1
|
Bahoussi AN, Guo YY, Shi RZ, Wang PH, Li YQ, Wu CX, Xing L. Genetic Characteristics of Porcine Hemagglutinating Encephalomyelitis Coronavirus: Identification of Naturally Occurring Mutations Between 1970 and 2015. Front Microbiol 2022; 13:860851. [PMID: 35369458 PMCID: PMC8971845 DOI: 10.3389/fmicb.2022.860851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a Betacoronavirus characterized by neurological symptoms and a worldwide prevalence. Although PHEV is one of the earliest discovered porcine coronaviruses, it remains poorly studied. The full-length genome of the earliest PHEV strain collected in 1970 in the United States (PHEV/67 N/US/1970) was determined in October 2020. Using this virus as a prototype, we comparatively analyzed all available PHEV full-length sequences during 1970–2015. In phylogenetic trees based on PHEV full-length or spike glycoprotein open reading frame genomic sequences, PHEV/67 N/US/1970 was sorted into a clade different from that of viruses isolated in the United States in 2015. Intriguingly, United States and Belgium viruses isolated in 2015 and 2005, respectively, revealed multiple deletion mutation patterns compared to the strain PHEV/67 N/US/1970, leading to a truncated or a non-functional NS2A coding region. In addition, the genomic similarity analysis showed a hypervariability of the spike glycoprotein coding region, which can affect at least eight potential linear B cell epitopes located in the spike glycoprotein. This report indicates that PHEVs in the United States underwent a significant genetic drift, which might influence PHEV surveillance in other countries.
Collapse
Affiliation(s)
| | - Yan-Yan Guo
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rui-Zhu Shi
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Pei-Hua Wang
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Ya-Qian Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Chang-Xin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- *Correspondence: Li Xing,
| |
Collapse
|
2
|
Wang Z, Song D, Wang G, Li C, Liu X, Wang X, Li Z, Guan J, Zhao K, He W, Gao F, Lan Y. Porcine hemagglutinating encephalomyelitis virus induces atypical autophagy via opposite regulation of expression and nuclear translocation of transcription factor EB. Vet Microbiol 2021; 255:109015. [PMID: 33640682 DOI: 10.1016/j.vetmic.2021.109015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/14/2021] [Indexed: 11/27/2022]
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) displays neurotropism and induces atypical autophagy. However, the exact mechanisms mediating autophagy induced by PHEV remains uncharacterized. Transcription factor EB (TFEB) is a master transcriptional regulator playing a key role in autophagy and its activity is regulated by MTORC1 kinase on the surface of lysosomes. We first found that PHEV infection decreases TFEB expression, while it activates TFEB by inhibiting MTORC1 activation, indicating that TFEB plays a complex role in the process of PHEV-induced autophagy through opposite regulation of its expression and activity. Furthermore, this study preliminarily demonstrated that PHEV replication is dependent on TFEB expression.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Deguang Song
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, Jilin, China
| | - Caili Li
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueli Liu
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinran Wang
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory ofZoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Mora-Díaz JC, Temeeyasen G, Magtoto R, Rauh R, Nelson W, Carrillo-Ávila JA, Zimmerman J, Piñeyro P, Giménez-Lirola L. Infection and immune response to porcine hemagglutinating encephalomyelitis virus in grower pigs. Vet Microbiol 2020; 253:108958. [PMID: 33387911 DOI: 10.1016/j.vetmic.2020.108958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/13/2020] [Indexed: 11/28/2022]
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is the cause of acute outbreaks of vomiting and wasting disease and/or encephalomyelitis in neonatal pigs, with naïve herds particularly vulnerable to clinical episodes. PHEV infections in older pigs are generally considered to be subclinical, but are poorly characterized in the refereed literature. In this study, twelve 7-week-old pigs were oronasally inoculated with 0.5 mL (1:128 HA titer) PHEV (Mengeling strain) and then followed through 42 days post inoculation (dpi). Fecal and oral fluid specimens were collected daily to evaluate viral shedding. Serum samples were tested for viremia, isotype-specific antibody responses, cytokine, and chemokine responses. Peripheral blood mononuclear cells were isolated to evaluate phenotype changes in immune cell subpopulations. No clinical signs were observed in PHEV inoculated pigs, but virus was detected in oral fluid (1-28 dpi) and feces (1-10 dpi). No viremia was detected, but a significant IFN-α response was observed in serum at 3 dpi, followed by the detection of IgM (dpi 7), and IgA/IgG (dpi 10). Flow cytometry revealed a one-off increase in cytotoxic T cells at 21 dpi. This study demonstrated that exposure of grower pigs to PHEV results in subclinical infection characterized by active viral replication and shedding followed by an active humoral and cell-mediated immune response that attenuates the course of the infection and results in viral clearance.
