1
|
Wu D, Li H, Wang L, Hu Y, Huang H, Li J, Yang Y, Wu X, Ye X, Mao R, Li J, Shi X, Xie C, Yang C. Echinocystic acid inhibits sepsis-associated renal inflammation and apoptosis by targeting protein tyrosine phosphatase 1B. Int Immunopharmacol 2024; 142:113076. [PMID: 39298825 DOI: 10.1016/j.intimp.2024.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Thefruits of Gleditsia sinensis Lam. have been utilized to treat inflammatory diseases in China. Echinocystic acid (EA), one pentacyclic triterpenoid isolated from thefruits of G. sinensis, exhibits an anti-inflammatory effect. However, its anti-sepsis activity and mechanism of action, especially the protective effect against sepsis-associated acute kidney injury (SA-AKI), are not investigated yet. This study is to explore the efficacy and potential mechanism of EA on SA-AKI. EA elevated the function of multiple organs and effectively reduced the increased inflammation and apoptosis of kidney tissue and HK-2 cells. DARTS, CETSA, and molecular docking experiments revealed that EA could directly bind to protein tyrosine phosphatase 1B (PTP1B), a widespread prototype non-receptor tyrosine phosphatase. Collectively, EA can alleviate murine SA-AKI though restraining inflammation and apoptosis and may be a potential natural drug for remedying SA-AKI.
Collapse
Affiliation(s)
- Dan Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Lin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Yayue Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Hong Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Jinhe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Xi Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Xiaoman Ye
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Ruiqi Mao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Jiahang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Xue Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| |
Collapse
|
2
|
Zhao Y, Song JY, Feng R, Hu JC, Xu H, Ye ML, Jiang JD, Chen LM, Wang Y. Renal Health Through Medicine-Food Homology: A Comprehensive Review of Botanical Micronutrients and Their Mechanisms. Nutrients 2024; 16:3530. [PMID: 39458524 PMCID: PMC11510533 DOI: 10.3390/nu16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As an ancient concept and practice, "food as medicine" or "medicine-food homology" is receiving more and more attention these days. It is a tradition in many regions to intake medicinal herbal food for potential health benefits to various organs and systems including the kidney. Kidney diseases usually lack targeted therapy and face irreversible loss of function, leading to dialysis dependence. As the most important organ for endogenous metabolite and exogenous nutrient excretion, the status of the kidney could be closely related to daily diet. Therefore, medicinal herbal food rich in antioxidative, anti-inflammation micronutrients are ideal supplements for kidney protection. Recent studies have also discovered its impact on the "gut-kidney" axis. METHODS Here, we review and highlight the kidney-protective effects of botanicals with medicine-food homology including the most frequently used Astragalus membranaceus and Angelica sinensis (Oliv.) Diels, concerning their micronutrients and mechanism, offering a basis and perspective for utilizing and exploring the key substances in medicinal herbal food to protect the kidney. RESULTS The index for medicine-food homology in China contains mostly botanicals while many of them are also consumed by people in other regions. Micronutrients including flavonoids, polysaccharides and others present powerful activities towards renal diseases. CONCLUSIONS Botanicals with medicine-food homology are widely speeded over multiple regions and incorporating these natural compounds into dietary habits or as supplements shows promising future for renal health.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Meng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Pan D, Qu Y, Shi C, Xu C, Zhang J, Du H, Chen X. Oleanolic acid and its analogues: promising therapeutics for kidney disease. Chin Med 2024; 19:74. [PMID: 38816880 PMCID: PMC11140902 DOI: 10.1186/s13020-024-00934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Kidney diseases pose a significant threat to human health due to their high prevalence and mortality rates. Worryingly, the clinical use of drugs for kidney diseases is associated with more side effects, so more effective and safer treatments are urgently needed. Oleanolic acid (OA) is a common pentacyclic triterpenoid that is widely available in nature and has been shown to have protective effects in kidney disease. However, comprehensive studies on its role in kidney diseases are still lacking. Therefore, this article first explores the botanical sources, pharmacokinetics, derivatives, and safety of OA, followed by a summary of the anti-inflammatory, immunomodulatory, anti-oxidative stress, autophagy-enhancing, and antifibrotic effects of OA and its analogues in renal diseases, and an analysis of the molecular mechanisms, aiming to provide further insights for the development of novel drugs for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Dan Pan
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yilun Qu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Jie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
4
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Alqrad MAI, El-Agamy DS, Ibrahim SRM, Sirwi A, Abdallah HM, Abdel-Sattar E, El-Halawany AM, Elsaed WM, Mohamed GA. SIRT1/Nrf2/NF-κB Signaling Mediates Anti-Inflammatory and Anti-Apoptotic Activities of Oleanolic Acid in a Mouse Model of Acute Hepatorenal Damage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1351. [PMID: 37512162 PMCID: PMC10383078 DOI: 10.3390/medicina59071351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Background and objectives: Oleanolic acid (OA) is a penta-cyclic triterpene with diverse bioactivities such as anticarcinogenic, antiviral, antimicrobial, hepatoprotective, anti-atherosclerotic, hypolipidemic, and gastroprotective. However, its effects on hepatorenal damage remain unclear. The protective activity of OA, separated from Viscum schimperi (Loranthaceae), against TAA (thioacetamide)-produced acute hepatic and renal damage was explored. Materials and Methods: Mice were treated with OA for 7 days before TAA (200 mg/kg, i.p.). Serum indices of hepatorenal injury, pathological lesions, molecular biological indexes, and inflammatory/apoptotic genes were estimated. Results: The tissues of both organs were greatly affected by the TAA injection. That was evident through increased serum markers of hepato-renal injury as well as remarkable histopathological lesions. TAA-induced injury was associated with oxidative and inflammatory responses in both organs as there was an elevation of oxidative stress parameters (4-HNE (4-hydroxy-nonenal), MDA (malondialdehyde), NOx (nitric oxide)), decline of antioxidants (reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC)), and an increase in the gene expression/level of inflammatory mediators (interleukins (1β&6)). The inflammatory response was linked to a significant activation of NF-κB (nuclear-factor kappa-B)/TNF-α (tumor-necrosis factor-alpha) signaling. The inflammatory response in both organs was accompanied by apoptotic changes, including a rise in the gene expression and level of apoptotic parameters (caspase-3 and Bax) along with a decline in Bcl-2 (anti-apoptotic parameter) gene expression and level. These pathogenic events were found to be closely related to the suppression of the antioxidant signaling pathway, Nrf2 (nuclear-factor erythroid 2-related factor-2)/SIRT1 (sirtuin-1)/HO-1 (heme-oxygenase 1). On the other hand, OA significantly ameliorated TAA-induced injury in both organs. On the other hand, OA counterpoised the inflammatory response as it ameliorated NF-κB/TNF-α signaling and cytokine release. OA enhanced Nrf2/SIRT1/HO-1 signaling and counteracted apoptotic damage. Conclusions: OA showed anti-inflammation and antiapoptotic capacities that effectively suppressed TAA-induced acute hepatorenal damage.
