1
|
Khedhiri M, Chaouch M, Ayouni K, Chouikha A, Gdoura M, Touzi H, Hogga N, Benkahla A, Fares W, Triki H. Development and evaluation of an easy to use real-time reverse-transcription loop-mediated isothermal amplification assay for clinical diagnosis of West Nile virus. J Clin Virol 2024; 170:105633. [PMID: 38103483 DOI: 10.1016/j.jcv.2023.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
West Nile Virus (WNV) causes a serious public health concern in many countries around the world. Virus detection in pathological samples is a key component of WNV infection diagnostic, classically performed by real-time PCR. In outbreak situation, rapid detection of the virus, in peripheral laboratories or at point of care, is crucial to guide decision makers and for the establishment of adequate action plans to prevent virus dissemination. Here, we evaluate a Loop-mediated isothermal amplification (LAMP) tool for WNV detection. Amplifications were performed comparatively on extracted viral RNA and on crude samples using a classical thermal cycler and a portable device (pebble device). qRT-PCR was used as gold standard and two sets of urine samples (n = 62 and n = 74) were used to evaluate the retained amplification protocols and assess their sensitivity and specificity. RT-LAMP on RNA extracts and crude samples showed a sensitivity of 90 % and 87 %, respectively. The specificity was 100 % for extracts and 97 % for crude samples. Using the device, the RT-LAMP on extracted RNA was comparable to the gold standard results (100 % sensitivity and specificity) and it was a bit lower on crude samples (65 % sensitivity and 94 % specificity). These results show that RT-LAMP is an efficient technique to detect WNV. RT-LAMP provides a rapid, sensitive, high-throughput and portable tool for accurate WNV detection and has potentials to facilitate diagnostic and surveillance efforts both in the laboratory and in the field, especially in developing countries.
Collapse
Affiliation(s)
- Marwa Khedhiri
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Laboratory of BioInformatics, BioMathematics and BioStatistics Laboratory (LR16IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Anissa Chouikha
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Nahed Hogga
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Alia Benkahla
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Wasfi Fares
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, Tunis 1002, Tunisia; Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
2
|
Cui G, Si L, Wang Y, Zhou J, Yan H, Jiang L. Antibody-dependent enhancement (ADE) of dengue virus: Identification of the key amino acid that is vital in DENV vaccine research. J Gene Med 2021; 23:e3297. [PMID: 33217097 PMCID: PMC7900978 DOI: 10.1002/jgm.3297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background The antibody‐dependent enhancement (ADE) of dengue virus (DENV) has critically restricted vaccine development. Prior research suggested pr4 as the probable ADE epitope of DENV. Methods Chimeric DENV was constructed by replacing the DENV pr4 gene with the corresponding Japanese encephalitis virus (JEV) gene to determine whether it can reduce ADE activities. An alanine scanning method and bioinformatics analysis were utilized to identify the amino acid of pr4 that was crucial as an ADE epitope. Results Chimeric virus reduced ADE and virulence. The amino acids at the following locations on the mutant peptides showed significantly reduced binding ability to prM antibody: pr4.5 (position 5 – leucine), pr4.6 (position 6 – leucine), pr4.7 (position 7 – phenyalanine) and pr4.16 (position 16 – cysteine). The four amino acids had formed a pocket‐like structure, which could increase the possibility of binding to an antibody. Conclusions ADE activities could be reduced by replacing the DENV pr4 gene with the corresponding JEV gene. Leucine at position 5, leucine at position 6, phenyalanine at position 7 and cysteine at position 16 were the key amino acid sites in the ADE response of DENV. The occurrence of ADE can potentially be reduced by the replacement of key amino acids, hence highlighting its possible contribution to dengue vaccine design, paving a way for future vaccine research.