Collapse
Affiliation(s)
- Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Gun Temeeyasen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Trang CTH, Nakanishi M, Hayashidani H, Taniguchi T. Development of an indirect ELISA based on soluble antigen produced from virus-infected cells for detection of porcine hemagglutinating encephalomyelitis virus. J Virol Methods 2020; 289:114016. [PMID: 33290788 DOI: 10.1016/j.jviromet.2020.114016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/03/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the genus Betacoronavirus and is the etiologic agent of encephalomyelitis or vomiting and wasting disease in neonatal pigs. Although there are only a few epidemiological studies that document the seroprevalence of PHEV infection, there are reports of sporadic outbreaks, including recent documentation of an influenza-like respiratory disease associated with PHEV in the United States. To address this issue, we have developed a new indirect enzyme linked immunosorbent assay (ELISA) for use in sero-epidemiological research of PHEV infection. One hundred and fifty porcine serum samples that were determined as antibody-positive or antibody-negative in virus neutralization (VN) tests were used in conjunction with PHEV-specific antigen extracted from virus-infected FS-L3 cells using RBS buffer containing 0.2 % NP-40 to develop this assay. The ELISA showed a high sensitivity (95.35 %) and specificity (96.88 %) by receiver operating characteristic (ROC) analysis, with an area under the curve (AUC) of 0.996 attesting to its accuracy. Our results revealed a strong correlation between the results of the indirect ELISA and VN test (R = 0.850, P < 0.05), with near-perfect agreement (kappa value = 0.932). These results indicate that this new indirect ELISA might be useful for diagnosis and sero-epidemiological tracking of PHEV infection.
Collapse
Affiliation(s)
- Chau Thi Huyen Trang
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Nakanishi
- Research and Development Section, Institute of Animal Health, National Federation of Agricultural Co-operative Association, 7 Ohja-machi, Sakura-shi, Chiba-ken, 285-0043, Japan
| | - Hideki Hayashidani
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Takahide Taniguchi
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
5
|
Lan Y, Li Z, Wang Z, Wang X, Wang G, Zhang J, Hu S, Zhao K, Xu B, Gao F, He W. An Experimental Model of Neurodegenerative Disease Based on Porcine Hemagglutinating Encephalomyelitis Virus-Related Lysosomal Abnormalities. Mol Neurobiol 2020; 57:5299-5306. [PMID: 32876841 PMCID: PMC7463228 DOI: 10.1007/s12035-020-02105-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Lysosomes are involved in pathogenesis of a variety of neurodegenerative diseases and play a large role in neurodegenerative disorders caused by virus infection. However, whether virus-infected cells or animals can be used as experimental models of neurodegeneration in humans based on virus-related lysosomal dysfunction remain unclear. Porcine hemagglutinating encephalomyelitis virus displays neurotropism in mice, and neural cells are its targets for viral progression. PHEV infection was confirmed to be a risk factor for neurodegenerative diseases in the present. The findings demonstrated for the first time that PHEV infection can lead to lysosome disorders and showed that the specific mechanism of lysosome dysfunction is related to PGRN expression deficiency and indicated similar pathogenesis compared with human neurodegenerative diseases upon PHEV infection. Trehalose can also increase progranulin expression and rescue abnormalities in lysosomal structure in PHEV-infected cells. In conclusion, these results suggest that PHEV probably serve as a disease model for studying the pathogenic mechanisms and prevention of other degenerative diseases.