Collapse
Affiliation(s)
- Manea A. I. Alqrad
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| |
Collapse
|
6
|
Lin DW, Hsu YC, Chang CC, Hsieh CC, Lin CL. Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. Int J Mol Sci 2023; 24:ijms24076053. [PMID: 37047024 PMCID: PMC10094034 DOI: 10.3390/ijms24076053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
7
|
The Protective Effect of Zebularine, an Inhibitor of DNA Methyltransferase, on Renal Tubulointerstitial Inflammation and Fibrosis. Int J Mol Sci 2022; 23:ijms232214045. [PMID: 36430531 PMCID: PMC9697081 DOI: 10.3390/ijms232214045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Renal fibrosis, the final pathway of chronic kidney disease, is caused by genetic and epigenetic mechanisms. Although DNA methylation has drawn attention as a developing mechanism of renal fibrosis, its contribution to renal fibrosis has not been clarified. To address this issue, the effect of zebularine, a DNA methyltransferase inhibitor, on renal inflammation and fibrosis in the murine unilateral ureteral obstruction (UUO) model was analyzed. Zebularine significantly attenuated renal tubulointerstitial fibrosis and inflammation. Zebularine decreased trichrome, α-smooth muscle actin, collagen IV, and transforming growth factor-β1 staining by 56.2%. 21.3%, 30.3%, and 29.9%, respectively, at 3 days, and by 54.6%, 41.9%, 45.9%, and 61.7%, respectively, at 7 days after UUO. Zebularine downregulated mRNA expression levels of matrix metalloproteinase (MMP)-2, MMP-9, fibronectin, and Snail1 by 48.6%. 71.4%, 31.8%, and 42.4%, respectively, at 7 days after UUO. Zebularine also suppressed the activation of nuclear factor-κB (NF-κB) and the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, by 69.8%, 74.9%, and 69.6%, respectively, in obstructed kidneys. Furthermore, inhibiting DNA methyltransferase buttressed the nuclear expression of nuclear factor (erythroid-derived 2)-like factor 2, which upregulated downstream effectors such as catalase (1.838-fold increase at 7 days, p < 0.01), superoxide dismutase 1 (1.494-fold increase at 7 days, p < 0.05), and NAD(P)H: quinone oxidoreduate-1 (1.376-fold increase at 7 days, p < 0.05) in obstructed kidneys. Collectively, these findings suggest that inhibiting DNA methylation restores the disrupted balance between pro-inflammatory and anti-inflammatory pathways to alleviate renal inflammation and fibrosis. Therefore, these results highlight the possibility of DNA methyltransferases as therapeutic targets for treating renal inflammation and fibrosis.
Collapse
|
8
|
Downregulation of P300/CBP-Associated Factor Protects from Vascular Aging via Nrf2 Signal Pathway Activation. Int J Mol Sci 2022; 23:ijms232012574. [PMID: 36293441 PMCID: PMC9603891 DOI: 10.3390/ijms232012574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has shown that vascular aging has a key role in the pathogenesis of vascular diseases. P300/CBP-associated factor (PCAF) is involved in many vascular pathological processes, but the role of PCAF in vascular aging is unknown. This study aims to explore the role and underlying mechanism of PCAF in vascular aging. The results demonstrated that the expression of PCAF was associated with age and aging, and remarkably increased expression of PCAF was present in human atherosclerotic coronary artery. Downregulation of PCAF could reduce angiotensin II (AngII)-induced senescence of rat aortic endothelial cells (ECs) in vitro. In addition, inhibition of PCAF with garcinol alleviated AngII-induced vascular senescence phenotype in mice. Downregulation of PCAF could alleviate AngII-induced oxidative stress injury in ECs and vascular tissue. Moreover, PCAF and nuclear factor erythroid-2-related factor 2 (Nrf2) could interact directly, and downregulation of PCAF alleviated vascular aging by promoting the activation of Nrf2 and enhancing the expression of its downstream anti-aging factors. The silencing of Nrf2 with small interfering RNA attenuated the protective effect of PCAF downregulation from vascular aging. These findings indicate that downregulation of PCAF alleviates oxidative stress by activating the Nrf2 signaling pathway and ultimately inhibits vascular aging. Thus, PCAF may be a promising target for aging-related cardiovascular disease.
Collapse
|
9
|
Zhou W, Dong G, Gao G, He Z, Xu J, Aziz S, Ma L, Zhao W. Evaluation of HZX-960, a novel DCN1-UBC12 interaction inhibitor, as a potential antifibrotic compound for liver fibrosis. Biochem Cell Biol 2022; 100:309-324. [PMID: 35544948 DOI: 10.1139/bcb-2021-0585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Liver fibrosis is a very common health problem and currently lacks effective treatments. Cullin ring E3 ligases (CRLs) regulate the turnover of ~20% of mammalian cell proteins. Neddylation, the process by which NEDD8 is covalently attached to cullin proteins through sequential enzymatic reactions, is critical for the activation of CRLs and was recently found to be elevated in liver fibrosis. NEDD8-activating enzyme E1-specific inhibition led to the reduced liver damage characterized by decreased apoptosis, inflammation and fibrosis. However, the relevance of a co-E3 ligase, DCN1, in liver fibrosis remains unclear. Here, a novel and potent DCN1-UBC12 interaction inhibitor HZX-960 was discovered with an IC50 value of 9.37nM, which could inhibit the neddylation of cullin3. Importantly, we identified that HZX-960 treatment could attenuate TGFβ-induced liver fibrotic responses by reducing the deposition of collagen I and α-SMA, and upregulating cellular NRF2, HO-1 and NQO1 level in two hepatic stellate cell lines. Additionally, DCN1 was shown to be unregulated in CCl4-induced mice liver tissue, and liver fibrotic signaling in mice was reduced by HZX-960. Therefore, our data demonstrated that HZX-960 possessed anti-liver fibrosis ability, and DCN1 may be a potential therapeutic target for liver fibrosis treatment.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Zhengzhou University, 12636, school of pharmacy, Zhengzhou, Henan, China.,Oslo University Hospital, 155272, Department of Pathology, Oslo, Norway;
| | - Guanjun Dong
- Zhengzhou University, 12636, school of pharmacy, Zhnezhou, China;
| | - Ge Gao
- Zhengzhou University, 12636, school of pharmacy, Zhengzhou, Henan, China;
| | - Zhangxu He
- Zhengzhou University, 12636, school of pharmacy, Zhengzhou, Henan, China;
| | - Jiale Xu
- Zhengzhou University, 12636, school of pharmacy, Zhengzhou, Henan, China;
| | - Shireen Aziz
- Zhengzhou University, 12636, Zhengzhou, Henan, China;
| | - Liying Ma
- Zhengzhou University, 12636, school of pharmacy, Zhengzhou, Henan, China;
| | - Wen Zhao
- Zhengzhou University, 12636, school of pharmacy, Zhengzhou, Henan, China;
| |
Collapse
|
10
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J Adamcakova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | |
Collapse
|
11
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J ADAMCAKOVA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - D MOKRA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
12
|
Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
14
|
Jin J, He H, Zhang X, Wu R, Gan L, Li D, Lu Y, Wu P, Wong WL, Zhang K. The in vitro and in vivo study of oleanolic acid indole derivatives as novel anti-inflammatory agents: Synthesis, biological evaluation, and mechanistic analysis. Bioorg Chem 2021; 113:104981. [PMID: 34020279 DOI: 10.1016/j.bioorg.2021.104981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Oleanolic acid (OA) is a well-known natural product possessing many important pharmacological activities; however, its weak bioactivities significantly restrict the potential application in drug development. The structural modification of oleanolic acid is an effective mean to enhance its bioactivity with lower toxicity but it is challenging. In the present study, we systematically synthesized a series of new 11-oxooleanolic acid derivatives and evaluated their anti-inflammatory activities with a LPS induced BV2 cells inflammation model and a 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced ear inflammation mice model. It was found that compounds 8 and 9 show more potent anti-inflammatory effects than OA and exhibit a low cytotoxicity. The possible mechanism of action was also investigated. The in vitro and in vivo results revealed that these two new 11-oxooleanolic acid derivatives may exert anti-inflammatory activities through the inhibition of NO, pro-inflammatory cytokines and chemokines (IL-1β, IL-6, IL-12, TNF-α, MCP-1 and MIP-1α) and upregulation of anti-inflammatory cytokines (IL-10), which may be caused by inhibiting the activation of NF-κB, MAPKs and PI3K/Akt related inflammatory signaling pathways and the activation of Nrf2/HO-1 signaling pathway. The results suggest that these two 11-oxooleanolic acid derivatives may be potential candidates for further anti-inflammatory drug development and our study demonstrated an important and practical strategy for drug discovery through the rational modification of natural products.