Collapse
Affiliation(s)
- Guohui Cui
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lulu Si
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Ying Wang
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Institutional Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
| | - Junmei Zhou
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijun Yan
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lifang Jiang
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Kaufusi PH, Tseng AC, Kelley JF, Nerurkar VR. Selective Reactivity of Anti-Japanese Encephalitis Virus NS4B Antibody Towards Different Flaviviruses. Viruses 2020; 12:E212. [PMID: 32075019 PMCID: PMC7077296 DOI: 10.3390/v12020212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 01/23/2023] Open
Abstract
Studies investigating West Nile virus (WNV) NS4B protein function are hindered by the lack of an antibody recognizing WNV NS4B protein. Few laboratories have produced WNV NS4B antibodies, and none have been shown to work consistently. In this report, we describe a NS4B antibody against Japanese encephalitis virus (JEV) NS4B protein that cross-reacts with the NS4B protein of WNV but not of dengue virus (DENV). This JEV NS4B antibody not only recognizes WNV NS4B in infected cells, but also recognizes the NS4B protein expressed using transfection. It is evident from this data that the JEV NS4B antibody is specific to NS4B of WNV but not to NS4B of the four DENV serotypes. The specificity of this antibody may be due to the notable differences that exist between the amino acid sequence identity and antigenic relationships within the NS4B protein of the WNV, DENV, and JEV.
Collapse
Affiliation(s)
- Pakieli H. Kaufusi
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.C.T.); (J.F.K.)
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Alanna C. Tseng
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.C.T.); (J.F.K.)
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - James F. Kelley
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.C.T.); (J.F.K.)
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- World Health Organization of the Western Pacific Region, Malaria, Other Vector-borne and Parasitic Diseases Unit, United Nations Ave, Ermita, Manila, 1000 Metro Manila, Philippines
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.C.T.); (J.F.K.)
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Cahill ME, Conley S, DeWan AT, Montgomery RR. Identification of genetic variants associated with dengue or West Nile virus disease: a systematic review and meta-analysis. BMC Infect Dis 2018; 18:282. [PMID: 29929468 PMCID: PMC6014009 DOI: 10.1186/s12879-018-3186-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dengue and West Nile viruses are highly cross-reactive and have numerous parallels in geography, potential vector host (Aedes family of mosquitoes), and initial symptoms of infection. While the vast majority (> 80%) of both dengue and West Nile virus infections result in asymptomatic infections, a minority of individuals experience symptomatic infection and an even smaller proportion develop severe disease. The mechanisms by which these infections lead to severe disease in a subset of infected individuals is incompletely understood, but individual host differences including genetic factors and immune responses have been proposed. We sought to identify genetic risk factors that are associated with more severe disease outcomes for both viruses in order to shed light on possible shared mechanisms of resistance and potential therapeutic interventions. METHODS We applied a search strategy using four major databases (Medline, PubMed, Embase, and Global Health) to find all known genetic associations identified to date with dengue or West Nile virus disease. Here we present a review of our findings and a meta-analysis of genetic variants identified. RESULTS We found genetic variations that are significantly associated with infections of these viruses. In particular we found variation within the OAS1 (meta-OR = 0.83, 95% CI: 0.69-1.00) and CCR5 (meta-OR = 1.29, 95% CI: 1.08-1.53) genes is significantly associated with West Nile virus disease, while variation within MICB (meta-OR = 2.35, 95% CI: 1.68-3.29), PLCE1 (meta-OR = 0.55, 95% CI: 0.42-0.71), MBL2 (meta-OR = 1.54, 95% CI: 1.02-2.31), and IFN-γ (meta-OR = 2.48, 95% CI: 1.30-4.71), is associated with dengue disease. CONCLUSIONS Despite substantial heterogeneity in populations studied, genes examined, and methodology, significant associations with genetic variants were found across studies within both diseases. These gene associations suggest a key role for immune mechanisms in susceptibility to severe disease. Further research is needed to elucidate the role of these genes in disease pathogenesis and may reveal additional genetic factors associated with disease severity.
