1
|
Effects of ketamine, propofol and isoflurane on electrocardiographic variables in clinically healthy dogs premedicated with medetomidine and midazolam. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:187-194. [PMID: 38770200 PMCID: PMC11102798 DOI: 10.30466/vrf.2024.2008055.3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/08/2024] [Indexed: 05/22/2024]
Abstract
The purpose of this study was to investigate the effects of three anesthetic agents, with premedication of medetomidine and midazolam, on electrocardiographic variables in dogs. Ten adult mixed breed dogs were used in a crossover design study, where they received ketamine, propofol and isoflurane treatments with a one-week washout period between them. In all three groups, medetomidine was administered first followed by midazolam after 15 min. Then, after 20 min, group 1 received ketamine intravenously (IV), group 2 received propofol (IV), and group 3 received isoflurane (inhalation). In all dogs, electrocardiographs were taken before and after premedication's, as well as every 15 min during anesthesia. Medetomidine significantly decreased heart rate and P wave amplitude and increased PR interval, R wave amplitude, QT interval, and T wave amplitude. Midazolam increased the amplitude of the R and T waves. Ketamine increased the heart rate and PR interval. Propofol increased the heart rate for up to 15 min, decreased the PR interval for up to 30 min, and the QT interval for up to 45 min. Isoflurane increased the heart rate and decreased the amplitude of R and T waves. The results showed that the drugs used in this study did not have many side effects on electrocardiographic variables and could be used without serious concern. The most important side effects observed were a severe reduction in heart rate and 1st degree atrioventricular (AV) block and, to a lesser extent, 2nd degree AV block caused by medetomidine and midazolam which were masked by the anesthetics.
Collapse
|
2
|
Saberfard D, Sarchahi AA, Mehrjerdi HK. Effect of medetomidine, midazolam, ketamine, propofol and isoflurane on spinal reflexes in healthy dogs. Vet Med Sci 2022; 8:2351-2359. [DOI: 10.1002/vms3.938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Donya Saberfard
- Faculty of Veterinary Medicine Ferdowsi University of Mashhad Mashhad Iran
| | - Ali Asghar Sarchahi
- Faculty of Veterinary Medicine, Department of Clinical Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Hossein Kazemi Mehrjerdi
- Faculty of Veterinary Medicine, Department of Clinical Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
3
|
Fish Sedation and Anesthesia. Vet Clin North Am Exot Anim Pract 2021; 25:13-29. [PMID: 34823688 DOI: 10.1016/j.cvex.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Veterinarians often need to sedate or anesthetize fish to perform physical examinations or other diagnostic procedures. Sedation may also be required to transport fish. Painful procedures require complete anesthesia with appropriate antinociceptive agents. Regulations and withdrawal times apply to food animal species in many countries. Specific protocols are therefore warranted in commercial fish versus ornamentals. Tonic immobility of elasmobranchs and electric anesthesia should never be used to perform painful procedures. Anesthetic monitoring in fish remains challenging. This review summarizes ornamental fish anesthesia and discusses techniques used in the commercial fish industry and in field conditions.