Collapse
Affiliation(s)
- Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Hao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Wei W, Ma N, Fan X, Yu Q, Ci X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 2020; 158:1-12. [PMID: 32663513 DOI: 10.1016/j.freeradbiomed.2020.06.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome that is related to high morbidity and mortality. Oxidative stress, including the production of reactive oxygen species (ROS), appears to be the main element in the occurrence of AKI and the cause of the progression of chronic kidney disease (CKD) into end-stage renal disease (ESRD). Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant regulator of redox balance that has been shown to improve kidney disease by eliminating ROS. To date, researchers have found that the use of Nrf2-activated compounds can effectively reduce ROS, thereby preventing or retarding the progression of various types of AKI. In this review, we summarized the molecular mechanisms of Nrf2 and ROS in AKI and described the latest findings on the therapeutic potential of Nrf2 activators in various types of AKI.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Ning Ma
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
17
|
Wang W, Ma BL, Xu CG, Zhou XJ. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153185. [PMID: 32120244 DOI: 10.1016/j.phymed.2020.153185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dihydroquercetin (DHQ) is an antifibrotic agent. However, whether DHQ can prevent renal fibrosis remains unknown. PURPOSE This study aimed to investigate the effects of DHQ on tubulointerstitial fibrosis and its underlying mechanisms in unilateral ureteral obstruction (UUO) mice in vivo and NRK-49F cells in vitro. METHODS In vivo, UUO mice received vehicle or DHQ treatment. In vitro, NRK-49F cells were pretreated with DHQ and exposed to transforming growth factor-β1 (TGF-β1). Changes in fibroblast activation, collagen synthesis, oxidative stress, and related signaling pathways were assessed by immunohistochemical staining, Western blot analysis, real-time reverse transcription-PCR, and fluorescence microscopy. RESULTS UUO induced tubular atrophy, inflammation, fibroblast differentiation into myofibroblast, and collagen deposition, whereas DHQ ameliorated these effects. UUO also resulted in decreased levels of nuclear factor-erythroid-2-related factor 2 (Nrf2), catalase, and heme oxygenase-1, but increased H2O2 and malondialdehyde levels. DHQ treatment corrected these changes. In vitro, the intracellular Nrf2 level of NRK-49F exposed to TGF-β1 decreased. However, DHQ rescued intracellular Nrf2 level and promoted nuclear translocation of Nrf2. DHQ scavenged TGF-β1-induced accumulation of reactive oxygen species, inhibited TGF-β1-induced Smad3 phosphorylation, and prevented TGF-β1-induced fibroblast activation and collagen synthesis in NRK-49F. Nrf2 knockdown could suppress the DHQ-mediated inhibitory effects on oxidative stress, Smad3 phosphorylation, fibroblast activation, and collagen deposition. Furthermore, DHQ ameliorated established renal fibrosis in UUO mice. CONCLUSIONS DHQ posed remarkable preventive and therapeutic effects on UUO-induced renal fibrosis and suppressed fibroblast activation by reducing oxidative stress and Smad3 phosphorylation via Nrf2 signaling. This study provided a mechanistic basis for the clinical application of DHQ in renal fibrosis treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 23022, China
| | - Bei-Lei Ma
- Department of Clinical Laboratory, Qilu Hospital of Shangdong University, Qingdao 266035, China
| | - Chang-Geng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26th Shengli Street, Wuhan 430014, China.
| | - Xiang-Jun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
18
|
Oleanolic Acid Attenuates Renal Fibrosis through TGF- β/Smad Pathway in a Rat Model of Unilateral Ureteral Obstruction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2085303. [PMID: 32328123 PMCID: PMC7149435 DOI: 10.1155/2020/2085303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Renal fibrosis is a common final pathological process in the progression of kidney disease. Oleanolic acid is a bioactive pentacyclic triterpenoid and is widely found in medicinal herbs around the world. In this study, we explored the effect of oleanolic acid on renal fibrosis and the underlying molecular mechanisms by using a rat model of unilateral ureteral obstruction (UUO). Male Sprague-Dawley rats were orally administered with oleanolic acid (6 mg/kg/d) or vehicle (olive oil) for 21 days after the UUO surgery. Upon termination, urine and blood were collected for renal function analysis, and kidneys were harvested for pathological analysis by using hematoxylin-eosin and Masson trichrome staining. Changes of extracellular matrix mRNA expressions and TGF-β/Smad signaling in the kidneys were also determined. As a result, oleanolic acid significantly reduced the kidney index, the level of serum creatinine and blood urea nitrogen, and the urinary level of microalbumin, α1-microglobulin, and N-acetyl-β-glucosaminidase. Masson trichrome staining showed significantly less collagen deposition in the UUO rats with oleanolic acid treatment. Diminished mRNA expressions of collagen I, collagen III, fibronectin, and α-SMA in the kidney tissues were observed after the treatment. Oleanolic acid led to decreased protein expressions of TGF-β, TGF-β receptor I, and TGF-β receptor II, as well as the phosphorylation of Smad2. Our current study suggested that oleanolic acid could be a complementary and alternative therapy for renal fibrosis potentially by targeting the TGF-β/Smad pathway.
