1
|
Tang A, Zhu M, Zhu J, Zhang D, Zhu S, Meng C, Li C, Liu G. The recombinant feline herpesvirus 1 expressing feline Calicivirus VP1 protein is safe and effective in cats. Vaccine 2024; 42:126468. [PMID: 39467408 DOI: 10.1016/j.vaccine.2024.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/07/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Feline herpesvirus type 1 (FHV) and feline calicivirus (FCV) are significant pathogens causing upper respiratory tract disease in cats. Existing inactivated or modified live vaccines against FCV and FHV face limitations in safety and efficacy. To overcome these challenges, a recombinant strain FHV ΔgI/gE-FCV VP1 was developed by deleting the gI/gE gene and concurrently expressing FCV VP1, using the FHV WX19 strain as the parental virus. Results indicated the presence of FCV VP1 in FHV ΔgI/gE-FCV VP1-infected CRFK cells, confirmed through protein blotting and immunofluorescence assays and virus-like particles (VLPs) of FCV were observed using transmission electron microscopy. For efficacy in cats, each animal received intranasal vaccination with 1 mL of FHV ΔgI/gE-FCV VP1 at 106 TCID50. Following completion of vaccination on day 28, animals were exposed to a potent FCV strain. Assessments included clinical signs, nasal shedding, virus neutralizing antibodies, cytokine expression and postmortem histological testing. All vaccinations with FHV ΔgI/gE-FCV VP1 were deemed safe, with significantly reduced clinical disease scores, pathological changes and viral nasal shedding following infection and robust immune responses were induced. These findings collectively suggest the effectiveness of FHV-based recombinant vaccines in preventing FCV infections.
Collapse
MESH Headings
- Animals
- Cats
- Caliciviridae Infections/prevention & control
- Caliciviridae Infections/veterinary
- Calicivirus, Feline/immunology
- Calicivirus, Feline/genetics
- Cat Diseases/prevention & control
- Cat Diseases/virology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Virus Shedding
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Administration, Intranasal
- Varicellovirus/immunology
- Varicellovirus/genetics
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Cytokines/metabolism
- Female
- Herpesviridae Infections/prevention & control
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/immunology
Collapse
Affiliation(s)
- Aoxing Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Meng Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Da Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shiqiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chuanfeng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
2
|
Zhang X, Wu H, Gao T, Li Y, Zhong D, Li M, Li S, Ma C, Moon A, Fu Q, Qiu HJ, Sun Y. A recombinant pseudorabies virus surface - displaying the classical swine fever E2 protein induces specific antibodies rapidly. Vet Microbiol 2024; 298:110240. [PMID: 39255716 DOI: 10.1016/j.vetmic.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Pseudorabies virus (PRV) and classical swine fever virus (CSFV) are both economically important pathogens threatening the pig industry in many countries. The triple-gene-deleted variant of PRV, herein referred to as rPRVTJ-delgE/gI/TK, has exhibited pronounced efficacy and safety profiles. This underscores its viability as a prospective vaccine vector. However, the generation of specific anti-E2 antibodies necessitates elevated immunization doses and extended durations when the extracellular domain of the E2 protein of CSFV is secreted via the recombinant rPRVTJ-delgE/gI/TK vector. To enhance the presentation of exogenous antigens by antigen-presenting cells (APCs), we engineered the E2 protein expressed on the surface of PRV particles in this study. The recombinant virus expressing the E2 protein with a heterogonous transmembrane domain was generated in the backbone of rPRVTJ-delgE/gI/TK and designated as rPRVTJ-UL44-E2. The E2 gene was fused to the 3' terminus of the UL44 gene utilizing P2A, a self-cleaving peptide sequence. The electron microscopy showed that the E2 protein was anchored on the surface of the viral particles of rPRVTJ-delgE/gI/TK-E2. The insertion of the E2 gene did not alter the native biological characteristics of the viral vector. Rabbits immunized with 107 median tissue culture infective doses (TCID50) of rPRVTJ-UL44-E2 exhibited a rapid seroconversion to anti-E2 specific antibodies within 7 days post-immunization (dpi). All the rabbits immunized with the rPRVTJ-UL44-E2 had generated antibodies specific to E2 prior to the administration of the booster immunization. However, the immunized rabbits were not protected from the CSFV C-strain challenge. Nevertheless, this strategy has notably achieved rapid induction of E2-specific non-neutralizing antibodies. These findings provide insights that the design of rPRVTJ-UL44-E2 requires optimization, thereby indicating a promising avenue for augmenting vaccine-induced immune responses.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Tianqi Gao
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Dailang Zhong
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China
| | - Caoyuan Ma
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Assad Moon
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China.
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China.