Collapse
Affiliation(s)
- Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhenzhen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinran Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, Jilin, China
| | - Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shiyu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baofeng Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Ling S, Li X, Zhao Q, Wang R, Tan T, Wang S. Preparation of monoclonal antibody against penicillic acid (PA) and its application in the immunological detection. Food Chem 2020; 319:126505. [DOI: 10.1016/j.foodchem.2020.126505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
|
7
|
Detecting and Monitoring Porcine Hemagglutinating Encephalomyelitis Virus, an Underresearched Betacoronavirus. mSphere 2020; 5:5/3/e00199-20. [PMID: 32376700 PMCID: PMC7203454 DOI: 10.1128/msphere.00199-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There is a paucity of information concerning the ecology of porcine hemagglutinating encephalomyelitis virus (PHEV) in commercial swine herds. This study provided evidence that PHEV infection is endemic and highly prevalent in U.S. swine herds. These results raised questions for future studies regarding the impact of endemic PHEV on swine health and the mechanisms by which this virus circulates in endemically infected populations. Regardless, the availability of the validated PHEV S1 enzyme-linked immunosorbent assay (ELISA) provides the means for swine producers to detect and monitor PHEV infections, confirm prior exposure to the virus, and to evaluate the immune status of breeding herds. Members of family Coronaviridae cause a variety of diseases in birds and mammals. Porcine hemagglutinating encephalomyelitis virus (PHEV), a lesser-researched coronavirus, can infect naive pigs of any age, but clinical disease is observed in pigs ≤4 weeks of age. No commercial PHEV vaccines are available, and neonatal protection from PHEV-associated disease is presumably dependent on lactogenic immunity. Although subclinical PHEV infections are thought to be common, PHEV ecology in commercial swine herds is unknown. To begin to address this gap in knowledge, a serum IgG antibody enzyme-linked immunosorbent assay (ELISA) based on the S1 protein was developed and evaluated on known-status samples and then used to estimate PHEV seroprevalence in U.S. sow herds. Assessment of the diagnostic performance of the PHEV S1 ELISA using serum samples (n = 924) collected from 7-week-old pigs (n = 84; 12 pigs per group) inoculated with PHEV, porcine epidemic diarrhea virus, transmissible gastroenteritis virus, porcine respiratory coronavirus, or porcine deltacoronavirus showed that a sample-to-positive cutoff value of ≥0.6 was both sensitive and specific, i.e., all PHEV-inoculated pigs were seropositive from days postinoculation 10 to 42, and no cross-reactivity was observed in samples from other groups. The PHEV S1 ELISA was then used to estimate PHEV seroprevalence in U.S. sow herds (19 states) using 2,756 serum samples from breeding females (>28 weeks old) on commercial farms (n = 104) with no history of PHEV-associated disease. The overall seroprevalence was 53.35% (confidence interval [CI], ±1.86%) and herd seroprevalence was 96.15% (CI, ±3.70%). IMPORTANCE There is a paucity of information concerning the ecology of porcine hemagglutinating encephalomyelitis virus (PHEV) in commercial swine herds. This study provided evidence that PHEV infection is endemic and highly prevalent in U.S. swine herds. These results raised questions for future studies regarding the impact of endemic PHEV on swine health and the mechanisms by which this virus circulates in endemically infected populations. Regardless, the availability of the validated PHEV S1 enzyme-linked immunosorbent assay (ELISA) provides the means for swine producers to detect and monitor PHEV infections, confirm prior exposure to the virus, and to evaluate the immune status of breeding herds.
Collapse
|
8
|
Mora-Díaz JC, Piñeyro PE, Houston E, Zimmerman J, Giménez-Lirola LG. Porcine Hemagglutinating Encephalomyelitis Virus: A Review. Front Vet Sci 2019; 6:53. [PMID: 30873421 PMCID: PMC6402421 DOI: 10.3389/fvets.2019.00053] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/07/2019] [Indexed: 01/08/2023] Open
Abstract
The porcine hemagglutinating encephalomyelitis virus (PHEV) is classified as a member of genus Betacoronavirus, family Coronaviridae, sub-family Cornavirinae, and order Nidovirales. PHEV shares the same genomic organization, replication strategy, and expression of viral proteins as other nidoviruses. PHEV produces vomiting and wasting disease (VWD) and/or encephalomyelitis, being the only known neurotropic coronavirus affecting pigs. First clinical outbreak was reported in 1957 in Ontario, Canada. Although pigs are the only species susceptible to natural PHEV infections, the virus displays neurotropism in mice and Wistar rats. Clinical disease, morbidity, and mortality is age-dependent and generally reported only in piglets under 4 weeks old. The primary site of replication of PHEV in pigs is the respiratory tract, and it can be further spread to the central nervous system through the peripheral nervous system via different pathways. The diagnosis of PHEV can be made using a combination of direct and indirect detection methods. The virus can be isolated from different tissues within the acute phase of the clinical signs using primary and secondary pig-derived cell lines. PHEV agglutinates the erythrocytes of mice, rats, chickens, and several other animals. PCR-based methods are useful to identify and subsequently isolate animals that are actively shedding the virus. The ability to detect antibodies allows producers to know the status of first-litter gilts and evaluate their risk of tier offspring to infection. PHEV is highly prevalent and circulates subclinically in most swine herds worldwide. PHEV-related disease is not clinically relevant in most of the swine-producing countries, most likely because of dams are immune to PHEV which may confer passive immunity to their offspring. However, PHEV should be considered a major source of economic loss because of the high mortality on farms with high gilt replacement rates, specific pathogen-free animals, and gnotobiotic swine herds. Thus, in the absence of current PHEV vaccines, promoting virus circulation on farms with early exposure to gilts and young sows could induce maternal immunity and prevent disease in piglets.
