespan most affect the predicted dynamics of RSV. This study provides the first estimate of in vivo RSV infection parameters, helping to quantify RSV dynamics. Our assessment of the effect of uncertainty will help guide future experimental design to obtain more precise parameter values.
Collapse
|
15
|
In silico structure-based design and synthesis of novel anti-RSV compounds. Antiviral Res 2015; 122:46-50. [PMID: 26259810 DOI: 10.1016/j.antiviral.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is the major cause for respiratory tract disease in infants and young children. Currently, no licensed vaccine or a selective antiviral drug against RSV infections are available. Here, we describe a structure-based drug design approach that led to the synthesis of a novel series of zinc-ejecting compounds active against RSV replication. 30 compounds, sharing a common dithiocarbamate moiety, were designed and prepared to target the zinc finger motif of the M2-1 protein. A library of ∼ 12,000 small fragments was docked to explore the area surrounding the zinc ion. Among these, seven ligands were selected and used for the preparation of the new derivatives. The results reported here may help the development of a lead compound for the treatment of RSV infections.
Collapse
|
16
|
Abstract
Inactivated vaccines have been used for over a century to induce protection against viral pathogens. This established approach of vaccine production is relatively straightforward to achieve and there is an augmented safety profile as compared to their live counterparts. Today, there are six viral pathogens for which licensed inactivated vaccines are available with many more in development. Here, we describe the principles of viral inactivation and the application of these principles to vaccine development. Specifically emphasized are the manufacturing procedure and the accompanying assays, of which assays used for monitoring the inactivation process and preservation of neutralizing epitopes, are pivotal. Novel inactivated vaccines in development and the hurdles they face for licensure are also discussed as well as the (dis)advantages of inactivation over the other vaccine production methodologies.
Collapse
|
17
|
Cao J, Forrest JC, Zhang X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res 2014; 114:1-10. [PMID: 25451075 PMCID: PMC7113785 DOI: 10.1016/j.antiviral.2014.11.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/08/2014] [Accepted: 11/20/2014] [Indexed: 11/23/2022]
Abstract
High-throughput screening identified 84 of the 727 drugs in the NCC library to have anti-coronavirus effect. Results revealed that 51 candidate drugs blocked virus entry while 19 others inhibited viral replication. Homoharringtonine was found to be the most potent inhibitor against animal and human coronaviruses.
With the recent emergence of Middle East Respiratory Syndrome coronavirus in humans and the outbreak of devastating porcine epidemic diarrhea coronavirus in swine, therapeutic intervention is urgently needed. However, anti-coronavirus drugs currently are not available. In an effort to assist rapid development of anti-coronavirus drugs, here we screened the NIH Clinical Collection in cell culture using a luciferase reporter-expressing recombinant murine coronavirus. Of the 727 compounds screened, 84 were found to have a significant anti-coronavirus effect. Further experiments revealed that 51 compounds blocked virus entry while 19 others inhibited viral replication. Additional validation studies with the top 3 inhibitors (hexachlorophene, nitazoxanide and homoharringtonine) demonstrated robust anti-coronavirus activities (a reduction of 6 to 8 log10 in virus titer) with an IC50 ranging from 11 nM to 1.2 μM. Furthermore, homoharringtonine and hexachlorophene exhibited broad antiviral activity against diverse species of human and animal coronaviruses. Since the NIH Clinical Collection consists of compounds that have already been through clinical trials, these small molecule inhibitors have a great potential for rapid development as anti-coronavirus drugs.
Collapse
Affiliation(s)
- Jianzhong Cao
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - J Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
18
|
Antiviral Activity of Fullerene-(Tris-Aminocaproic Acid) Hydrate Against Respiratory Syncytial Virus in HEp-2 Cell Culture. Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1053-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Wagner EK, Nath N, Flemming R, Feltenberger JB, Denu JM. Identification and characterization of small molecule inhibitors of a plant homeodomain finger. Biochemistry 2012; 51:8293-306. [PMID: 22994852 DOI: 10.1021/bi3009278] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of histone-binding domains are implicated in cancer through improper binding of chromatin. In a clinically reported case of acute myeloid leukemia (AML), a genetic fusion protein between nucleoporin 98 and the third plant homeodomain (PHD) finger of JARID1A drives an oncogenic transcriptional program that is dependent on histone binding by the PHD finger. By exploiting the requirement for chromatin binding in oncogenesis, therapeutics targeting histone readers may represent a new paradigm in drug development. In this study, we developed a novel small molecule screening strategy that utilizes HaloTag technology to identify several small molecules that disrupt binding of the JARID1A PHD finger to histone peptides. Small molecule inhibitors were validated biochemically through affinity pull downs, fluorescence polarization, and histone reader specificity studies. One compound was modified through medicinal chemistry to improve its potency while retaining histone reader selectivity. Molecular modeling and site-directed mutagenesis of JARID1A PHD3 provided insights into the biochemical basis of competitive inhibition.
Collapse
Affiliation(s)
- Elise K Wagner
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
20
|
Strandin T, Hepojoki J, Wang H, Vaheri A, Lankinen H. Inactivation of hantaviruses by N-ethylmaleimide preserves virion integrity. J Gen Virol 2011; 92:1189-1198. [DOI: 10.1099/vir.0.027896-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Thiol groups of cysteine residues are crucial for the infectivity of various enveloped viruses, but their role in the infectivity of viruses of the family Bunyaviridae has thus far not been studied. This report shows that thiol groups are essential to the infectivity of hantaviruses. Alkylation of the thiol functional groups using the membrane-permeable compound N-ethylmaleimide (NEM) and membrane-impermeable compound 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) showed NEM to be a highly effective inactivator of Puumala and Tula hantaviruses. The NEM-inactivated hantavirus maintained the buoyant density of the wild-type virus. Furthermore, the antigenicity of glycoproteins and the cell attachment capacity of virions were retained at NEM concentrations that totally abolished virus infectivity. These results signified preservation of virion integrity following inactivation with NEM, making chemically inactivated virions valuable research antigens. It was demonstrated with biotin-conjugated maleimide, a mechanistic analogue of NEM, that all the structural proteins of hantavirus were sensitive towards thiol alkylation. In contrast to hantaviruses, NEM did not abolish Uukuniemi phlebovirus infectivity to the same extent. This indicates differences in the use of free thiols in virus entry among members of the family Bunyaviridae.
Collapse
Affiliation(s)
- Tomas Strandin
- Department of Virology, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
- Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
- Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
| | - Hao Wang
- Department of Virology, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
| | - Hilkka Lankinen
- Department of Virology, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
- Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
| |
Collapse
|
21
|
A novel double-stranded RNA mycovirus from Fusarium graminearum: nucleic acid sequence and genomic structure. Arch Virol 2011; 156:647-58. [DOI: 10.1007/s00705-010-0904-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|