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China.
| |
Collapse
|
3
|
Jiao XQ, Liu Y, Chen XM, Wang CY, Cui JT, Zheng LL, Ma SJ, Chen HY. Construction and Immunogenicity of a Recombinant Porcine Pseudorabies Virus (PRV) Expressing the Major Neutralizing Epitope Regions of S1 Protein of Variant PEDV. Viruses 2024; 16:1580. [PMID: 39459914 PMCID: PMC11512226 DOI: 10.3390/v16101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea and high mortality in neonatal piglets. Pseudorabies causes acute and often fatal infections in young piglets, respiratory disorders in growing pigs, and reproductive failure in sows. In late 2011, pseudorabies virus (PRV) variants occurred in Bartha-K61-vaccine-immunized swine herds, resulting in economic losses to the global pig industry. Therefore, it is essential to develop a safe and effective vaccine against both PEDV and PRV infections. In this study, we constructed a recombinant virus rPRV-PEDV S1 expressing the major neutralizing epitope region (COE, SS2, and SS6) of the PEDV S1 protein by homologous recombination technology and CRISPR/Cas9 gene editing technology, and then evaluated its biological characteristics in vitro and immunogenicity in pigs. The recombinant virus rPRV-PEDV S1 had similar growth kinetics in vitro to the parental rPRV NY-gE-/gI-/TK- strain, and was proven genetically stable in swine testicle (ST) cells and safe for piglets. PEDV S1-specific antibodies were detected in piglets immunized with rPRV-PEDV S1 on the 7th day post-immunization (dpi), and the antibody level increased rapidly at 14-21 dpi. Moreover, the immunized piglets receiving the recombinant virus exhibited alleviated clinical signs and reduced viral load compared to the unvaccinated group following a virulent PEDV HN2021 strain challenge. Also, piglets immunized with rPRV-PEDV S1 developed a PRV-specific humoral immune response and elicited complete protection against a lethal PRV NY challenge. These data indicate that the recombinant rPRV-PEDV S1 is a promising vaccine candidate strain for the prevention and control of PEDV and PRV infections.
Collapse
MESH Headings
- Animals
- Porcine epidemic diarrhea virus/immunology
- Porcine epidemic diarrhea virus/genetics
- Swine
- Herpesvirus 1, Suid/immunology
- Herpesvirus 1, Suid/genetics
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Epitopes/immunology
- Epitopes/genetics
- Coronavirus Infections/prevention & control
- Coronavirus Infections/veterinary
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Pseudorabies/prevention & control
- Pseudorabies/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Xian-Qin Jiao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Ying Liu
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Cheng-Yuan Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Jian-Tao Cui
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
- Animal Health Supervision Institute, Honghu 433200, China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| |
Collapse
|
4
|
Lu C, Li H, Chen W, Li H, Ma J, Peng P, Yan Y, Dong W, Jin Y, Pan S, Shang S, Gu J, Zhou J. Immunological characteristics of a recombinant alphaherpesvirus with an envelope-embedded Cap protein of circovirus. Front Immunol 2024; 15:1438371. [PMID: 39081314 PMCID: PMC11286414 DOI: 10.3389/fimmu.2024.1438371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Variant pseudorabies virus (PRV) is a newly emerged zoonotic pathogen that can cause human blindness. PRV can take advantage of its large genome and multiple non-essential genes to construct recombinant attenuated vaccines carrying foreign genes. However, a major problem is that the foreign genes in recombinant PRV are only integrated into the genome for independent expression, rather than assembled on the surface of virion. Methods We reported a recombinant PRV with deleted gE/TK genes and an inserted porcine circovirus virus 2 (PCV2) Cap gene into the extracellular domain of the PRV gE gene using the Cre-loxP recombinant system combined with the CRISPR-Cas9 gene editing system. This recombinant PRV (PRV-Cap), with the envelope-embedded Cap protein, exhibits a similar replication ability to its parental virus. Results An immunogenicity assay revealed that PRV-Cap immunized mice have 100% resistance to lethal PRV and PCV2 attacks. Neutralization antibody and ELISPOT detections indicated that PRV-Cap can enhance neutralizing antibodies to PRV and produce IFN-γ secreting T cells specific for both PRV and PCV2. Immunological mechanistic investigation revealed that initial immunization with PRV-Cap stimulates significantly early activation and expansion of CD69+ T cells, promoting the activation of CD4 Tfh cell dependent germinal B cells and producing effectively specific effector memory T and B cells. Booster immunization with PRV-Cap recalled the activation of PRV-specific IFN-γ+IL-2+CD4+ T cells and IFN-γ+TNF-α+CD8+ T cells, as well as PCV2-specific IFN-γ+TNF-α+CD8+ T cells. Conclusion Collectively, our data suggested an immunological mechanism in that the recombinant PRV with envelope-assembled PCV2 Cap protein can serve as an excellent vaccine candidate for combined immunity against PRV and PCV2, and provided a cost-effective method for the production of PRV- PCV2 vaccine.