Collapse
|
19
|
Chung S, Kim S, Son M, Kim M, Koh ES, Shin SJ, Park CW, Kim HS. Inhibition of p300/CBP-Associated Factor Attenuates Renal Tubulointerstitial Fibrosis through Modulation of NF-kB and Nrf2. Int J Mol Sci 2019; 20:ijms20071554. [PMID: 30925687 PMCID: PMC6479343 DOI: 10.3390/ijms20071554] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 12/17/2022] Open
Abstract
p300/CBP-associated factor (PCAF), a histone acetyltransferase, is involved in many cellular processes such as differentiation, proliferation, apoptosis, and reaction to cell damage by modulating the activities of several genes and proteins through the acetylation of either the histones or transcription factors. Here, we examined a pathogenic role of PCAF and its potential as a novel therapeutic target in the progression of renal tubulointerstitial fibrosis induced by non-diabetic unilateral ureteral obstruction (UUO) in male C57BL/6 mice. Administration of garcinol, a PCAF inhibitor, reversed a UUO-induced increase in the renal expression of total PCAF and histone 3 lysine 9 acetylation and reduced positive areas of trichrome and α-smooth muscle actin and collagen content. Treatment with garcinol also decreased mRNA levels of transforming growth factor-β, matrix metalloproteinase (MMP)-2, MMP-9, and fibronectin. Furthermore, garcinol suppressed nuclear factor-κB (NF-κB) and pro-inflammatory cytokines such as tumor necrosis factor-α and IL-6, whereas it preserved the nuclear expression of nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and levels of Nrf2-dependent antioxidants including heme oxygense-1, catalase, superoxide dismutase 1, and NAD(P)H:quinone oxidoreductase 1. These results suggest that the inhibition of inordinately enhanced PCAF could mitigate renal fibrosis by redressing aberrant balance between inflammatory signaling and antioxidant response through the modulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Mina Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|
20
|
Zhou H, Gao L, Yu Z, Hong S, Zhang Z, Qiu Z. LncRNA HOTAIR promotes renal interstitial fibrosis by regulating Notch1 pathway via the modulation of miR‐124. Nephrology (Carlton) 2019; 24:472-480. [PMID: 29717517 DOI: 10.1111/nep.13394] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Hao Zhou
- Department of UrologyThe Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province) Fuzhou China
| | - Lin Gao
- Department of UrologyThe Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province) Fuzhou China
| | - Zuo‐hua Yu
- Department of UrologyThe Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province) Fuzhou China
| | - Shi‐jun Hong
- Department of UrologyThe Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province) Fuzhou China
| | - Zhi‐wei Zhang
- Department of ResearchBeijing Zhong Jian Dong Ke Company Beijing China
| | - Zhen‐zhen Qiu
- Department of Physical EducationMinjiang University Fuzhou China
| |
Collapse
|
21
|
Hu Y, Wang Y, Yan T, Feng D, Ba Y, Zhang H, Zhu J, Cheng X, Cui L, Huang H. N-acetylcysteine alleviates fluoride-induced testicular apoptosis by modulating IRE1α/JNK signaling and nuclear Nrf2 activation. Reprod Toxicol 2019; 84:98-107. [PMID: 30633982 DOI: 10.1016/j.reprotox.2019.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
We previously investigated excessive fluoride exposure elicited intracellular endoplasmic reticulum (ER) stress and led to Sertoli cells dysfunction in vitro. However, the mechanisms underlying fluoride-mediated male reproductive damage in vivo remain largely unknown. Considerable evidence has now revealed ER stress is closely linked with testicular oxidative damage. Hence, we aimed to explore whether ER stress signaling was involved in the testicular protective effects of antioxidant N-acetylcysteine (NAC) against testicular apoptosis induced by fluoride. Male SD rats were oral gavaged with sodium fluoride (NaF) for 7 weeks to induce fluorosis. The animals were pretreatment with or without NAC (150 mg/Bw•d). Our results demonstrated that sub-chronic NaF exposure triggered testicular apoptosis and sex hormonal disturbance in pituitary-testicular (PT) axis, promoted oxidative stress and the expression of ER stress mediators. Antioxidant NAC, however, prevented NaF-induced testicular apoptosis accompanied by activating Nrf2-mediated antioxidant potential. Simultaneously, NAC pretreatment downregulated XBP1 splicing, reduced JNK phosphorylation and further blocked cleavage of caspase-3, all these might contribute to the inhibition of testicular cell apoptosis. Collectively, the present results suggested that prolonged administration of NAC preserved testicular function and normalized sex hormonal disruption induced by NaF via the inhibition of Nrf2-associated oxidative damage and Ire1α-JNK-mediated apoptosis in rat testis.
Collapse
Affiliation(s)
- Yazhen Hu
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Yawei Wang
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Ting Yan
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Demin Feng
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Yue Ba
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Jingyuan Zhu
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Liuxin Cui
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China
| | - Hui Huang
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, PR China.
| |
Collapse
|
22
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
Collapse
Affiliation(s)
- Yin-Wu Bao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuan Yuan
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China.
| | - Wei-Qiang Lin
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
23
|
Koh ES, Kim S, Kim M, Hong YA, Shin SJ, Park CW, Chang YS, Chung S, Kim HS. D‑Pinitol alleviates cyclosporine A‑induced renal tubulointerstitial fibrosis via activating Sirt1 and Nrf2 antioxidant pathways. Int J Mol Med 2018; 41:1826-1834. [PMID: 29393366 PMCID: PMC5810208 DOI: 10.3892/ijmm.2018.3408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Although the mechanism of cyclosporine A (CsA)-induced renal injury remains to be fully elucidated, accumulating evidence suggests that oxidative stress is critical in producing CsA-induced structural and functional renal impairment. The present study investigated the effect of D-pinitol, a cyclitol present in soybean, on chronic CsA nephropathy. Male ICR mice were treated with vehicle, CsA (30 mg/kg/day), D-pinitol (50 mg/kg/day) or a combination of CsA and D-pinitol for 28 days. To assess which pathway responding to oxidative stress is augmented by D-pinitol, the expression levels of several antioxidant enzymes and their possible regulators were measured. Treatment with D-pinitol significantly suppressed the increase of serum creatinine and decrease of urine osmolality, compared with the CsA control group. Histological examination of Masson's trichrome- and α-smooth muscle actin-stained renal tissue demonstrated that the CsA-induced tubulointerstitial fibrosis and inflammation were attenuated by D-pinitol. Following the administration of D-pinitol, there were increased expression levels of heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1, superoxide dismutase 1 and catalase in CsA-treated kidneys. In addition, D-pinitol increased the level of sirtuin 1 (Sirt1), and the total and nuclear expression levels of nuclear erythroid factor 2-related factor 2 (Nrf2), suggesting that activation of the Sirt1 and Nrf2 pathways may induce the cellular antioxi dant system against CsA-induced nephropathy. Collectively, these data suggested that D-pinitol may protect the kidney from CsA-induced fibrosis, and that this renoprotective effect of D-pinitol was due to the inhibition of oxidative stress through the activation of Sirt1 and Nrf2, and the subsequent enhancement of antioxidant enzymes.