Collapse
|
4
|
Zhang L, Zheng Z, Ma W, Zhang S, Xue F, Wang H, He Y, Ye F, Zhou S, Wen Y, Li X, Huang W, Huang M, Li J, Wang Z. The Effects of Gene Variations of GABRA2, GABRB1, GABRG2, GAD1 and SLC1A3 on Patients with Propofol During Anesthesia Induction. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1185-1192. [PMID: 34557020 PMCID: PMC8455292 DOI: 10.2147/pgpm.s326885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022]
Abstract
Purpose Propofol is one of the most commonly used intravenous sedatives in general anesthesia, while the individual variations of propofol are apparent. The objective of this study was to investigate the influence of genetic variations in GABAergic neurons and glutamatergic neurons on time to loss of consciousness (LOC) and the incidence of hypotension during anesthesia induction. Patients and Methods A total of 140 Chinese patients undergoing thyroid surgery or breast surgery were recruited. Genotyping of candidate genes was carried out using the Agena Bioscience MassARRAY system. Anesthesia induction was initiated with a propofol target plasma concentration (Cp) of 4.0 μg mL−1. The LOC latency, systolic blood pressure, diastolic blood pressure, mean arterial pressure were documented. Results We found that GABRA2 rs35496835, GABRB1 rs1372496, GABRG2 rs11135176, GABRG2 rs209358, GAD1 rs3791878, SLC1A3 rs1049522 and gender were significant determinants of the patient’s LOC latency following propofol administration. GABRA2 rs11503014 was highly correlated with blood pressure reduction during anesthesia induction. Multiple linear regression analysis revealed that GABRB1 rs1372496, GABRG2 rs11135176, and SLC1A3 rs1049522 accounted for 35.3% variations in LOC latency following propofol administration. Conclusion Our findings indicate that genetic variants of GABRA2, GABRB1, GABRG2, GAD1 and SLC1A3 may have influence on propofol susceptibility, which would be an important guidance towards building clinical models that can precisely predict the efficacy of propofol with various populations before surgery.
Collapse
Affiliation(s)
- Lingyi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhuoling Zheng
- Department of Pharmacy, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wudi Ma
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shuyu Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Faling Xue
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Haini Wang
- Department of Pharmacy, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yongqi He
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shouning Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yongzi Wen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyan Li
- Department of Pharmacy, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiali Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Effect of Compound Muscle Action Potential After Peripheral Nerve Stimulation Normalization on Anesthetic Fade of Intraoperative Transcranial Motor-Evoked Potential. J Clin Neurophysiol 2021; 38:306-311. [PMID: 32187041 DOI: 10.1097/wnp.0000000000000692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Anesthetic fade refers to the time-dependent decrease in the amplitude of the intraoperative motor-evoked potential. It is thought to be caused by the accumulation of propofol. The authors examined whether normalization by the compound muscle action potential (CMAP) after peripheral nerve stimulation could compensate for anesthetic fade. METHODS In 1,842 muscles in 578 surgeries, which did not exhibit a motor-neurologic change after the operation, the motor-evoked potential amplitude was normalized by the CMAP amplitude after peripheral nerve stimulation, and the CMAP amplitude and operation times were analyzed. RESULTS The amplitudes of both motor-evoked potential and CMAP increased over time after peripheral nerve stimulation because of the disappearance of muscle-relaxant action. Especially, after peripheral nerve stimulation, CMAP significantly increased from the beginning to the end of the operation. Anesthetic fade in transcranial motor-evoked potential monitoring seemed to occur at more than 235 minutes of surgery based on the results of a receiver operating characteristic analysis of the operation time and relative amplitudes. Although the mean amplitude without CMAP normalization at more than 235 minutes was significantly lower than that at less than 235 minutes, the mean amplitude with normalization by CMAP after peripheral nerve stimulation at more than 235 minutes was not significantly different from that at less than 235 minutes. CONCLUSIONS Compound muscle action potential after peripheral nerve stimulation normalization was able to avoid the effect of anesthetic fade. Anesthetic fade was seemed to be caused by a decrease in synaptic transmission at the neuromuscular junction because of propofol accumulation by this result.
Collapse
|
6
|
Lipiec MA, Bem J, Koziński K, Chakraborty C, Urban-Ciećko J, Zajkowski T, Dąbrowski M, Szewczyk ŁM, Toval A, Ferran JL, Nagalski A, Wiśniewska MB. TCF7L2 regulates postmitotic differentiation programmes and excitability patterns in the thalamus. Development 2020; 147:dev.190181. [PMID: 32675279 PMCID: PMC7473649 DOI: 10.1242/dev.190181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Neuronal phenotypes are controlled by terminal selector transcription factors in invertebrates, but only a few examples of such regulators have been provided in vertebrates. We hypothesised that TCF7L2 regulates different stages of postmitotic differentiation in the thalamus, and functions as a thalamic terminal selector. To investigate this hypothesis, we used complete and conditional knockouts of Tcf7l2 in mice. The connectivity and clustering of neurons were disrupted in the thalamo-habenular region in Tcf7l2-/- embryos. The expression of subregional thalamic and habenular transcription factors was lost and region-specific cell migration and axon guidance genes were downregulated. In mice with a postnatal Tcf7l2 knockout, the induction of genes that confer thalamic terminal electrophysiological features was impaired. Many of these genes proved to be direct targets of TCF7L2. The role of TCF7L2 in terminal selection was functionally confirmed by impaired firing modes in thalamic neurons in the mutant mice. These data corroborate the existence of master regulators in the vertebrate brain that control stage-specific genetic programmes and regional subroutines, maintain regional transcriptional network during embryonic development, and induce terminal selection postnatally.