Collapse
Affiliation(s)
- Megan E Cahill
- Yale University School of Public Health, New Haven, CT, USA
| | | | - Andrew T DeWan
- Yale University School of Public Health, New Haven, CT, USA
| | | |
Collapse
|
5
|
Host Factor SPCS1 Regulates the Replication of Japanese Encephalitis Virus through Interactions with Transmembrane Domains of NS2B. J Virol 2018; 92:JVI.00197-18. [PMID: 29593046 DOI: 10.1128/jvi.00197-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Here, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which the host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. The loss of SPCS1 function markedly reduced intracellular virion assembly and the production of infectious JEV particles but did not affect cell entry, RNA replication, or translation of the virus. SPCS1 was found to interact with nonstructural protein 2B (NS2B), which is involved in posttranslational protein processing and virus assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B(1-49) and NS2B(84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B(1-49) and P112A in NS2B(84-131) weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1(91-169), which contains two transmembrane domains, was involved in interactions with both NS2B(1-49) and NS2B(84-131). Taken together, these results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing the posttranslational processing of JEV proteins and the assembly of virions.IMPORTANCE Understanding virus-host interactions is important for elucidating the molecular mechanisms of virus propagation and identifying potential antiviral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the posttranslational protein processing and viral assembly stages of the JEV life cycle but not in the cell entry, genome RNA replication, or translation stages. Furthermore, we found that SPCS1 interacts with two independent transmembrane domains of the flavivirus NS2B protein. NS2B also interacts with NS2A, which is proposed to mediate virus assembly. Therefore, we propose a protein-protein interaction model showing how SPCS1 participates in the assembly of JEV particles. These findings expand our understanding of how host factors participate in the flavivirus replication life cycle and identify potential antiviral targets for combating flavivirus infection.
Collapse
|
6
|
Wang Y, Si LL, Guo XL, Cui GH, Fang DY, Zhou JM, Yan HJ, Jiang LF. Substitution of the precursor peptide prevents anti-prM antibody-mediated antibody-dependent enhancement of dengue virus infection. Virus Res 2016; 229:57-64. [PMID: 27939945 DOI: 10.1016/j.virusres.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
Abstract
Antibody-dependent enhancement (ADE) is currently considered as the mechanism underlying the pathogenesis of severe dengue disease. Many studies have shown that precursor (pr) peptide-specific antibodies do not efficiently neutralize infection but potently promote ADE of dengue virus (DENV) infection. To explore the effect of pr peptide substitution on neutralization and ADE of DENV infection, the rabbit anti-prM polyclonal antibodies (pAbs) and anti-JEVpr/DENV-M pAbs were prepared, and the neutralization and ADE of these two pAbs were further compared. Here, we report that both anti-JEVpr/DENV-M and anti-prM pAbs exhibited broad cross-reactivity and only partial neutralization with four DENV serotypes and immature DENV. Rabbit anti-prM pAbs showed a significant enhancement in a broad range of serum dilutions. However, there was no statistically significant difference in the enhancing activity of rabbit anti-JEVpr/DENV-M pAbs at various levels of dilution. These results demonstrate that anti-prM antibody-mediated ADE can be prevented by JEV pr peptide replacement. The present study contribute further to research on the pathogenesis of DENV infection.
Collapse
Affiliation(s)
- Ying Wang
- Key laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China; Institute of Nanomedicine Technology, Department of Laboratory Medicine, Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| | - Lu-Lu Si
- Key laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| | - Xiao-Lan Guo
- Key laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| | - Guo-Hui Cui
- Key laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| | - Dan-Yun Fang
- Key laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| | - Jun-Mei Zhou
- Key laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| | - Hui-Jun Yan
- Key laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| | - Li-Fang Jiang
- Key laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| |
Collapse
|
7
|
Guo LP, Huo H, Wang XL, Bu ZG, Hua RH. Generation and characterization of a monoclonal antibody against prM protein of West Nile virus. Monoclon Antib Immunodiagn Immunother 2016; 33:438-43. [PMID: 25514166 DOI: 10.1089/mab.2014.0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
West Nile virus (WNV), which is an emerging pathogenic flavivirus with increasing distribution worldwide, is the cause of major human and animal health concerns. The pre-membrane (prM) protein of WNV is cleaved during maturation by the furin protease into the structural protein M and a pr-segment. In this study we generated and characterized a monoclonal antibody (MAb) against the WNV prM protein. Western blot analysis showed that the MAb reacted with WNV prM specifically. Immunohistochemistry assays demonstrated that the MAb recognized native prM protein in transfected BHK-21 cells. Preliminary studies were performed to identify the epitope recognized by the MAb using a set of synthesized overlapping peptides spanning the whole length of the prM protein. The MAb reported here may provide a valuable tool for the further exploration of the biological properties and functions of the prM protein and may also be developed for potential clinical applications.