Collapse
Affiliation(s)
- Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoon Sik Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
24
|
Kong W, Fu J, Liu N, Jiao C, Guo G, Luan J, Wang H, Yao L, Wang L, Yamamoto M, Pi J, Zhou H. Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction. Nephrol Dial Transplant 2017; 33:771-783. [PMID: 29126308 DOI: 10.1093/ndt/gfx299] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/04/2017] [Indexed: 01/24/2023] Open
Affiliation(s)
- Weiwei Kong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Nan Liu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Lining Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University of Medicine, Sendai, Japan
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Xuanfei L, Hao C, Zhujun Y, Yanming L, Jianping G. Imidazoline I2 receptor inhibitor idazoxan regulates the progression of hepatic fibrosis via Akt-Nrf2-Smad2/3 signaling pathway. Oncotarget 2017; 8:21015-21030. [PMID: 28423499 PMCID: PMC5400562 DOI: 10.18632/oncotarget.15472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a global health problem and its relationship with imidazoline I2 receptor has not been reported. This study aimed to investigate the effects and underlying mechanisms of imidazoline I2 receptor (I2R) inhibitor idazoxan (IDA) on carbon tetrachloride (CCl4)-induced liver fibrosis. In vivo liver fibrosis in mice was induced by intraperitoneally injections of CCl4 for eight weeks, and in vitro studies were performed on activated LX2 cells treated with transforming growth factor-β (TGF-β). Our results showed that IDA significantly improved liver inflammation, ameliorated hepatic stellate cells activation and reduced collagen accumulation by suppressing the pro-fibrogenic signaling of TGF-β/Smad. Further investigation showed that IDA significantly balanced oxidative stress through improving the expressions and activities of anti-oxidant and detoxifying enzymes and activating Nrf2-the key defender against oxidative stress with anti-fibrotic potentials. Even more impressively, knock out of Nrf2 or suppression of Akt by perifosine (PE) eliminated the anti-oxidant and anti-fibrotic effects of IDA in vivo and in vitro, suggesting that Akt/Nrf2 constitutes a critical component of IDA's protective functions. Taken together, IDA exhibits potent effects against liver fibrosis via Akt-Nrf2-Smad2/3 signaling pathway, which suggests that specifically targeting I2R may be a potentially useful therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Li Xuanfei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chen Hao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yi Zhujun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Liu Yanming
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430041, Hubei, P. R. China
| | - Gong Jianping
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
26
|
Lian Y, Xia X, Zhao H, Zhu Y. The potential of chrysophanol in protecting against high fat-induced cardiac injury through Nrf2-regulated anti-inflammation, anti-oxidant and anti-fibrosis in Nrf2 knockout mice. Biomed Pharmacother 2017; 93:1175-1189. [DOI: 10.1016/j.biopha.2017.05.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 01/16/2023] Open
|
27
|
Huang J, Gretz N. Light-Emitting Agents for Noninvasive Assessment of Kidney Function. ChemistryOpen 2017; 6:456-471. [PMID: 28794936 PMCID: PMC5542756 DOI: 10.1002/open.201700065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 02/03/2023] Open
Abstract
The noninvasive assessment of kidney function and diagnosis of kidney disease have long been challenges. Traditional methods are not routinely available, because the existing protocols are cumbersome, time consuming, and invasive. In the past few years, significant progress in the area of diagnosing kidney function and disease on the basis of light-emitting agents has been made. Herein, we briefly review light-emitting agents, including organic fluorescent agents and inorganic renal clearable luminescent nanoparticles for the noninvasive and real-time monitoring of kidney function and disease. Moreover, some significant requirements and strategies regarding the design of ideal glomerular filtration rate agents and renal clearable nanoparticles are discussed. Finally, we discuss future challenges in expediting clinical translation of these developed light-emitting agents, along with considerations of the efforts that need to be made to develop new agents and diagnosing kidney disease.
Collapse
Affiliation(s)
- Jiaguo Huang
- Medical Research Center, Medical Faculty MannheimUniversity of HeidelbergTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty MannheimUniversity of HeidelbergTheodor-Kutzer-Ufer 1–368167MannheimGermany
| |
Collapse
|
28
|
Chung S, Kim S, Kim M, Koh ES, Shin SJ, Park CW, Chang YS, Kim HS. Treatment combining aliskiren with paricalcitol is effective against progressive renal tubulointerstitial fibrosis via dual blockade of intrarenal renin. PLoS One 2017; 12:e0181757. [PMID: 28753620 PMCID: PMC5533315 DOI: 10.1371/journal.pone.0181757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/06/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to assess any potential additive effects of a treatment combining aliskiren with paricalcitol on reducing renal fibrosis. C57BL/6J mice were treated individually with aliskiren and/or paricalcitol until 7 days after initiation of unilateral ureteral obstruction (UUO).In obstructed kidneys of UUO mice, monotherapy with aliskiren or paricalcitol significantly attenuated interstitial fibrosis, collagen IV accumulation, and α-smooth muscle actin- and terminal deoxynucleotidyl transferase-mediated biotin nick end-labeling-positive cells. The combination treatment showed additive efficacy in inhibition of these parameters. Renal NADPH oxidase (Nox)1 and Nox2 were significantly decreased by aliskiren or paricalcitol alone or in combination, while renal Nox4 expression was significantly reduced by paricalcitol mono- or combination treatment. Increased levels of p-Erk and p-p38 MAPK, and NF-κB in UUO kidneys were also significantly reduced by either aliskiren or paricalcitol treatment alone or in combination. Aliskiren or paricalcitol monotherapy significantly reduced the expression of (pro)renin receptor in UUO kidneys. In addition, aliskiren tended to augment renin expression in UUO kidneys, but paricalcitol reduced its expression level. The combination treatment effectively blocked both (pro)renin receptor and renin expression induced by aliskiren, and resulted in a further reduction of the renal expression of angiotensin II AT1 receptor. Aliskiren failed to increase the expression of vitamin D receptor in UUO kidneys, but the combination treatment restored its expression level. Taken together, a treatment combining aliskiren with paricalcitol better inhibits UUO-induced renal injury. The mechanism of this synergy may involve more profound inhibition of the intrarenal renin-angiotensin system.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Sik Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: ,
| |
Collapse
|
29
|