Collapse
Affiliation(s)
- Chenhe Lu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Haimin Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Wenjing Chen
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Hui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiayu Ma
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Peng Peng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shiyue Pan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wei J, Liu C, He X, Abbas B, Chen Q, Li Z, Feng Z. Generation and Characterization of Recombinant Pseudorabies Virus Delivering African Swine Fever Virus CD2v and p54. Int J Mol Sci 2023; 25:335. [PMID: 38203508 PMCID: PMC10779401 DOI: 10.3390/ijms25010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
African swine fever (ASF) leads to high mortality in domestic pigs and wild boar, and it is caused by the African swine fever virus (ASFV). Currently, no commercially available vaccine exists for its prevention in China. In this study, we engineered a pseudorabies recombinant virus (PRV) expressing ASFV CD2v and p54 proteins (PRV-∆TK-(CD2v)-∆gE-(p54)) using CRISPR/Cas9 and homologous recombination technology. PRV-∆TK-(CD2v)-∆gE-(p54) effectively delivers CD2v and p54, and it exhibits reduced virulence. Immunization with PRV-∆TK-(CD2v)-∆gE-(p54) neither induces pruritus nor causes systemic infection and inflammation. Furthermore, a double knockout of the TK and gE genes eliminates the depletion of T, B, and monocytes/macrophages in the blood caused by wild-type viral infection, decreases the proliferation of granulocytes to eliminate T-cell immunosuppression from granulocytes, and enhances the ability of the immune system against PRV infection. An overexpression of CD2v and p54 proteins does not alter the characteristics of PRV-∆TK/∆gE. Moreover, PRV-∆TK-(CD2v)-∆gE-(p54) successfully induces antibody production via intramuscular (IM) vaccination and confers effective protection for vaccinated mice upon challenge. Thus, PRV-∆TK-(CD2v)-∆gE-(p54) demonstrates good immunogenicity and safety, providing highly effective protection against PRV and ASFV. It potentially represents a suitable candidate for the development of a bivalent vaccine against both PRV and ASFV infections.
Collapse
Affiliation(s)
- Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Chuancheng Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Xinyan He
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Bilal Abbas
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350117, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| |
Collapse
|
6
|
Deng L, Gu S, Huang Y, Wang Y, Zhao J, Nie M, Xu L, Lai S, Ai Y, Xu Z, Zhu L. Immunogenic response of recombinant pseudorabies virus carrying B646L and B602L genes of African swine fever virus in mice. Vet Microbiol 2023; 284:109815. [PMID: 37348208 DOI: 10.1016/j.vetmic.2023.109815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
African swine fever (ASF) is an acute infectious disease that poses a high lethality risk to domestic pigs and wild boars, causing substantial economic losses to the global pig industry. The prevention and control of ASF remain challenging, necessitating the urgent development of a safe and effective vaccine. This study focused on the essential structural protein p72 of ASFV (encoded by the B646L gene) and its chaperone protein pB602L (encoded by the B602L gene) as the target antigenic proteins. Based on CRISPR/Cas9 gene-editing technology, we constructed a live attenuated recombinant pseudorabies virus vector expressing the p72 and pB602L proteins (designated as rPRVXJ-EGFP/B602L/B646L), and assessed its immunization effect in mice. The recombinant virus rPRVXJ-EGFP/B602L/B646L successfully proliferated and demonstrated stable expression of the p72 and pB602L proteins in BHK-21 cells. Moreover, it exhibited excellent safety when used in mice and induced specific humoral and cellular immune responses targeting p72 and pB602L. In addition, it provided complete protection (100%) against the virulent PRV strain (PRV-XJ). These results indicate that the recombinant virus rPRVXJ-EGFP/B602L/B646L possesses robust immunogenicity and safety in mice. In conclusion, PRV represents a promising viral vector for expressing ASFV gene, and our study serves as an essential reference for the development of viral vector vaccines against ASFV.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuling Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mincai Nie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
7
|
Nie Z, Zhu S, Wu L, Sun R, Shu J, He Y, Feng H. Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Front Microbiol 2023; 14:1138016. [PMID: 36937252 PMCID: PMC10020201 DOI: 10.3389/fmicb.2023.1138016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudorabies virus (PRV) is a highly infectious disease that can infect most mammals, with pigs as the only natural host, has caused considerable economic losses to the pig husbandry of the world. Innate immunity is the first defense line of the host against the attack of pathogens and is essential for the proper establishment of adaptive immunity. The host uses the innate immune response to against the invasion of PRV; however PRV makes use of various strategies to inhibit the innate immunity to promote the virus replication. Currently, live attenuated vaccine is used to prevent pig from infection with the PRV worldwide, such as Bartha K61. However, a growing number of data indicates that these vaccines do not provide complete protection against new PRV variants that have emerged since late 2011. Here we summarized the interactions between PRV and host innate immunity and the current status of live attenuated PRV vaccines to promote the development of novel and more effective PRV vaccines.
Collapse
Affiliation(s)
- Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Huapeng Feng,
| |
Collapse
|
8
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
9
|
Liu Z, Kong Z, Chen M, Shang Y. Design of live-attenuated animal vaccines based on pseudorabies virus platform. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00044-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractPseudorabies virus (PRV) is a double-stranded DNA virus with a genome approximating 150 kb in size. PRV contains many non-essential genes that can be replaced with genes encoding heterogenous antigens without affecting viral propagation. With the ability to induce cellular, humoral and mucosal immune responses in the host, PRV is considered to be an ideal and potential live vector for generation of animal vaccines. In this review, we summarize the advances in attenuated recombinant PRVs and design of PRV-based live vaccines as well as the challenge of vaccine application.