Collapse
Affiliation(s)
- Li-Ping Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Harbin, Heilongjiang, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Luo Y, Guo X, Yan H, Fang D, Zeng G, Zhou J, Jiang L. Comprehensive mapping infection-enhancing epitopes of dengue pr protein using polyclonal antibody against prM. Appl Microbiol Biotechnol 2015; 99:5917-27. [PMID: 25822571 PMCID: PMC4480844 DOI: 10.1007/s00253-015-6538-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
Dengue vaccine development is considered a global public health priority, but the antibody-dependent enhancement (ADE) issues have critically restricted vaccine development. Recent findings have demonstrated that pre-membrane (prM) protein was involved in dengue virus (DENV) infection enhancement. Although the importance of prM antibodies have been well characterized, only a few epitopes in DENV prM protein have ever been identified. In this study, we screened five potential linear epitopes located at positions pr1 (1-16aa), pr3 (13-28aa), pr4 (19-34aa), pr9 (49-64aa), and pr10 (55-70aa) in pr protein using peptide scanning and comprehensive bioinformatics analysis. Then, we found that only pr4 (19-34aa) could elicit high-titer antibodies in Balb/c mice, and this epitope could react with sera from DENV2-infected patients, suggesting that specific antibodies against epitope peptide pr4 were elicited in both DENV-infected mice and human. In addition, our data demonstrated that anti-pr4 sera showed limited neutralizing activity but significant ADE activity toward standard DENV serotypes and imDENV. Hence, it seems responsible to hypothesize that anti-pr4 serum was infection-enhancing antibody and pr4 was infection-enhancing epitope. In conclusion, we characterized a novel infection-enhancing epitope on dengue pr protein, a finding that may provide new insight into the pathogenesis of DENV infection and contribute to dengue vaccine design.
Collapse
Affiliation(s)
- Yayan Luo
- Guangzhou Brain Hospital (Guangzhou Huiai hospital, the affiliated hospital of Guangzhou Medical University), Guanghzou, 510370, China,
| | | | | | | | | | | | | |
Collapse
|
9
|
Gowri Sankar S, Balaji T, Venkatasubramani K, Thenmozhi V, Dhananjeyan KJ, Paramasivan R, Tyagi BK, John Vennison S. Dengue NS1 and prM antibodies increase the sensitivity of acute dengue diagnosis test and differentiate from Japanese encephalitis infection. J Immunol Methods 2014; 407:116-9. [PMID: 24732134 DOI: 10.1016/j.jim.2014.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/04/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
Accurate and early diagnosis of dengue infection is essential for dengue case management. In outbreak conditions, it is essential to include two different tests to diagnose dengue and the choice depends on the number of days after the onset of illness in which the sample is collected. During the laboratory diagnosis of dengue in late acute and convalescent phase by MAC-ELISA, it is necessary to rule out possible cross reactions of closely related flavivirus, such as Japanese encephalitis virus which is commonly co-circulating. In the present investigation, the usefulness of dengue virus NS1 and prM antibodies in diagnosing and differentiating dengue from Japanese encephalitis infection was assessed using samples collected during out-breaks. It was shown here that, detection of antibodies against dengue NS1 and prM proteins increases the sensitivity of dengue diagnosis until 15days. Moreover, detection of antibodies against both proteins was able to differentiate dengue from Japanese encephalitis infection.
Collapse
Affiliation(s)
- S Gowri Sankar
- Department of Biotechnology, Anna University - BIT Campus, Tiruchirappalli-620 024, Tamil Nadu, India.