Esgalhado M, Stenvinkel P, Mafra D. Nonpharmacologic Strategies to Modulate Nuclear Factor Erythroid 2–related Factor 2 Pathway in Chronic Kidney Disease. J Ren Nutr 2017; 27:282-291. [DOI: 10.1053/j.jrn.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/03/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
|
30
|
Khaleel SA, Alzokaky AA, Raslan NA, Alwakeel AI, Abd El-Aziz HG, Abd-Allah AR. Lansoprazole halts contrast induced nephropathy through activation of Nrf2 pathway in rats. Chem Biol Interact 2017; 270:33-40. [DOI: 10.1016/j.cbi.2017.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
|
31
|
15-Deoxy-Δ 12,14-prostaglandin J 2 Exerts Antioxidant Effects While Exacerbating Inflammation in Mice Subjected to Ureteral Obstruction. Mediators Inflamm 2017; 2017:3924912. [PMID: 28503033 PMCID: PMC5414590 DOI: 10.1155/2017/3924912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 03/12/2017] [Indexed: 02/01/2023] Open
Abstract
Urinary obstruction is associated with inflammation and oxidative stress, leading to renal dysfunction. Previous studies have shown that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has both antioxidant and anti-inflammatory effects. Using a unilateral ureteral obstruction (UUO) mouse model, we examined the effects of 15d-PGJ2 on oxidative stress and inflammation in the kidney. Mice were subjected to UUO for 3 days and treated with 15d-PGJ2. Protein and RNA expression were examined using immunoblotting and qPCR. 15d-PGJ2 increased NF-E2-related nuclear factor erythroid-2 (Nrf2) protein expression in response to UUO, and heme oxygenase 1 (HO-1), a downstream target of Nrf2, was induced by 15d-PGJ2. Additionally, 15d-PGJ2 prevented protein carbonylation, a UUO-induced oxidative stress marker. Inflammation, measured by nuclear NF-κB, F4/80, and MCP-1, was increased in response to UUO and further increased by 15d-PGJ2. Renal injury was aggravated by 15d-PGJ2 treatment as measured by kidney injury molecule-1 (KIM-1) and cortical caspase 3 content. No effect of 15d-PGJ2 was observed on renal function in mice subjected to UUO. This study illustrates differentiated functioning of 15d-PGJ2 on inflammation and oxidative stress in response to obstructive nephropathy. High concentrations of 15d-PGJ2 protects against oxidative stress during 3-day UUO in mice; however, it aggravates the associated inflammation.
Collapse
|
32
|
Peng HB, Wang RX, Deng HJ, Wang YH, Tang JD, Cao FY, Wang JH. Protective effects of oleanolic acid on oxidative stress and the expression of cytokines and collagen by the AKT/NF-κB pathway in silicotic rats. Mol Med Rep 2017; 15:3121-3128. [DOI: 10.3892/mmr.2017.6402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
|
33
|
Chung S, Kim S, Kim M, Koh ES, Yoon HE, Kim HS, Park CW, Chang YS, Shin SJ. T-type calcium channel blocker attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis by activating the Nrf2 antioxidant pathway. Am J Transl Res 2016; 8:4574-4585. [PMID: 27904663 PMCID: PMC5126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Besides its effect on high blood pressure, T-type calcium channel blocker is renoprotective in experimental models of renal fibrosis. However, the exact mechanism of T-type calcium channel blocker on tubulointerstitial fibrosis is unclear. We investigated whether the renoprotective effect of T-type calcium channel blocker is associated with modulation of the signaling of oxidative stress-induced renal fibrosis. Treatment with a non-hypotensive dose of efonidipine, a T-type calcium channel blocker, or nifedipine, an L-type channel blocker, was initiated one day before unilateral ureteral obstruction (UUO) in C57BL6/J mice, and was continued until 3 and 7 days after UUO. In the obstructed kidneys, treatment with efonidipine significantly attenuated interstitial fibrosis, collagen deposition and inflammation increased by UUO creation compared with treatment with nifedipine. Additionally, efonidipine significantly increased the expression of the antioxidant enzymes heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, catalase and superoxide dismutase 1. Increased apoptotic cell death and decreased B-cell lymphoma 2 expression were also significantly ameliorated by efonidipine. The expression of the histone acetyltransferase p300/CBP-associated factor, a regulator of inflammatory molecules, was significantly inhibited by efonidipine. These beneficial effects of efonipidine were attributed to the increased nuclear expression of nuclear factor-erythroid-2-related factor 2 (Nrf2) on UUO day 3 and the increased expressions of both total and nuclear Nrf2 with elevated Kelch-like ECH-associated protein 1 on UUO day 7. The data indicate that T-type calcium channel blocker exerts beneficial effects in renal interstitial fibrosis by activating Nrf2 and subsequent antioxidant enzymes.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| | - Hye Eun Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| | - Yoon Sik Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of KoreaSeoul, Republic of Korea
| |
Collapse
|
34
|
Li Z, Li A, Gao J, Li H, Qin X. Kidney Tissue Targeted Metabolic Profiling of Unilateral Ureteral Obstruction Rats by NMR. Front Pharmacol 2016; 7:307. [PMID: 27695416 PMCID: PMC5023943 DOI: 10.3389/fphar.2016.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
Renal interstitial fibrosis is a common pathological process in the progression of kidney disease. A nuclear magnetic resonance (NMR) based metabolomic approach was used to analyze the kidney tissues of rats with renal interstitial fibrosis (RIF), induced by unilateral ureteral obstruction (UUO). The combination of a variety of statistical methods were used to screen out 14 significantly changed potential metabolites, which are related with multiple biochemical processes including amino acid metabolism, adenine metabolism, energy metabolism, osmolyte change and induced oxidative stress. The exploration of the contralateral kidneys enhanced the understanding of the disease, which was also supported by serum biochemistry and kidney histopathology results. In addition, the pathological parameters (clinical chemistry, histological and immunohistochemistry results) were correlated with the significantly changed differential metabolites related with RIF. This study showed that targeted tissue metabolomic analysis can be used as a useful tool to understand the mechanism of the disease and provide a novel insight in the pathogenesis of RIF.
Collapse
Affiliation(s)
- Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| | - Jining Gao
- Shanxi Hospital of Integrated Traditional and Western Medicine Taiyuan, China
| | - Hong Li
- Shanxi Hospital of Integrated Traditional and Western Medicine Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| |
Collapse
|
35
|
Qin T, Yin S, Yang J, Zhang Q, Liu Y, Huang F, Cao W. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling. Toxicol Appl Pharmacol 2016; 304:1-8. [PMID: 27211841 DOI: 10.1016/j.taap.2016.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/05/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renal fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders.