Collapse
Affiliation(s)
- Marcin Andrzej Lipiec
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.,Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Bem
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Kamil Koziński
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Chaitali Chakraborty
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | | | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Michał Dąbrowski
- Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland
| | | | - Angel Toval
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, Campus de la Salud, 30120 El Palmar, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, Campus de la Salud, 30120 El Palmar, Murcia, Spain
| | - Andrzej Nagalski
- Centre of New Technologies, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | | |
Collapse
|
7
|
Zhang Q, Yu Y, Lu Y, Yue H. Systematic review and meta-analysis of propofol versus barbiturates for controlling refractory status epilepticus. BMC Neurol 2019; 19:55. [PMID: 30954065 PMCID: PMC6451279 DOI: 10.1186/s12883-019-1281-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/22/2019] [Indexed: 11/28/2022] Open
Abstract
Background Several studies have compared the efficacy and safety of propofol and barbiturates in the treatment of refractory status epilepticus (RSE). This study aims to quantitatively assess the advantages and disadvantages of propofol and barbiturates in controlling RSE. Methods We searched for studies with relevant data from the PubMed, Embase, Ovid, Cochrane Library, Springer Link, Web of Science, and China National Knowledge Infrastructure databases. By calculating odds ratios and standardized mean differences with 95% confidence intervals, we assessed the disease control rate (DCR), case fatality rate (CFR), average control time (ACT), average tracheal intubation placement time (ATIPT), and incidence of hypotension between propofol and barbiturates in treating RSE. Results Seven studies with 261 patients were included in this analysis. Meta-analysis revealed that the DCR of propofol was higher than that of barbiturates (p < 0.001) and that the CFR (p = 0.382) between the two treatment did not significantly differ in controlling RSE. Propofol shortened the ACT (p < 0.001) of RSE and reduced the ATIPT (p < 0.001) of patients with RSE more extensively than did barbiturates and did not increase the incidence of hypotension (p = 0.737). Conclusions In comparison with barbiturates, propofol can control RSE and shorten ATIPT in a more efficient and timely manner. Moreover, the drug does not increase the incidence of hypotension and CFR.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No.119, Nansihuanxi Road, Fengtai District, Beijing, 100070, China
| | - Yun Yu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No.119, Nansihuanxi Road, Fengtai District, Beijing, 100070, China
| | - Yu Lu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No.119, Nansihuanxi Road, Fengtai District, Beijing, 100070, China
| | - Hongli Yue
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No.119, Nansihuanxi Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
8
|
NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nat Biotechnol 2019; 37:267-275. [PMID: 30804533 PMCID: PMC6591152 DOI: 10.1038/s41587-019-0035-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
The mechanistic basis of gliogenesis, which occurs late in human development, is poorly understood. Here we identify nuclear factor IA (NFIA) as a molecular switch for inducing human glial competency. Transient expression of NFIA is sufficient to trigger glial competency of human pluripotent stem cell-derived neural stem cells within 5 days and to convert these cells into astrocytes in the presence of glial-promoting factors, compared to 3–6 months using current protocols. NFIA-induced astrocytes promote synaptogenesis, exhibit neuroprotective properties, display calcium transients in response to appropriate stimuli, and engraft in the adult mouse brain. Differentiation involves rapid but reversible chromatin remodeling, GFAP promoter demethylation, and a striking lengthening of the G1 cell cycle phase. Genetic or pharmacological manipulation of G1 length partially mimics NFIA function. We use the approach to generate astrocytes with region-specific or reactive features. Our study defines key mechanisms of the gliogenic switch and enables the rapid production of human astrocytes for disease modeling and regenerative medicine.