Collapse
|
10
|
Chen L, Zhang X, Shao G, Shao Y, Hu Z, Feng K, Xie Z, Li H, Chen W, Lin W, Yuan H, Wang H, Fu J, Xie Q. Construction and Evaluation of Recombinant Pseudorabies Virus Expressing African Swine Fever Virus Antigen Genes. Front Vet Sci 2022; 9:832255. [PMID: 35498728 PMCID: PMC9043850 DOI: 10.3389/fvets.2022.832255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a highly contact infectious disease caused by the African swine fever virus (ASFV). The extremely complex structure and infection mechanism make it difficult to control the spread of ASFV and develop the vaccine. The ASFV genome is huge with many antigenic genes. Among them, CP204L (p30), CP530R (pp62), E183L (p54), B646L (p72), and EP402R (CD2v) are involved in the process of the virus cycle, with strong immunogenicity and the ability to induce the body to produce neutralizing antibodies. In this study, the recombinant virus rBartha-K61-pASFV that expresses the above ASFV antigen genes was constructed by Red/ET recombineering technology using pseudorabies virus (PRV) vaccine strain Bartha-K61. Western blot analysis showed that the ASFV antigen gene was expressed and the recombinant virus showed good genetic stability and proliferation characteristics in 15 continuous generations on porcine kidney (PK15) cells. The results of immunoassay of piglets and mice showed that rBartha-K61-pASFV had good immunogenicity and could induce higher antibody levels in the body. Therefore, PRV was a promising viral vector for expressing the ASFV antigen gene, and all the experiments in this study laid a foundation for the further development of a new viral vector vaccine of ASFV.
Collapse
Affiliation(s)
- Liyi Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Yangyang Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Zezhong Hu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wencheng Lin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hengxing Yuan
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-infectives, Institute of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-infectives, Institute of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-infectives, Institute of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Qingmei Xie
| |
Collapse
|
11
|
Li F, Li B, Niu X, Chen W, Li Y, Wu K, Li X, Ding H, Zhao M, Chen J, Yi L. The Development of Classical Swine Fever Marker Vaccines in Recent Years. Vaccines (Basel) 2022; 10:vaccines10040603. [PMID: 35455351 PMCID: PMC9026404 DOI: 10.3390/vaccines10040603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
Classical swine fever (CSF) is a severe disease that has caused serious economic losses for the global pig industry and is widely prevalent worldwide. In recent decades, CSF has been effectively controlled through compulsory vaccination with a live CSF vaccine (C strain). It has been successfully eradicated in some countries or regions. However, the re-emergence of CSF in Japan and Romania, where it had been eradicated, has brought increased attention to the disease. Because the traditional C-strain vaccine cannot distinguish between vaccinated and infected animals (DIVA), this makes it difficult to fight CSF. The emergence of marker vaccines is considered to be an effective strategy for the decontamination of CSF. This paper summarizes the progress of the new CSF marker vaccine and provides a detailed overview of the vaccine design ideas and immunization effects. It also provides a methodology for the development of a new generation of vaccines for CSF and vaccine development for other significant epidemics.
Collapse
Affiliation(s)
- Fangfang Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xinni Niu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (L.Y.)
| |
Collapse
|
12
|
Huang Y, Xu Z, Gu S, Nie M, Wang Y, Zhao J, Li F, Deng H, Huang J, Sun X, Zhu L. The recombinant pseudorabies virus expressing porcine deltacoronavirus spike protein is safe and effective for mice. BMC Vet Res 2022; 18:16. [PMID: 34983523 PMCID: PMC8725529 DOI: 10.1186/s12917-021-03115-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine deltacoronavirus (PDCoV) is a new pathogenic porcine intestinal coronavirus, which has appeared in many countries since 2012. PDCoV disease caused acute diarrhea, vomiting, dehydration and death in piglets, resulted in significant economic loss to the pig industry. However, there is no commercially available vaccine for PDCoV. In this study, we constructed recombinant pseudorabies virus (rPRVXJ-delgE/gI/TK-S) expressing PDCoV spike (S) protein and evaluated its safety and immunogenicity in mice. RESULTS The recombinant strain rPRVXJ-delgE/gI/TK-S obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster syrian kidney-21 (BHK-21) cells and is safe to mice. After immunizing mice with rPRVXJ-delgE/gI/TK-S, the expression levels of IFN-γ and IL-4 in peripheral blood of mice were up-regulated, the proliferation of spleen-specific T lymphocytes and the percentage of CD4+ and CD8+ lymphocytes in mice spleen was increased. rPRVXJ-delgE/gI/TK-S showed good immunogenicity for mice. On the seventh day after booster immunity, PRV gB and PDCoV S specific antibodies were detected in mice, and the antibody level continued to increase, and the neutralizing antibody level reached the maximum at 28 days post- immunization (dpi). The recombinant strain can protect mice with 100% from the challenge of virulent strain (PRV XJ) and accelerate the detoxification of PDCoV in mice. CONCLUSION The recombinant rPRVXJ-delgE/gI/TK-S strain is safe and effective with strong immunogenicity and is expected to be a candidate vaccine against PDCoV and PRV.