Collapse
Affiliation(s)
- Tian Qin
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shasha Yin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Jun Yang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Qin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Yangyang Liu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Fengjie Huang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China.
| |
Collapse
|
36
|
Sulforaphane Ameliorates Bladder Dysfunction through Activation of the Nrf2-ARE Pathway in a Rat Model of Partial Bladder Outlet Obstruction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7598294. [PMID: 27433291 PMCID: PMC4940551 DOI: 10.1155/2016/7598294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/10/2016] [Accepted: 04/14/2016] [Indexed: 11/17/2022]
Abstract
Purpose. We evaluated the effect of sulforaphane (SFN) treatment on the function and changes of expression of Nrf2-ARE pathway in the bladder of rats with bladder outlet obstruction (BOO). Materials and Methods. A total of 18 male Sprague-Dawley rats at age of 8 weeks were divided into 3 groups (6 of each): the sham operated group, the BOO group, and the BOO+SFN group. We examined histological alterations and the changes of oxidative stress markers and the protein expression of the Nrf2-ARE pathway. Results. We found that SFN treatment could prolong micturition interval and increase bladder capacity and bladder compliance. However, the peak voiding pressure was lower than BOO group. SFN treatment can ameliorate the increase of collagen fibers induced by obstruction. SFN treatment also increased the activity of SOD, GSH-Px, and CAT compared to the other groups. The level of bladder cell apoptosis was decreased in BOO rats with SFN treatment. Moreover, SFN could reduce the ratio of Bax/Bcl-2 expression. Furthermore, SFN could activate the Nrf2 expression with elevation of its target antioxidant proteins. Conclusions. The sulforaphane-mediated decrease of oxidative stress and activation of the Nrf2-ARE pathway may ameliorate bladder dysfunction caused by bladder outlet obstruction.
Collapse
|
37
|
Yu M, Zhou J, Du B, Ning X, Authement C, Gandee L, Kapur P, Hsieh JT, Zheng J. Noninvasive Staging of Kidney Dysfunction Enabled by Renal-Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2016; 55:2787-91. [PMID: 26800513 PMCID: PMC4834218 DOI: 10.1002/anie.201511148] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/29/2022]
Abstract
As a "silent killer", kidney disease is often hardly detected at an early stage but can cause lethal kidney failure later on. Thus, a preclinical imaging technique that can readily differentiate between the stages of kidney dysfunction is highly desired for improving our fundamental understanding of kidney disease progression. Herein, we report that in vivo fluorescence imaging, enabled by renal-clearable near-infrared-emitting gold nanoparticles, can noninvasively detect kidney dysfunction, report on the dysfunctional stages, and even reveal adaptive function in a mouse model of unilateral obstructive nephropathy, which cannot be diagnosed with routine kidney function markers. These results demonstrate that low-cost fluorescence kidney functional imaging is highly sensitive and useful for the longitudinal, noninvasive monitoring of kidney dysfunction progression in preclinical research.
Collapse
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Jiancheng Zhou
- Department of Urology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Bujie Du
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Craig Authement
- Department of Urology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Leah Gandee
- Department of Urology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Payal Kapur
- Department of Urology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Pathology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA.
- Department of Urology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
38
|
Yu M, Zhou J, Du B, Ning X, Authement C, Gandee L, Kapur P, Hsieh JT, Zheng J. Noninvasive Staging of Kidney Dysfunction Enabled by Renal-Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511148] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Jiancheng Zhou
- Department of Urology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Bujie Du
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Craig Authement
- Department of Urology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Leah Gandee
- Department of Urology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Payal Kapur
- Department of Urology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
- Department of Pathology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Jer-Tsong Hsieh
- Department of Urology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
- Department of Urology; The University of Texas Southwestern Medical Center; 5323 Harry Hines Blvd. Dallas TX 75390 USA
| |
Collapse
|
39
|
Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal 2015; 2015:549352. [PMID: 26618193 PMCID: PMC4651788 DOI: 10.1155/2015/549352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022] Open
Abstract
Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue.
Collapse
|
40
|
Wang L, Zhao B, Chen Y, Ma L, Chen EZ, Mao EQ. Biliary tract external drainage increases the expression levels of heme oxygenase-1 in rat livers. Eur J Med Res 2015. [PMID: 26199001 PMCID: PMC4511237 DOI: 10.1186/s40001-015-0152-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Heme oxygenase-1 (HO-1) protects cells by anti-oxidation, maintaining normal microcirculation and anti-inflammatory under stress. This study investigated the effects of biliary tract external drainage (BTED) on the expression levels of HO-1 in rat livers. Methods Biliary tract external drainage was performed by inserting a cannula into the bile duct. Sixty Sprague–Dawley rats were randomized to the following groups: sham 1 h group; BTED 1 h group; bile duct ligation (BDL) 1 h group; sham 6 h group and BTED 6 h group. The expression levels of HO-1 mRNA were analyzed using real-time RT-PCR. The expression levels of HO-1 were analyzed using immunohistochemistry. Results The expression levels of HO-1 mRNA in the liver of the BTED group increased significantly compared with the sham group 1 and 6 h after surgery (p < 0.05).The expression levels of HO-1 in the BTED group increased significantly compared with the sham group 1 and 6 h after surgery. The expression levels of HO-1 mRNA in the liver in the BDL group decreased significantly compared with the sham group 1 h after surgery (p < 0.05).The expression levels of HO-1 in the BDL group decreased significantly compared with the sham group at this time. Conclusion Biliary tract external drainages increase the expression levels of HO-1 in the liver.
