1
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
2
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
3
|
Cristofer Sitinjak M, Chen JK, Lee MY, Liu HJ, Wang CY. Characterization of a novel reporter system for beak and feather disease virus. Gene 2023; 867:147371. [PMID: 36933814 DOI: 10.1016/j.gene.2023.147371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Beak and feather disease virus (BFDV) belongs to the Circoviridae family, which has a relatively simple replication mechanism. As BFDV lacks a mature cell culture system, a novel mini-replicon system based on the reporter plasmid that contains the origin of replication, which can bind to the Rep protein expressed from another plasmid and thus trigger its replication and induce/increase luminescence was developed. The dual-luciferase assay was used in this system to measure replicative efficiency by comparing relative light units (RLU) of firefly luciferase. Linear relationships between the luciferase activity of the reporter plasmids with the BFDV origin of replication and the amounts of the Rep protein and vice versa were found, suggesting the mini-replicon system can be used to quantify viral replication. Moreover, the activities of reporter plasmids driven by mutated Rep proteins or the activities of reporter plasmids with mutations were significantly downregulated. The Rep and Cap promoter activities can be characterized using this luciferase reporter system. Notably, the RLU of the reporter plasmid was considerably inhibited in the presence of sodium orthovanadate (Na3VO4). When BFDV-infected birds were treated with Na3VO4, the viral loads of BFDV rapidly decreased. In conclusion, this mini-replicon reporter gene-based system provides a practical means to screen for anti-viral drug candidates.
Collapse
Affiliation(s)
- Mikael Cristofer Sitinjak
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Jui-Kai Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Meng-Yuan Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, College of Life Science, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan.
| |
Collapse
|
4
|
Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of Porcine Circovirus 2, 3, and 4 in East China from 2020 to 2022. Vet Sci 2022; 10:vetsci10010029. [PMID: 36669030 PMCID: PMC9860698 DOI: 10.3390/vetsci10010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Porcine circovirus disease (PCVD) caused by porcine circovirus (PCV) is an important swine disease that is characterized by porcine dermatitis, nephropathy syndrome, and reproductive disorders in sows. However, disease caused by PCV2, PCV3, or PCV4 is hard to distinguish, so a rapid and sensitive detection method is urgently needed to differentiate these three types. In this study, four pairs of specific primers and the corresponding probes for PCV 2, -3, and -4, and porcine endogenous gene β-Actin as the positive internal reference index, were designed to establish a TaqMan multiplex real-time PCR (qPCR) assay for the simultaneous differential diagnosis of different types of viruses. The results showed that this assay has good specificity and no cross-reactivity with other important porcine viral pathogens. Furthermore, it has high sensitivity, with a detection limit of 101 copies/μL, and good reproducibility, with intra- and inter-group coefficients of variation below 2%. Subsequently, 535 clinical samples of suspected sow reproductive disorders collected from Shandong, Zhejiang, Anhui, and Jiangsu provinces from 2020 to 2022 were analyzed using the established assay. The results showed that the individual positive rates of PCV2, PCV3, and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rates of PCV2 and PCV3, PCV2 and PCV4, and PCV3 and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rate of PCV2, PCV3, and PCV4 was 28.22%. This indicated that this assay provides a convenient tool for the rapid detection and differentiation of PCV2, PCV3, and PCV4 in pig farms in East China. Our findings highlight that there are different types of porcine circovirus infection in pig farms in East China, which makes pig disease prevention and control difficult.
Collapse
|
5
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
6
|
Xie Z, Jiao H, Xiao H, Jiang Y, Liu Z, Qi C, Zhao D, Jiao S, Yu T, Tang X, Pang D, Ouyang H. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology. Antiviral Res 2019; 174:104696. [PMID: 31862502 DOI: 10.1016/j.antiviral.2019.104696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
A wide range of endemic and epidemic viruses, including classic swine fever virus (CSFV), pseudorabies virus (PRV) and others, are among the most economically important pathogens in pigs and have severely affected the national economy, human health and animal welfare and productivity. The RSAD2 exhibits antiviral activity against various DNA and RNA viruses. In this study, we successfully accomplished site-specific insertion of the porcine RSAD2 gene (pRSAD2) at the porcine ROSA26 (pROSA26) locus, generating pRSAD2 gene knock-in (pRSAD2-KI) PK-15 cells and porcine foetal fibroblasts (PFFs) via CRISPR/Cas9 technology. Gene expression analysis confirmed that pRSAD2-KI cells stably and efficiently overexpressed the pRSAD2 gene. Furthermore, viral challenge studies in vitro indicated that site-specific integration of the pRSAD2 gene not only effectively reduced CSFV infection but also PRV infection. More importantly, we ultimately successfully produced a pRSAD2-KI pig that constitutively overexpressed the pRSAD2, viral challenge results indicated that fibroblasts isolated from the pRSAD2-KI pig reduced CSFV infection. Taken together, these results suggest that CRISPR/Cas9-mediated knock-in strategy can be used for producing pRSAD2-KI pigs.