Collapse
Affiliation(s)
- Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mincai Nie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuling Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,College of Animal Science, Xichang University, Xichang, 615000, Sichuan, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
Tan L, Yao J, Yang Y, Luo W, Yuan X, Yang L, Wang A. Current Status and Challenge of Pseudorabies Virus Infection in China. Virol Sin 2021; 36:588-607. [PMID: 33616892 PMCID: PMC7897889 DOI: 10.1007/s12250-020-00340-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease, is a highly infectious disease caused by pseudorabies virus (PRV). Without specific host tropism, PRV can infect a wide variety of mammals, including pig, sheep, cattle, etc., thereby causing severe clinical symptoms and acute death. PRV was firstly reported in China in 1950s, while outbreaks of emerging PRV variants have been documented in partial regions since 2011, leading to significant economic losses in swine industry. Although scientists have been devoting to the design of diagnostic approaches and the development of vaccines during the past years, PR remains a vital infectious disease widely prevalent in Chinese pig industry. Especially, its potential threat to human health has also attracted the worldwide attention. In this review, we will provide a summary of current understanding of PRV in China, mainly focusing on PRV history, the existing diagnosis methods, PRV prevalence in pig population and other susceptible mammals, molecular characteristics, and the available vaccines against its infection. Additionally, promising agents including traditional Chinese herbal medicines and novel inhibitors that may be employed to treat this viral infection, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Yadi Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Wei Luo
- Department of Animal Science and Technology, Huaihua Vocational and Technical College, Huaihua, 418000, China
| | - Xiaomin Yuan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
- PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|
14
|
Xiao S, Wang S, Jiang D, Cheng X, Zhu X, Lin F, Yu B, Dong H, Wang X, Munir M, Rohaim MA, Chen S, Chen S. VP2 virus-like particles elicit protective immunity against duckling short beak and dwarfism syndrome in ducks. Transbound Emerg Dis 2021; 69:570-578. [PMID: 33547727 DOI: 10.1111/tbed.14021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
Duckling short beak and dwarfism syndrome virus (SBDSV), an emerging goose parvovirus, has caused short beak and dwarfism syndrome (SBDS) in Chinese duck flocks since 2015. Presently, there is no commercial vaccine against SBDS. In the present study, a virus-like particle (VLP)-based candidate vaccine was developed against this disease. A baculovirus expression system was used to express the SBDSV VP2 protein in Sf9 cells. Immunofluorescence assay, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting were used to confirm protein expression. Furthermore, transmission electron microscopy was used to observe the formation of VLPs. VLPs were formulated into an oil-adjuvanted maternal vaccine to evaluate humoral responses in breeding ducks via latex particle agglutination inhibition assay (LPAI) and microneutralization assay. The offspring were challenged with SBDSV to test the protective efficacy. A single dose of SBDSV was able to induce the high level of LPAI antibodies in ducks, with LPAI and neutralization peak titres of 4.9 ± 1.20 log2 and 7.1 ± 1.20 log2, respectively, at 4 weeks post-vaccination (wpv). The average LPAI titre of yolk antibodies in duck eggs receiving 2 doses (first and boost doses) of the vaccine was 5.3 ± 1.09 log2 at 4 weeks post-boost. The protective efficacy of the maternal vaccine was 87.5%-100%. These results indicate that SBDSV VLPs can be a promising vaccine candidate for controlling SBDS.
Collapse
Affiliation(s)
- Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Dandan Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Bo Yu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Hui Dong
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xiuzhen Wang
- Putian Institute of Agricultural Science, Putian, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| |
Collapse
|
15
|
Feng Z, Chen J, Liang W, Chen W, Li Z, Chen Q, Cai S. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice. Virol J 2020; 17:180. [PMID: 33198749 PMCID: PMC7668019 DOI: 10.1186/s12985-020-01450-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background African swine fever (ASF) leads to high mortality in domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). Currently, no vaccine is commercially available for prevention, and the epidemic is still spreading. Here, we constructed a recombinant pseudorabies virus (PRV) (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) that expresses the CD2v protein of ASFV and evaluated its effectiveness and safety as a vaccine candidate in mice. Methods A homologous recombination fragment containing ASFV CD2v was synthesized and co-transfected into HEK 293 T cells, a knockout vector targeting the PRV TK gene. The transfected cells were infected with PRV-ΔgE/ΔgI, and the recombinant strain (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) was obtained by plaque purification in Vero cells. The expression of ASFV CD2v in the recombinant virus was confirmed by sequencing, Western blotting, and immunofluorescence analysis, and the genetic stability was tested in Vero cells over 20 passages. The virulence, immunogenicity and protective ability of the recombinant virus were further tested in a mouse model. Results The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain is stable in Vero cells, and the processing of CD2v does not depend on ASFV infection. The vaccination of PRV-ΔgE/ΔgI/ΔTK-(CD2v) causes neither pruritus, not a systemic infection and inflammation (with the high expression of interleukin-6 (IL6)). Besides, the virus vaccination can produce anti-CD2v specific antibody and activate a specific cellular immune response, and 100% protect mice from the challenge of the virulent strain (PRV-Fa). The detoxification occurs much earlier upon the recombinant virus vaccination and the amount of detoxification is much lower as well. Conclusions The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain has strong immunogenicity, is safe and effective, and maybe a potential vaccine candidate for the prevention of ASF and Pseudorabies.