Collapse
Affiliation(s)
- Lu Wang
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Bing Zhao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Ying Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Li Ma
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Er-Zhen Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - En-Qiang Mao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
41
|
Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, Bian X, Liu N. Epigallocatechin-3-Gallate Attenuates Oxidative Stress and Inflammation in Obstructive Nephropathy via NF-κB and Nrf2/HO-1 Signalling Pathway Regulation. Basic Clin Pharmacol Toxicol 2015; 117:164-72. [PMID: 25625183 DOI: 10.1111/bcpt.12383] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/09/2015] [Indexed: 01/22/2023]
Abstract
Oxidative stress and inflammation contribute importantly to the pathogenesis of chronic kidney disease (CKD). Epigallocatechin-3-gallate (EGCG), which is the most abundant and most active catechin polyphenol extracted from green tea, has been proved to have many bioactivities. In this study, the renoprotective effect of EGCG was evaluated in a widely used kidney disease model, the unilateral ureteral obstruction (UUO) mice model. After 14 days of EGCG administration, mean arterial blood pressure, body-weight and obstructed kidney weight were measured. Levels of blood urea nitrogen (BUN) and creatinine (CR) and activities of glutamic-pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) in serum were estimated as indicators of renal function. Periodic acid-Schiff (PAS) staining was performed to observe the pathological changes of the obstructed kidney. Antioxidant enzymes and pro-inflammatory cytokine production were estimated to reflect the oxidative stress and inflammatory state in the obstructed kidney. Finally, the main proteins in the NF-κB and Nrf2 signalling pathway and DNA binding activity of NF-κB and Nrf2 were measured to investigate the effect of EGCG on these two pathways. The results demonstrated that EGCG could restore UUO-induced kidney weight loss and renal dysfunction. In addition, UUO-induced oxidative stress and inflammatory responses in the obstructed kidney were also prevented by EGCG. Furthermore, EGCG could induce both NF-κB and Nrf2 nuclear translocation in the UUO kidney and promote heme oxygenase-1 (HO-1) production. These results indicated that the renoprotective effect of EGCG might be through its NF-κB and Nrf2 signalling pathway regulations.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bowen Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Du
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangping Sun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohui Bian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Liu
- Department of Nephrology, Ordos Central Hospital, Ordos, Inner Mongolia, China
| |
Collapse
|
42
|
Chuang ST, Kuo YH, Su MJ. KS370G, a caffeamide derivative, attenuates unilateral ureteral obstruction-induced renal fibrosis by the reduction of inflammation and oxidative stress in mice. Eur J Pharmacol 2015; 750:1-7. [PMID: 25620133 DOI: 10.1016/j.ejphar.2015.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/19/2022]
Abstract
Unilateral ureteral obstruction (UUO) is an established animal model used to study renal nephropathy. Caffeic acid phenethyl ester, a natural phenolic compound, possesses antifibrotic, anti-inflammation and anti-oxidative stress effects; however, rapid decomposition by esterases substantially decreases its bioavailability. The goal of this study was to investigate the beneficial effects of KS370G, a synthetic caffeamide derivative, on UUO-induced renal injury. Following the UUO, KS370G (10mg/kg) was administered by oral gavage once a day. Renal injury was analyzed at 14 days post-operation. Our results show that KS370G significantly attenuated collagen deposition in the obstructed kidney and inhibited UUO-induced renal fibrosis markers expression, including fibronectin, type I collagen, vimentin, and α-smooth muscle actin (α-SMA). KS370G significantly lowered the expression of renal inflammatory chemokines/adhesion molecules and monocyte cells marker (MCP-1, VCAM-1, ICAM-1 and CD11b). KS370G also reduced renal malondialdehyde levels and reversed the expression of renal antioxidant enzymes (SOD and catalase) after UUO. Furthermore, KS370G significantly inhibited UUO-induced elevated plasma AngII and TGF-β1 levels, TGF-β1 protein expression and Smad3 phosphorylation. These findings demonstrate that KS370G reduces renal obstructive nephropathy by possibly inhibiting AngII, TGF-β and Smad3 signaling pathways.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Ming-Jai Su
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
43
|
Kim S, Kim SJ, Yoon HE, Chung S, Choi BS, Park CW, Shin SJ. Fimasartan, a Novel Angiotensin-Receptor Blocker, Protects against Renal Inflammation and Fibrosis in Mice with Unilateral Ureteral Obstruction: the Possible Role of Nrf2. Int J Med Sci 2015; 12:891-904. [PMID: 26640409 PMCID: PMC4643080 DOI: 10.7150/ijms.13187] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES A newly developed angiotensin II receptor blocker, fimasartan, is effective in lowering blood pressure through its action on the renin-angiotensin system. Renal interstitial fibrosis, believed to be due to oxidative injury, is an end-stage process in the progression of chronic kidney disease. Nuclear factor erythroid 2-related factor 2 (Nrf2) is known to regulate cellular oxidative stress and induce expression of antioxidant genes. In this study we investigated the role of Nrf2 in fimasartan-mediated antioxidant effects in mice with renal fibrosis induced by unilateral ureteral obstruction (UUO). MATERIALS AND METHODS UUO was induced surgically in mice, followed by either no treatment with fimasartan or the intraperitoneal administration of fimasartan (3 mg/kg/day). On day 7, we evaluated the changes in the renin-angiotensin system (RAS) and the expression of Nrf2 and its downstream antioxidant genes, as well as renal inflammation, apoptosis, and fibrosis in the obstructed kidneys. The effect of fimasartan on the Nrf2 pathway was also investigated in HK-2 cells stimulated by tumor necrosis factor-α. RESULTS The mice with surgically induced UUO showed increased renal inflammation and fibrosis as evidenced by histopathologic findings and total collagen content in the kidney. These effects were attenuated in the obstructed kidneys of the fimasartan-treated mice. Fimasartan treatment inhibited RAS activation and the expression of Nox1, Nox2, and Nox4. In contrast, fimasartan upregulated the renal expression of Nrf2 and its downstream signaling molecules (such as NQO1; HO-1; GSTa2 and GSTm3). Furthermore, it increased the expression of antioxidant enzymes, including CuSOD, MnSOD, and catalase. The fimasartan-treated mice had significantly less apoptosis on TUNEL staining, with decreased levels of pro-apoptotic protein and increased levels of anti-apoptotic protein. In the HK-2 cells, fimasartan treatment inhibited RAS activation, decreased expression of mitogen-activated protein kinases (MAPKs), and upregulated the Nrf2 pathway. CONCLUSIONS These results suggest that fimasartan has beneficial effects in reducing renal oxidative stress, inflammation, and fibrosis. Possible mechanisms to explain these effects are inhibition of RAS and MAPKs and upregulation of Nrf2 signaling, with subsequent induction of antioxidant pathways.
Collapse
Affiliation(s)
- Soojeong Kim
- 1. Division of of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea
| | - Sung Jun Kim
- 2. Division of of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Hye Eun Yoon
- 2. Division of of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Sungjin Chung
- 1. Division of of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea
| | - Bum Soon Choi
- 1. Division of of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea
| | - Cheol Whee Park
- 1. Division of of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea
| | - Seok Joon Shin
- 2. Division of of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| |
Collapse
|
44
|
Camer D, Yu Y, Szabo A, Huang XF. The molecular mechanisms underpinning the therapeutic properties of oleanolic acid, its isomer and derivatives for type 2 diabetes and associated complications. Mol Nutr Food Res 2014; 58:1750-9. [PMID: 24740831 DOI: 10.1002/mnfr.201300861] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 01/02/2023]
Abstract
Recent research has uncovered the molecular mechanisms responsible for the therapeutic properties of oleanolic acid (OA), its isomer ursolic acid (UA), and derivatives. In particular, recent reports have highlighted the benefits of these compounds in the prevention and treatment of type 2 diabetes and associated life-threatening complications, such as nonalcoholic fatty liver disease, nephropathy, retinopathy, and atherosclerosis. The prevalence of type 2 diabetes is of major concern since it is reaching global epidemic levels. Treatments targeting the signaling pathways altered in type 2 diabetes are being actively investigated, and OA and UA in natural and derivative forms are potential candidates to modulate these pathways. We will explore the findings from in vitro and in vivo studies showing that these compounds: (i) improve insulin signaling and reduce hyperglycemia; (ii) reduce oxidative stress by upregulating anti-oxidants and; (iii) reduce inflammation by inhibiting proinflammatory signaling. We will discuss the molecular mechanisms underpinning these therapeutic properties in this review in order to provide a rationale for the future use of OA, UA, and their derivatives for the prevention and treatment of type 2 diabetes and associated comorbidities.
Collapse
Affiliation(s)
- Danielle Camer
- Centre for Translational Neuroscience, School of Medicine, Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | | | | | | |
Collapse
|