Collapse
Affiliation(s)
- Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Huping Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Haonan Xiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Yuan Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Zhenying Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Dehua Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Shuyu Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Tingting Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
7
|
Identification and functional analysis of the novel ORF6 protein of porcine circovirus type 2 in vitro. Vet Res Commun 2017; 42:1-10. [PMID: 29177583 DOI: 10.1007/s11259-017-9702-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Abstract
In the present study, the function of a novel ORF6 gene in the PCV2 genome was determined and functionally analyzed in vitro. ORF6 expression was demonstrated by indirect immunofluorescence in PCV2-infected cells. The antibody against ORF6 was detected in PCV2-infected pigs. The start codon of ORF6 was mutated and an infectious clone was used to create an ORF6-deficient mutant virus. Viral DNA replication curves and immunofluorescence analysis indicated that ORF6 is unnecessary for viral replication and ORF6 deletion reduces viral DNA replication in PK-15 cells. The activities of caspases 3 and 8 in ORF6-deficient virus-infected cells were significantly different from those in wild-type virus-infected cells. The ORF6 protein can increase the expression of IFN-β, TNF-α, IL-1b, IL-10, and IL-12p40. These results demonstrated that the newly discovered ORF6 protein may be involved in caspases regulation and the expression of multiple cytokines in PCV2-infected cells. The functions of this gene in viral pathogenesis remain to be further elucidated.
Collapse
|
8
|
Multi-platform analysis reveals a complex transcriptome architecture of a circovirus. Virus Res 2017; 237:37-46. [PMID: 28549855 DOI: 10.1016/j.virusres.2017.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022]
Abstract
In this study, we used Pacific Biosciences RS II long-read and Illumina HiScanSQ short-read sequencing technologies for the characterization of porcine circovirus type 1 (PCV-1) transcripts. Our aim was to identify novel RNA molecules and transcript isoforms, as well as to determine the exact 5'- and 3'-end sequences of previously described transcripts with single base-pair accuracy. We discovered a novel 3'-UTR length isoform of the Cap transcript, and a non-spliced Cap transcript variant. Additionally, our analysis has revealed a 3'-UTR isoform of Rep and two 5'-UTR isoforms of Rep' transcripts, and a novel splice variant of the longer Rep' transcript. We also explored two novel long transcripts, one with a previously identified splice site, and a formerly undetected mRNA of ORF3. Altogether, our methods have identified nine novel RNA molecules, doubling the size of PCV-1 transcriptome that had been known before. Additionally, our investigations revealed an intricate pattern of transcript overlapping, which might produce transcriptional interference between the transcriptional machineries of adjacent genes, and thereby may potentially play a role in the regulation of gene expression in circoviruses.
Collapse
|
9
|
Yang X, Ouyang H, Chen F, Ma T, Dong M, Wang F, Pang D, Peng Z, Ren L. Inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase increases the expression of interferon-responsive genes. Clin Exp Pharmacol Physiol 2015; 41:950-5. [PMID: 25115523 DOI: 10.1111/1440-1681.12299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) pathway is an important metabolic route that is present in almost every organism. However, whether HMGCR affects the expression of interferon (IFN)-responsive genes is unclear. In the present study, expression levels of IFN-responsive genes were monitored by real time polymerase chain reaction and enzyme-linked immunosorbent assay. The results showed that expression levels of IFN-responsive genes were significantly increased in HMGCR-downregulated cells and HMGCR inhibitor-treated cells, indicating that inhibition of HMGCR activates the expression of IFN-responsive genes. The result in this study will provide new insight into the role of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in antiviral research.