Collapse
Affiliation(s)
- Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Jianghua Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Wangwang Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Zhaolong Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China. .,Institute of Animal Husbandry and Veterinary Medicine, Fujian Province, Fujian Academy of Agricultural Sciences, Pudang, Jin-an District, Fuzhou, 350117, People's Republic of China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China.
| | - Shaoli Cai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China.
| |
Collapse
|
16
|
Hua T, Zhang D, Tang B, Chang C, Liu G, Zhang X. The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet Microbiol 2020; 248:108795. [PMID: 32827923 DOI: 10.1016/j.vetmic.2020.108795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Porcine parvovirus (PPV) is a major cause of the syndrome of sow reproductive failure that can cause economic losses. In this study, we developed a subunit vaccine against porcine parvovirus (PPV), composed of virus-like particles (VLPs) derived from a prokaryotic system, and evaluated its potential against PPV infection. The soluble recombinant VP2 protein was expressed in E. coli Transetta(DE3) cells using a pCold II prokaryotic expression vector at a low temperature of 15 °C. After expression and purification, the recombinant VP2 protein was successfully assembled into VLPs with a similar shape of PPV viron and also hemagglutination activity. PPV VLPs formulated in a water-in-oil-in-water adjuvant evoked high hemagglutination inhibition antibody and neutralization antibody titres in both guinea pigs, used as reference model, and target species, pigs. Immunization with VLPs vaccine stimulated high hemagglutination inhibition antibody and neutralization antibody responses in guinea pigs, used as reference, and target species, weaned pigs, and primiparous gilts. PPV VLPs from E. coli yielded complete fetal protection against PPV infection in primiparous gilts immunized with a single-dose vaccine. PPV VLPs inhibited the replication and spread of PPV in primiparous gilts, which was confirmed by the detection of PPV DNA and infectious PPV in nasal and rectal swabs of challenged sows. These results suggest that VLPs-based PPV vaccine is a promising PPV vaccine candidate.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Guoyang Liu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| |
Collapse
|
17
|
Zheng HH, Wang LQ, Fu PF, Zheng LL, Chen HY, Liu F. Characterization of a recombinant pseudorabies virus expressing porcine parvovirus VP2 protein and porcine IL-6. Virol J 2020; 17:19. [PMID: 32014014 PMCID: PMC6998180 DOI: 10.1186/s12985-020-1292-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background Porcine parvovirus (PPV) and pseudorabies virus (PRV) are the important etiological agents of swine infectious diseases, resulting in huge economic losses to the Chinese swine industry. Interleukin-6 (IL-6) has the roles to support host immune response to infections as a pleiotropic cytokine. It is essential to construct a live attenuated vaccine-based recombinant PRV that expresses PPV VP2 protein and porcine IL-6 for prevention and control of PRV and PPV. Methods The recombinant plasmid, pGVP2-IL6, was constructed by porcine IL-6 gene substituting for EGFP gene of the PRV transfer plasmid pGVP2-EGFP containing VP2 gene of PPV. Plasmid pGVP2-IL6 was transfected into swine testicle cells pre-infected with the virus rPRV-VP2-EGFP strain through homologous recombination and plaque purification to generate a recombinant virus rPRV-VP2-IL6. The recombinant PRV was further identified by PCR and DNA sequencing, and the expression of the VP2 protein and porcine IL-6 was analyzed by reverse transcription-PCR (RT-PCR) and Western blot. The virus titer was calculated according to Reed and Muench method. The immunogenicity of the recombinant virus was preliminarily evaluated in mice by intramuscular administration twice with the rPRV-VP2-IL6 at 4-week intervals. Results A recombinant virus rPRV-VP2-IL6 was successfully constructed and confirmed in this study. The properties of rPRV-VP2-IL6 were similar to the parental virus HB98 in terms of growth curve, morphogenesis and virus plaque sizes, and rPRV-VP2-IL6 was proliferated in different cell types. It induced specific antibodies against PPV as well as a strong increase of PPV-specific lymphocyte proliferation responses in mice immunized with rPRV-VP2-IL6, and provided partial protection against the virulent PPV challenge. rPRV-VP2-IL6 also induced a high level of neutralizing antibodies against PRV, and significantly reduced the mortality rate of (1 of 10) following virulent PRV challenge compared with the control (10 of 10). Conclusions The recombinant rPRV-VP2-IL6 might be a potential candidate vaccine against PRV and PPV infections in pigs.