| | - T Balaji
- Department of Serology, Centre for Research in Medical Entomology (CRME) (WHO-Collaborating Centre for Lymphatic filariasis and Dengue), Indian Council of Medical Research (ICMR), Madurai-625 002, Tamil Nadu, India
| | - K Venkatasubramani
- Department of Molecular Biology and Virology, Centre for Research in Medical Entomology (CRME) (WHO-Collaborating Centre for Lymphatic filariasis and Dengue), Indian Council of Medical Research (ICMR), Madurai-625 002, Tamil Nadu, India
| | - V Thenmozhi
- Department of Serology, Centre for Research in Medical Entomology (CRME) (WHO-Collaborating Centre for Lymphatic filariasis and Dengue), Indian Council of Medical Research (ICMR), Madurai-625 002, Tamil Nadu, India
| | - K J Dhananjeyan
- Department of Molecular Biology and Virology, Centre for Research in Medical Entomology (CRME) (WHO-Collaborating Centre for Lymphatic filariasis and Dengue), Indian Council of Medical Research (ICMR), Madurai-625 002, Tamil Nadu, India
| | - R Paramasivan
- Department of Molecular Biology and Virology, Centre for Research in Medical Entomology (CRME) (WHO-Collaborating Centre for Lymphatic filariasis and Dengue), Indian Council of Medical Research (ICMR), Madurai-625 002, Tamil Nadu, India
| | - B K Tyagi
- Department of Entomology, Centre for Research in Medical Entomology (CRME) (WHO-Collaborating Centre for Lymphatic filariasis and Dengue), Indian Council of Medical Research (ICMR), Madurai-625 002, Tamil Nadu, India
| | - S John Vennison
- Department of Biotechnology, Anna University - BIT Campus, Tiruchirappalli-620 024, Tamil Nadu, India.
| |
Collapse
|
10
|
Hua RH, Liu LK, Huo H, Li YN, Guo LP, Wang XL, Qin CF, Bu ZG. Comprehensive mapping of a novel NS1 epitope conserved in flaviviruses within the Japanese encephalitis virus serocomplex. Virus Res 2014; 185:103-9. [PMID: 24631788 DOI: 10.1016/j.virusres.2014.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Nonstructural protein-1 (NS1) of the Japanese encephalitis virus (JEV) is an immunogenic protein that is a potential candidate for the development of vaccines and diagnostic reagents. NS1 is known to be more specific than the E protein in serological testing of flavivirus infections. However, NS1 exhibits cross-reactivity among flaviviruses even within the same genus and more so within a serocomplex. However, the cross-reactive epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of a linear B-cell epitope that is common and specific to the JEV serocomplex of Flaviviridae. We generated an NS1-specific monoclonal antibody that cross-reacts with the West Nile virus (WNV) NS1 protein by immunizing mice with recombinant JEV NS1. For epitope mapping, 51 partially overlapping peptides spanning the entire NS1 protein were expressed with a glutathione S-transferase (GST) tag and screened using monoclonal antibodies. Two linear epitope-containing peptides were identified using enzyme-linked immunosorbent assay (ELISA). By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, we successfully identified the smallest unit of the linear epitope required to react with the monoclonal antibody. The linear epitope was located in amino acids residues ²²⁷ETHTLW²³². Furthermore, results of the sequence alignment revealed that the epitope was highly conserved among JEV strains. Notably, the epitope is highly conserved among viruses of the JEV serocomplex. Furthermore, the homologous regions on NS1 proteins from dengue viruses showed no cross-reactivity with the monoclonal antibodies. The epitope was recognized by antisera against the WNV but not against the dengue virus. This novel JEV serocomplex-specific linear B-cell epitope of NS1 would be helpful in the development of new vaccines and diagnostic assays.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| | - Li-Ke Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Hong Huo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Ye-Nan Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Li-Ping Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiao-Lei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| |
Collapse
|
11
|
Consensus guidelines on evaluation and management of suspected acute viral encephalitis in children in India. Indian Pediatr 2013; 49:897-910. [PMID: 23255700 DOI: 10.1007/s13312-012-0216-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
JUSTIFICATION Viral encephalitis is an important cause of mortality and morbidity in children. The etiological agents are varied, and physicians treating such children often feel limited by the lack of uniform guidelines on evaluation and management of these critically ill children in resource-constrained settings. PROCESS An Expert Group Meeting on Viral Encephalitis in Children was held on 19th January, 2012 in Gurgaon, Haryana (under the aegis of PEDICON 2012, the National Conference of Indian Academy of Pediatrics). The invited experts included pediatricians and microbiologists with expertise in the relevant field. Various issues related to the subject were discussed and it was decided to bring out recommendations on the topic. The final recommendations were produced after circulating the draft document, and incorporating/discussing all changes, by email. OBJECTIVES To aid the pediatrician in the evaluation and management of children with suspected viral encephalitis and to assist the public health authorities in acute encephalitis surveillance. These guidelines do not cover viral encephalitis in the neonatal period and in immunocompromised children, Rabies encephalitis, and chronic viral encephalitis such as Subacute sclerosing panencephalitis (SSPE). RECOMMENDATIONS Recommendation for evaluation and management of suspected viral encephalitis in children are presented. In any acute encephalitis outbreak, pediatricians should be aware of the common viral causes of encephalitis in their area, what information and samples they should collect, and the contact details of the District Surveillance Unit. Pending specific diagnosis and therapy (which may or may not be possible), prompt empirical therapy and meticulous supportive care are important to prevent ongoing brain damage, and improve outcome.