Collapse
Affiliation(s)
- Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Pablo Enrique Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth Houston
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Luis Gabriel Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Liu CC, Yu JS, Wang PJ, Hsiao YC, Liu CH, Chen YC, Lai PF, Hsu CP, Fann WC, Lin CC. Development of sandwich ELISA and lateral flow strip assays for diagnosing clinically significant snakebite in Taiwan. PLoS Negl Trop Dis 2018; 12:e0007014. [PMID: 30507945 PMCID: PMC6292642 DOI: 10.1371/journal.pntd.0007014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/13/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
Taiwan is an island located in the south Pacific, a subtropical region that is home to 61 species of snakes. Of these snakes, four species—Trimeresurus stejnegeri, Protobothrops mucrosquamatus, Bungarus multicinctus and Naja atra—account for more than 90% of clinical envenomation cases. Currently, there are two types of bivalent antivenom: hemorrhagic antivenom against the venom of T. stejnegeri and P. mucrosquamatus, and neurotoxic antivenom for treatment of envenomation by B. multicinctus and N. atra. However, no suitable detection kits are available to precisely guide physicians in the use of antivenoms. Here, we sought to develop diagnostic assays for improving the clinical management of snakebite in Taiwan. A two-step affinity purification procedure was used to generate neurotoxic species-specific antibodies (NSS-Abs) and hemorrhagic species-specific antibodies (HSS-Abs) from antivenoms. These two SSAbs were then used to develop a sandwich ELISA (enzyme-linked immunosorbent assay) and a lateral flow assay comprising two test lines. The resulting ELISAs and lateral flow strip assays could successfully discriminate between neurotoxic and hemorrhagic venoms. The limits of quantification (LOQ) of the ELISA for neurotoxic venoms and hemorrhagic venoms were determined to be 0.39 and 0.78 ng/ml, respectively, and the lateral flow strips were capable of detecting neurotoxic and hemorrhagic venoms at concentrations lower than 5 and 50 ng/ml, respectively, in 10–15 min. Tests of lateral flow strips in 21 clinical snakebite cases showed 100% specificity and 100% sensitivity for neurotoxic envenomation, whereas the sensitivity for detecting hemorrhagic envenomation samples was 36.4%. We herein presented a feasible strategy for developing a sensitive sandwich ELISA and lateral flow strip assay for detecting and differentiating venom proteins from hemorrhagic and neurotoxic snakes. A useful snakebite diagnostic guideline according to the lateral flow strip results and clinical symptoms was proposed to help physicians to use antivenoms appropriately. The two-test-line lateral flow strip assay could potentially be applied in an emergency room setting to help physicians diagnose and manage snakebite victims. Snakebite is a public health issue that causes life-threatening medical emergencies. Rapid diagnosis of snakebite in the clinic is a critical necessity in many tropical and subtropical countries, where various venomous snakes are common. Venoms from different snake species contain distinct protein components that require treatment with different antivenoms. However, given the similarity in clinical symptoms among some snake envenomations, it is often challenging for physicians to precisely define the snake species responsible for envenomation. Thus, a reliable method or assay for rapidly diagnosing envenoming species is urgently needed. Here, we present a two-step affinity purification procedure for generating species-specific antibodies (SSAbs) from antivenom, followed by the development of a sandwich ELISA (enzyme-linked immunosorbent assay) and lateral flow strip assay using these SSAbs. This feasible and cost-effective strategy allowed us to develop workable assays for distinguishing between venom proteins from hemorrhagic and neurotoxic snakes in Taiwan. The usefulness of this strategy was demonstrated in the clinic, where both diagnostic assays were shown capable of detecting venoms in blood samples from snakebite patients. Together with the observation of clinical symptoms, the two-test-line lateral flow strip assay is potentially applicable in an emergency room setting to improve snakebite diagnosis and management.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Po-Jung Wang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Chien-Hsin Liu
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yen-Chia Chen