Collapse
Affiliation(s)
- Hui-Hua Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake#15, 450046, Zhengzhou, Henan Province, People's Republic of China
| | - Lin-Qing Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake#15, 450046, Zhengzhou, Henan Province, People's Republic of China.,Department of Life Science, Zhengzhou Normal University, Zhengzhou, 450044, Henan Province, People's Republic of China
| | - Peng-Fei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake#15, 450046, Zhengzhou, Henan Province, People's Republic of China
| | - Lan-Lan Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake#15, 450046, Zhengzhou, Henan Province, People's Republic of China
| | - Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake#15, 450046, Zhengzhou, Henan Province, People's Republic of China.
| | - Fang Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake#15, 450046, Zhengzhou, Henan Province, People's Republic of China.
| |
Collapse
|
18
|
Abid M, Teklue T, Li Y, Wu H, Wang T, Qiu HJ, Sun Y. Generation and Immunogenicity of a Recombinant Pseudorabies Virus Co-Expressing Classical Swine Fever Virus E2 Protein and Porcine Circovirus Type 2 Capsid Protein Based on Fosmid Library Platform. Pathogens 2019; 8:pathogens8040279. [PMID: 31805703 PMCID: PMC6963705 DOI: 10.3390/pathogens8040279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Pseudorabies (PR), classical swine fever (CSF), and porcine circovirus type 2 (PCV2)-associated disease (PCVAD) are economically important infectious diseases of pigs. Co-infections of these diseases often occur in the field, posing significant threat to the swine industry worldwide. gE/gI/TK-gene-deleted vaccines are safe and capable of providing full protection against PR. Classical swine fever virus (CSFV) E2 glycoprotein is mainly used in the development of CSF vaccines. PCV2 capsid (Cap) protein is the major antigen targeted for developing PCV2 subunit vaccines. Multivalent vaccines, and especially virus-vectored vaccines expressing foreign proteins, are attractive strategies to fight co-infections for various swine diseases. The gene-deleted pseudorabies virus (PRV) can be used to develop promising and economical multivalent live virus-vectored vaccines. Herein, we constructed a gE/gI/TK-gene-deleted PRV co-expressing E2 of CSFV and Cap of PCV2 by fosmid library platform established for PRV, and the expression of E2 and Cap proteins was confirmed using immunofluorescence assay and western blotting. The recombinant virus propagated in porcine kidney 15 (PK-15) cells for 20 passages was genetically stable. The evaluation results in rabbits and pigs demonstrate that rPRVTJ-delgE/gI/TK-E2-Cap elicited detectable anti-PRV antibodies, but not anti-PCV2 or anti-CSFV antibodies. These findings provide insights that rPRVTJ-delgE/gI/TK-E2-Cap needs to be optimally engineered as a promising trivalent vaccine candidate against PRV, PCV2 and CSFV co-infections in future.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Ji Qiu
- Correspondence: (H.-J.Q.); (Y.S.); Tel.: +86-451-5105-1708
| | - Yuan Sun
- Correspondence: (H.-J.Q.); (Y.S.); Tel.: +86-451-5105-1708
| |
Collapse
|
19
|
Tong W, Zheng H, Li GX, Gao F, Shan TL, Zhou YJ, Yu H, Jiang YF, Yu LX, Li LW, Kong N, Tong GZ, Li JC. Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV. Antiviral Res 2019; 173:104652. [PMID: 31751590 DOI: 10.1016/j.antiviral.2019.104652] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
Both classical swine fever (CSF) and pseudorabies are highly contagious, economically significant diseases of swine in China. Although vaccination with the C-strain against classical swine fever virus (CSFV) is widely carried out and severe outbreaks of CSF seldom occur in China, CSF is sporadic in many pig herds and novel sub-subgenotypes of CSFV endlessly emerge. Thus, new measures are needed to eradicate CSFV from Chinese farms. The emergence of a pseudorabies virus (PRV) variant also posed a new challenge for the control of swine pseudorabies. Here, the recombinant PRV strain JS-2012-ΔgE/gI-E2 expressing E2 protein of CSFV was developed by inserting the E2 expression cassette into the intergenic region between the gG and gD genes of the gE/gI-deletion PRV variant strain JS-2012-ΔgE/gI. The recombinant virus was stable when passaged in vitro. A single vaccination of JS-2012-ΔgE/gI-E2 via intramuscular injection fully protected against lethal challenges of PRV and CSFV. Vaccination of piglets with the recombinant JS-2012-ΔgE/gI-E2 in the presence of high levels of maternally derived antibodies (Abs) to PRV can provide partial protection against lethal challenge of CSFV. Vaccination of the recombinant PRV JS-2012-ΔgE/gI-E2 strain did not induce the production of Abs to the gE protein of PRV or to the CSFV proteins other than E2. Thus, JS-2012-ΔgE/gI-E2 appears to be a promising recombinant marker vaccine candidate against PRV and CSFV for the control and eradication of the PRV variant and CSFV.
Collapse
Affiliation(s)
- Wu Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yan-Jun Zhou
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yi-Feng Jiang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Ling-Xue Yu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Li-Wei Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Ji-Chang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Kamel M, El-Sayed A. Utilization of herpesviridae as recombinant viral vectors in vaccine development against animal pathogens. Virus Res 2019; 270:197648. [PMID: 31279828 DOI: 10.1016/j.virusres.2019.197648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Throughout the past few decades, numerous viral species have been generated as vaccine vectors. Every viral vector has its own distinct characteristics. For example, the family herpesviridae encompasses several viruses that have medical and veterinary importance. Attenuated herpesviruses are developed as vectors to convey heterologous immunogens targeting several serious and crucial pathogens. Some of these vectors have already been licensed for use in the veterinary field. One of their prominent features is their capability to accommodate large amount of foreign DNA, and to stimulate both cell-mediated and humoral immune responses. A better understanding of vector-host interaction builds up a robust foundation for the future development of herpesviruses-based vectors. At the time, many molecular tools are applied to enable the generation of herpesvirus-based recombinant vaccine vectors such as BAC technology, homologous and two-step en passant mutagenesis, codon optimization, and the CRISPR/Cas9 system. This review article highlights the most important techniques applied in constructing recombinant herpesviruses vectors, advantages and disadvantages of each recombinant herpesvirus vector, and the most recent research regarding their use to control major animal diseases.