Collapse
|
12
|
Komatsu N, Jackson HM, Chan KF, Oveissi S, Cebon J, Itoh K, Chen W. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients’ sera using short overlapping peptides and full-length recombinant protein. Mol Immunol 2013; 54:465-71. [DOI: 10.1016/j.molimm.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/25/2022]
|
13
|
Song KY, Zhao H, Li SH, Li XF, Deng YQ, Wang HJ, Ye Q, Zhu SY, Jiang ZY, Zhang FC, Qin ED, Qin CF. Identification and characterization of a linearized B-cell epitope on the pr protein of dengue virus. J Gen Virol 2013; 94:1510-1516. [PMID: 23559476 DOI: 10.1099/vir.0.052084-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The four serotypes of dengue virus (DENV) represent one of the major mosquito-borne pathogens globally; so far no vaccine or specific antiviral is available. During virion maturation, the pr protein is cleaved from its precursor form the prM protein on the surface of immature DENV by host protease. Recent findings have demonstrated that the pr protein not only played critical roles in virion assembly and maturation, but was also involved in antibody-dependent enhancement of DENV infection. However, the B-cell epitopes on the pr protein of DENV have not been well characterized. In this study, a set of 11 partially overlapping peptides spanning the entire pr protein of DENV-2 were fused with glutathione S-transferase and expressed in Escherichia coli. ELISA screening with murine hyperimmune antiserum against immature DENV identified the P8 peptide (⁵⁷KQNEPEDIDCWCNST⁷¹) in the pr protein as the major immunodominant epitope. Fine mapping by truncated protein assays confirmed the 8-e peptide ⁵⁷KQNEPEDI⁶⁴ was the smallest unit capable of antibody binding. Importantly, the 8-e epitope reacted with sera from dengue fever patients. Site-directed mutagenesis revealed the asparagine residue at position 59 was important for epitope recognition. The 8-e epitope coincided well with the B-cell epitopes predicted by Immune Epitope Database analysis, and 3D structural modelling mapped the 8-e peptide on the surface of prM-E heterodimers. Overall, our findings characterized a linearized B-cell epitope on the pr protein of DENV, which will help to understand the life cycle of DENV and pathogenesis of dengue infections in human.