- Department of Emergency medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Fang Lai
- Department of Emergency, Buddihist Tzu Chi Hospital, Hualien, Taiwan
| | - Chih-Po Hsu
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Wen-Chih Fann
- Department of Emergency Medicine, Chia-Yi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Li Z, He W, Lan Y, Zhao K, Lv X, Lu H, Ding N, Zhang J, Shi J, Shan C, Gao F. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. PeerJ 2016; 4:e2443. [PMID: 27672502 PMCID: PMC5028786 DOI: 10.7717/peerj.2443] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/13/2016] [Indexed: 01/10/2023] Open
Abstract
An acute outbreak of porcine hemagglutinating encephalomyelitis virus (PHEV) infection in piglets, characterized with neurological symptoms, vomiting, diarrhea, and wasting, occurred in China. Coronavirus-like particles were observed in the homogenized tissue suspensions of the brain of dead piglets by electron microscopy, and a wild PHEV strain was isolated, characterized, and designated as PHEV-CC14. Histopathologic examinations of the dead piglets showed characteristics of non-suppurative encephalitis, and some neurons in the cerebral cortex were degenerated and necrotic, and neuronophagia. Similarly, mice inoculated with PHEV-CC14 were found to have central nervous system (CNS) dysfunction, with symptoms of depression, arched waists, standing and vellicating front claws. Furthmore, PHEV-positive labeling of neurons in cortices of dead piglets and infected mice supported the viral infections of the nervous system. Then, the major structural genes of PHEV-CC14 were sequenced and phylogenetically analyzed, and the strain shared 95%–99.2% nt identity with the other PHEV strains available in GenBank. Phylogenetic analysis clearly proved that the wild strain clustered into a subclass with a HEV-JT06 strain. These findings suggested that the virus had a strong tropism for CNS, in this way, inducing nonsuppurative encephalitis as the cause of death in piglets. Simultaneously, the predicted risk of widespread transmission showed a certain variation among the PHEV strains currently circulating around the world. Above all, the information presented in this study can not only provide good reference for the experimental diagnosis of PHEV infection for pig breeding, but also promote its new effective vaccine development.
Collapse
Affiliation(s)
- Zi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Yungang Lan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xiaoling Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Jilin, China
| | - Ning Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Jing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Junchao Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Changjian Shan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| |
Collapse
|
11
|
Guo DL, Pan QW, Li KP, Li JQ, Shen HW, Wang XL, Zhang XY, Li XS, Fu F, Feng L, Li X. Development and clinical evaluation of a new gold-immunochromatographic assay for the detection of antibodies against field strains of pseudorabies virus. J Virol Methods 2015; 222:164-9. [PMID: 26141732 DOI: 10.1016/j.jviromet.2015.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/26/2022]
Abstract
An immunochromatographic strip (ICS) was developed for the detection of swine antibodies against glycoprotein E (gE) in Pseudorabies Virus (PRV). In this test, Staphylococcal Protein A (SPA) labeled with colloidal gold was dispensed on a conjugate pad as the detector. Purified PRV-gE and pig-IgG were blotted on a nitrocellulose membrane for the test (T) and control lines (C), respectively. If the tested serum contains IgG antibodies against PRV-gE, the IgG will interact with the colloidal gold-SPA to form a complex (gold-SPA-swine IgG). The complex will react with the immobilized PRV-gE on the T line and the Pig-IgG in the C line of the ICS to form two visible red bands. If there is no IgG antibody against PRV-gE in the sample serum, only the C line will be visible. The ICS was capable of specifically detecting PRV-gE antibody within 5 min, and its stability and reproducibility were quite good after storage at 4°C and use within 4 months. Using an IDEXX Pseudorabies Virus gE Antibody Test Kit (IDEXX PRV gE Ab test) as a reference, the relative specificity and sensitivity of the ICS were determined to be 81.6% and 90.7%, respectively. Furthermore, there was a good agreement between the results obtained by the commercial product and the ICS (kappa=0.7289).