Collapse
Affiliation(s)
- Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| | - Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
21
|
Zhou Y, Jin XH, Jing YX, Song Y, He XX, Zheng LL, Wang YB, Wei ZY, Zhang GP. Porcine parvovirus infection activates inflammatory cytokine production through Toll-like receptor 9 and NF-κB signaling pathways in porcine kidney cells. Vet Microbiol 2017; 207:56-62. [DOI: 10.1016/j.vetmic.2017.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/27/2022]
|
22
|
Inhibition of highly pathogenic porcine reproductive and respiratory syndrome virus replication by recombinant pseudorabies virus-mediated RNA interference in piglets. Vet Microbiol 2015; 181:212-20. [DOI: 10.1016/j.vetmic.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 08/01/2015] [Accepted: 10/13/2015] [Indexed: 11/20/2022]
|
23
|
The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 2015; 99:10415-32. [PMID: 26454868 PMCID: PMC7080154 DOI: 10.1007/s00253-015-7000-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well.
Collapse
|
24
|
Jeoung HY, Lim SI, Kim JJ, Cho YY, Kim YK, Song JY, Hyun BH, An DJ. Serological prevalence of viral agents that induce reproductive failure in South Korean wild boar. BMC Vet Res 2015; 11:78. [PMID: 25888836 PMCID: PMC4377055 DOI: 10.1186/s12917-015-0396-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 02/13/2015] [Indexed: 11/28/2022] Open
Abstract
Background Viral agents associated with reproductive failure such as Aujeszky’s disease virus (ADV), encephalomyocarditis virus (EMCV), and porcine parvovirus (PPV) have also been identified in European wild boar. To screen for the presence of antibodies against ADV, EMCV, and PPV from wild boar (Sus scrofa) in South Korea, 481 serum samples were collected from wild boar hunted between December 2010 and May 2011. Results Of the 481 serum samples tested, 47 (9.8%) and 37 (7.7%) were seropositive for ADV and EMCV antibodies, respectively, based on a neutralization test (VNT), and 142 (29.5%) were seropositive for PPV antibodies based on a hemagglutination inhibition (HI) test. Conclusions This was the first survey to identify the seroprevalence of the three major viruses associated with reproductive failure in the wild boar population of South Korea. Wild boar may act as a reservoir for many viruses that cause infectious diseases in domestic pigs. Thus, strict prevention and control measures, such as continuous wildlife disease surveillance and strategic methods of downsizing the population density, should be implemented to prevent disease transmission from wild boar to domestic pigs.
Collapse
Affiliation(s)
- Hye-Young Jeoung
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| | - Seong-In Lim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| | - Jae-Jo Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| | - Yoon-Young Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| | - Yong Kwan Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| | - Jae-Young Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| | - Dong-Jun An
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-824, Republic of Korea.
| |
Collapse
|
25
|
An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines. J Immunol Res 2014; 2014:824630. [PMID: 24995348 PMCID: PMC4068083 DOI: 10.1155/2014/824630] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/23/2014] [Indexed: 11/18/2022] Open
Abstract
Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals.
Collapse
|
26
|
Chi JN, Wu CY, Chien MS, Wu PC, Wu CM, Huang C. The preparation of porcine circovirus type 2 (PCV2) virus-like particles using a recombinant pseudorabies virus and its application to vaccine development. J Biotechnol 2014; 181:12-9. [PMID: 24739460 DOI: 10.1016/j.jbiotec.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 11/17/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of an economically important swine disease, now known as porcine-associated disease (PCVAD). The only structural protein of viral capsid, Cap has become the major target for development of PCV2 subunit vaccines. The purpose of this study is to express Cap of PCV2 using a recombinant pseudorabies virus (PRV) that is gE gene deficient, which is a widely used PRV marker vaccine. The recombinant PRV, gE(-)/PCV2cap(+)PRV, was constructed using homologous recombination techniques, in order to replace the upstream of the gE gene with the PCV2 cap gene. The expression of Cap during virus replication was confirmed using immunofluorescence and Western blotting analysis. The expressed Cap protein self-assembled into virus-like particles (VLPs), which was demonstrated using electromicrography. The immunization of mice or guinea pigs with purified VLPs could induce significant, specific antibody responses to PCV2 Cap. These results demonstrate an alternative to PCV2 for the development of a VLP-based subunit vaccine.
Collapse
Affiliation(s)
- Jyun-Ni Chi
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | - Ching-Ying Wu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | - Pei-Ching Wu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | - Chi-Ming Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC.
| |
Collapse
|