Collapse
Affiliation(s)
- Ke-Yu Song
- Guangzhou No. 8 People's Hospital, Guangzhou Medical College, Guangzhou 510060, China.,Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shi-Hua Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hong-Jiang Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhen-You Jiang
- Department of Microbiology and Immunology, School of Medicine Jinan University, Guangzhou 510632, China
| | - Fu-Chun Zhang
- Guangzhou No. 8 People's Hospital, Guangzhou Medical College, Guangzhou 510060, China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
14
|
Hirota J, Shimizu S. A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus. J Virol Methods 2013; 188:132-8. [DOI: 10.1016/j.jviromet.2012.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 12/01/2022]
|
15
|
Hobson-Peters J. Approaches for the development of rapid serological assays for surveillance and diagnosis of infections caused by zoonotic flaviviruses of the Japanese encephalitis virus serocomplex. J Biomed Biotechnol 2012; 2012:379738. [PMID: 22570528 PMCID: PMC3337611 DOI: 10.1155/2012/379738] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/24/2012] [Accepted: 01/29/2012] [Indexed: 11/17/2022] Open
Abstract
Flaviviruses are responsible for a number of important mosquito-borne diseases of man and animals globally. The short vireamic period in infected hosts means that serological assays are often the diagnostic method of choice. This paper will focus on the traditional methods to diagnose flaviviral infections as well as describing the modern rapid platforms and approaches for diagnostic antigen preparation.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Tripathi NK, Kumar JS, Biswal KC, Rao PVL. Production of recombinant nonstructural 1 protein in Escherichia coli for early detection of Japanese encephalitis virus infection. Microb Biotechnol 2012; 5:599-606. [PMID: 22452851 PMCID: PMC3815872 DOI: 10.1111/j.1751-7915.2012.00344.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis is a major public health problem in South-East Asia and Western Pacific countries. The recombinant nonstructural 1 (rNS1) protein of Japanese encephalitis virus is a potential diagnostic as well as vaccine candidate. Developments of cost-effective and simple culture media as well as appropriate culture conditions are generally favourable for large-scale production of recombinant proteins. The effects of medium composition and cultivation conditions on the production of rNS1 protein were investigated in shake flask culture as well as batch cultivation of Escherichia coli. Further, the fed-batch process was also carried out for high cell density cultivation (HCDC) of E. coli expressing rNS1 protein. Isopropyl-β-d-thiogalactopyranoside (IPTG) was used to induce the expression of rNS1 protein at ∼ 13 g dry cell weight per litre of culture. The final dry cell weight after fed-batch cultivation was ∼ 17 g l(-1) . The Inclusion bodies were isolated and purified through affinity chromatography to give a final product yield of ∼ 142 mg l(-1) . The reactivity of purified protein was confirmed by Western blotting and Enzyme linked immunosorbent assay. These results show that rNS1 protein may be used as a diagnostic reagent or for further prophylactic studies. This approach of producing rNS1 protein in E. coli with high yield may also offer promising method for production of other viral recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K Tripathi
- Bioprocess Scale up Facility, Defence Research and Development Establishment, Jhansi Road, Gwalior-474002, India.
| | | | | | | |
Collapse
|
17
|
Li S, Fang M, Zhou B, Ni H, Shen Q, Zhang H, Han Y, Yin J, Chang W, Xu G, Cao G. Simultaneous detection and differentiation of dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus by a combined reverse-transcription loop-mediated isothermal amplification assay. Virol J 2011; 8:360. [PMID: 21777455 PMCID: PMC3149006 DOI: 10.1186/1743-422x-8-360] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/21/2011] [Indexed: 11/27/2022] Open
Abstract
Background Rapid identification and differentiation of mosquito-transmitted flaviviruses in acute-phase sera of patients and field-caught vector mosquitoes are important for the prediction and prevention of large-scale epidemics. Results We developed a flexible reverse-transcription loop-mediated isothermal amplification (RT-LAMP) unit for the detection and differentiation of dengue virus serotypes 1-4 (DENV1-4), Japanese encephalitis virus (JEV), and West Nile virus (WNV). The unit efficiently amplified the viral genomes specifically at wide ranges of viral template concentrations, and exhibited similar amplification curves as monitored by a real-time PCR engine. The detection limits of the RT-LAMP unit were 100-fold higher than that of RT-PCR in 5 of the six flaviviruses. The results on specificity indicated that the six viruses in the assay had no cross-reactions with each other. By examining 66 viral strains of DENV1-4 and JEV, the unit identified the viruses with 100% accuracy and did not cross-react with influenza viruses and hantaviruses. By screening a panel of specimens containing sera of 168 patients and 279 pools of field-caught blood sucked mosquitoes, results showed that this unit is high feasible in clinical settings and epidemiologic field, and it obtained results 100% correlated with real-time RT-PCR. Conclusions The RT-LAMP unit developed in this study is able to quickly detect and accurately differentiate the six kinds of flaviviruses, which makes it extremely feasible for screening these viruses in acute-phase sera of the patients and in vector mosquitoes without the need of high-precision instruments.
Collapse
Affiliation(s)
- Shuhua Li
- Department of Epidemiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|