Collapse
|
9
|
Spectral and phase-amplitude coupling signatures in human deep brain oscillations during propofol-induced anaesthesia. Br J Anaesth 2018; 121:303-313. [PMID: 29935585 DOI: 10.1016/j.bja.2018.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Both the cerebral cortex and subcortical structures play important roles in consciousness. Some evidence points to general anaesthesia-induced unconsciousness being associated with distinct patterns of superficial cortical electrophysiological oscillations, but how general anaesthetics influence deep brain neural oscillations and interactions between oscillations in humans is poorly understood. METHODS Local field potentials were recorded in discrete deep brain regions, including anterior cingulate cortex, sensory thalamus, and periaqueductal grey, in humans with implanted deep brain electrodes during induction of unconsciousness with propofol. Power-frequency spectra, phase-amplitude coupling, coherence, and directed functional connectivity analysis were used to characterise local field potentials in the awake and unconscious states. RESULTS An increase in alpha (7-13 Hz) power and decrease in gamma (30-90 Hz) power were observed in both deep cortical (ACC, anterior cingulate cortex) and subcortical (sensory thalamus, periaqueductal grey) areas during propofol-induced unconsciousness. Robust alpha-low gamma (30-60 Hz) phase-amplitude coupling induced by general anaesthesia was observed in the anterior cingulate cortex but not in other regions studied. Moreover, alpha oscillations during unconsciousness were highly coherent within the anterior cingulate cortex, and this rhythm exhibited a bidirectional information flow between left and right anterior cingulate cortex but stronger left-to-right flow. CONCLUSION Propofol increases alpha oscillations and attenuates gamma oscillations in both cortical and subcortical areas. The alpha-gamma phase-amplitude coupling and the functional connectivity of alpha oscillations in the anterior cingulate cortex could be specific markers for loss of consciousness.
Collapse
|
10
|
Metabolic Profiles of Propofol and Fospropofol: Clinical and Forensic Interpretative Aspects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6852857. [PMID: 29992157 PMCID: PMC5994321 DOI: 10.1155/2018/6852857] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023]
Abstract
Propofol is an intravenous short-acting anesthetic widely used to induce and maintain general anesthesia and to provide procedural sedation. The potential for propofol dependency and abuse has been recognized, and several cases of accidental overdose and suicide have emerged, mostly among the health professionals. Different studies have demonstrated an unpredictable interindividual variability of propofol pharmacokinetics and pharmacodynamics with forensic and clinical adverse relevant outcomes (e.g., pronounced respiratory and cardiac depression), namely, due to polymorphisms in the UDP-glucuronosyltransferase and cytochrome P450 isoforms and drugs administered concurrently. In this work the pharmacokinetics of propofol and fospropofol with particular focus on metabolic pathways is fully reviewed. It is concluded that knowing the metabolism of propofol may lead to the development of new clues to help further toxicological and clinical interpretations and to reduce serious adverse reactions such as respiratory failure, metabolic acidosis, rhabdomyolysis, cardiac bradyarrhythmias, hypotension and myocardial failure, anaphylaxis, hypertriglyceridemia, renal failure, hepatomegaly, hepatic steatosis, acute pancreatitis, abuse, and death. Particularly, further studies aiming to characterize polymorphic enzymes involved in the metabolic pathway, the development of additional routine forensic toxicological analysis, and the relatively new field of ‘‘omics” technology, namely, metabolomics, can offer more in explaining the unpredictable interindividual variability.