Collapse
Affiliation(s)
- Dian-lei Guo
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Qi-wei Pan
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Kun-peng Li
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Jun-qing Li
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Han-wei Shen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Xiang-ling Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Xun-yun Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Xue-song Li
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Fang Fu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China
| | - Xi Li
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan St., Nangang District, Harbin 150001, China.
| |
Collapse
|
12
|
Hung DZ, Lin JH, Mo JF, Huang CF, Liau MY. Rapid diagnosis of Naja atra snakebites. Clin Toxicol (Phila) 2014; 52:187-91. [PMID: 24580058 DOI: 10.3109/15563650.2014.887725] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The clinical diagnosis of snakebites is critical and necessary in many parts of the world, especially in Southeastern Asia, where venomous snakebites are a burden on public health. It is difficult to define or recognize the species of venomous snake because of the overlapping clinical manifestations of envenomations. A quick and reliable method for identifying the snake species is necessary. We designed and tested a strip of lateral flow system for the diagnosis of cobra snake bites in Taiwan. METHODS We developed a kit based on an immunochromatographic method for rapid detection of cobra (Naja atra) venom in human serum. The test and control lines composed of 1 mg/ml polyclonal duck antivenom and 0.5 mg/ml goat anti-rabbit immunoglobulin antibody solutions, respectively, were coated on nitrocellulose strips. Colloidal gold was conjugated with rabbit polyclonal anti-cobra venom antibodies. From July 2007 to December 2012, we used the kit to test serum from snakebite patients and to examine the agreement between our rapid test and the currently used sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS Our kit was able to detect cobra venom in serum samples in 20 minutes with a detection limit of 5 ng/ml. An absence of cross-reactivity with other non-cobra venoms from Taiwan was noted in vitro. A total of 88 snakebite patients (34 cobra and 54 other non-cobra) were tested. The sensitivity of the strips based on the ELISA results was 83.3% and the specificity was 100%. There was a strong agreement between the results of the ELISA and immunochromatographic strips (κ = 0.868). DISCUSSION AND CONCLUSIONS This data indicates that an immunochromatographic strip might be suitable for cobra venom detection and could be used as a quick diagnostic tool in cases of N. atra snakebite.
Collapse
Affiliation(s)
- D Z Hung
- Division of Toxicology, China Medical University Hospital , Taichung , Taiwan
| | | | | | | | | |
Collapse
|
13
|
Identification and genetic characterization of porcine hemagglutinating encephalomyelitis virus from domestic piglets in China. Arch Virol 2014; 159:2329-37. [PMID: 24756345 PMCID: PMC7087033 DOI: 10.1007/s00705-014-2070-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/24/2014] [Indexed: 11/17/2022]
Abstract
In this study, we investigated an acute outbreak of porcine hemagglutinating encephalomyelitis on a farm of 127 pigs in Jilin province, China. Porcine hemagglutinating encephalomyelitis virus (PHEV) was detected in suckling and weaning pigs by RT-PCR assays. Coronavirus-like particles were observed by electron microscopy. The virus isolate was designated PHEV-JT06. The clinical signs, nervous symptoms and positive labeling of neurons in the cerebral cortex with an immunohistochemical stain in PHEV-JT06-infected BALB/c mice supported the diagnosis of PHEV infection. The five full-length PHEV-JT06 structural genes were cloned, sequenced and analyzed. Phylogenetic studies based on the nucleotide and amino acid sequences of the five genes in the outbreak showed that PHEV remained genetically stable. PHEV shares 95.3-99.3 % amino acid sequence identity with American strains (AY078417), suggesting that the Chinese isolate is most likely derived from the North American strain. Additionally, PHEV, HCoV-OC43 and BCoV were genetically close. These results may provide some insights into the genotype of the etiological agent responsible for the porcine hemagglutinating encephalomyelitis outbreak and could also provide a comparative view of the genomics of the five structural proteins of PHEV.
Collapse
|