Collapse
Affiliation(s)
- Xin Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Reiner G, Hofmeister R, Willems H. Genetic variability of porcine circovirus 2 (PCV2) field isolates from vaccinated and non-vaccinated pig herds in Germany. Vet Microbiol 2015; 180:41-8. [PMID: 26275852 DOI: 10.1016/j.vetmic.2015.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 10/23/2022]
Abstract
Porcine circovirus 2 (PCV2) is responsible for a wide range of associated diseases (PCVD) affecting swine production worldwide. Highly efficient commercial vaccines induce protective immunity, but PCV2 is still circulating in vaccinated farms. Thus, and because of the viruś high mutation rate, recent findings provide concerns about PCV2 strains capable to escape vaccination. Based on 2156 samples from individual pigs of 315 herds from Germany we describe a high effectivity of vaccination between 2008 and the third quarter of 2011. In this period, virus load dropped continuously and at the end of this period it hardly reached the limit of quantification. Thereafter, virus loads re-increased, although most of the herds were still vaccinated. Sixty-two randomly selected samples from vaccinated (n=28) and non-vaccinated (n=26) herds between 2008 and 2012 were completely sequenced. As compared to the PCV2b reference sequence 259 polymorphisms were detected. Polymorhisms were analysed for associations to vaccination status, genotype (PCV2a/PCV2b), and virus load. PCV2a sequences were significantly repelled by PCV2b. One SNP at position 1182 (g.1182G>T), involved in capsid epitope formation, was significantly associated with the PCV2 genotype (2a/2b). Moreover, this SNP was affected by vaccination, with effects on allele frequencies and viral load, independent from the PCV2 genotype (2a/2b). We conclude that there is indeed evidence for a selectional impact of vaccination on the PCV2 sequence, especially on nucleotides involved in epitope formation. Such variation might be responsible for the observed re-increase of PCV2-loads in samples from the end of 2011 in Germany.
Collapse
Affiliation(s)
- Gerald Reiner
- Department of Clinical Veterinary Sciences, Clinic for Swine, Justus-Liebig-University, Giessen, Germany.
| | - Regina Hofmeister
- Department of Clinical Veterinary Sciences, Clinic for Swine, Justus-Liebig-University, Giessen, Germany
| | - Hermann Willems
- Department of Clinical Veterinary Sciences, Clinic for Swine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
11
|
Current understanding of genomic DNA of porcine circovirus type 2. Virus Genes 2014; 49:1-10. [DOI: 10.1007/s11262-014-1099-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/20/2014] [Indexed: 01/25/2023]
|
12
|
Hua T, Wang X, Bai J, Zhang L, Liu J, Jiang P. Attenuation of porcine circovirus type-2b by replacement with the Rep gene of porcine circovirus type-1. Virus Res 2013; 173:270-9. [PMID: 23454919 DOI: 10.1016/j.virusres.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Porcine circovirus type-2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases and has 4 main ORFs, ORF1 (Rep gene), ORF2 (Cap gene), ORF3 within ORF1, and ORF4, which is overlapped with ORF3, and 1 origin (Ori) of replication located between ORF1 and ORF2. The chimeric PCV1-2, containing the PCV2 capsid, PCV1 rep, and Ori genes, is attenuated in pigs. In order to verify the role of the Rep gene or Ori in the virulence of PCV2, 3 chimeric viruses [PCV2b-Ori1 (PCV1 Ori gene cloned into the backbone of PCV2b), PCV2b-rep1 (PCV1 Rep gene cloned into the backbone of PCV2b), and PCV2b-rep1-Ori1 (PCV1 Rep and Ori genes cloned into the backbone of PCV2b)] and 2 wild-type recombinant PCV2b and PCV1 were constructed and identified. The experimental results in piglets showed that clinical symptoms, viremia, viral load, lesions in lymphoid and lung tissues, and IL-10 and TNF-α expression levels in PBMCs in the PCV2b-rep1-Ori1 and PCV2b-rep1 groups were significantly decreased, compared to PCV2-infected piglets. Meanwhile, histological lesions of lymphoid and lung tissues, viral loads in lymphoid tissues, viremia, and TNF-α expression in PBMCs were not significantly different between groups PCV2b-Ori1 and PCV2b, suggesting that the Rep gene (ORF1) likely contributes to viral pathogenicity in vivo.
Collapse
Affiliation(s)
- Tao Hua
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|