Collapse
|
11
|
Kratzer S, Mattusch C, Garcia PS, Schmid S, Kochs E, Rammes G, Schneider G, Kreuzer M, Haseneder R. Propofol and Sevoflurane Differentially Modulate Cortical Depolarization following Electric Stimulation of the Ventrobasal Thalamus. Front Comput Neurosci 2017; 11:109. [PMID: 29321737 PMCID: PMC5732174 DOI: 10.3389/fncom.2017.00109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
Abstract
The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated. Here we investigated the effect of the anesthetic agents sevoflurane and propofol on thalamocortical network activity in vitro. We used voltage-sensitive dye imaging techniques to analyze the cortical depolarization in response to stimulation of the thalamic ventrobasal nucleus in brain slices from mice. Exposure to sevoflurane globally decreased cortical depolarization in a dose-dependent manner. Sevoflurane reduced the intensity and extent of cortical depolarization and delayed thalamocortical signal propagation. In contrast, propofol neither affected area nor amplitude of cortical depolarization. However, propofol exposure resulted in regional changes in spatial distribution of maximum fluorescence intensity in deep regions of the cortex. In summary, our experiments revealed substance-specific effects on the thalamocortical network. Functional changes of the neuronal network are known to be pivotally involved in the anesthetic-induced loss of consciousness. Our findings provide further evidence that the mechanisms of anesthetic-mediated loss of consciousness are drug- and pathway-specific.
Collapse
Affiliation(s)
- Stephan Kratzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Corinna Mattusch
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Paul S Garcia
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Sebastian Schmid
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eberhard Kochs
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Rainer Haseneder
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
12
|
Hashemi M, Hutt A, Hight D, Sleigh J. Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLoS One 2017; 12:e0179286. [PMID: 28622355 PMCID: PMC5473556 DOI: 10.1371/journal.pone.0179286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
In recent years, more and more surgeries under general anesthesia have been performed with the assistance of electroencephalogram (EEG) monitors. An increase in anesthetic concentration leads to characteristic changes in the power spectra of the EEG. Although tracking the anesthetic-induced changes in EEG rhythms can be employed to estimate the depth of anesthesia, their precise underlying mechanisms are still unknown. A prominent feature in the EEG of some patients is the emergence of a strong power peak in the β-frequency band, which moves to the α-frequency band while increasing the anesthetic concentration. This feature is called the beta-buzz. In the present study, we use a thalamo-cortical neural population feedback model to reproduce observed characteristic features in frontal EEG power obtained experimentally during propofol general anesthesia, such as this beta-buzz. First, we find that the spectral power peak in the α- and δ-frequency ranges depend on the decay rate constant of excitatory and inhibitory synapses, but the anesthetic action on synapses does not explain the beta-buzz. Moreover, considering the action of propofol on the transmission delay between cortex and thalamus, the model reveals that the beta-buzz may result from a prolongation of the transmission delay by increasing propofol concentration. A corresponding relationship between transmission delay and anesthetic blood concentration is derived. Finally, an analytical stability study demonstrates that increasing propofol concentration moves the systems resting state towards its stability threshold.
Collapse
Affiliation(s)
- Meysam Hashemi
- INRIA Grand Est - Nancy, Team NEUROSYS, Villers-lès-Nancy, France
- CNRS, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Axel Hutt
- German Meteorology Service, Offenbach am Main, Germany
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
13
|
Fu B, Wang Y, Yang H, Yu T. Effects of Etomidate on GABAergic and Glutamatergic Transmission in Rat Thalamocortical Slices. Neurochem Res 2016; 41:3181-3191. [PMID: 27561291 DOI: 10.1007/s11064-016-2042-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Although accumulative evidence indicates that the thalamocortical system is an important target for general anesthetics, the underlying mechanisms of anesthetic action on thalamocortical neurotransmission are not fully understood. The aim of the study is to explore the action of etomidate on glutamatergic and GABAergic transmission in rat thalamocortical slices by using whole cell patch-clamp recording. We found that etomidate mainly prolonged the decay time of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs), without changing the frequency. Furthermore, etomidate not only prolonged the decay time of miniature inhibitory postsynaptic currents (mIPSCs) but also increased the amplitude. On the other hand, etomidate significantly decreased the frequency of spontaneous glutamatergic excitatory postsynaptic currents (sEPSCs), without altering the amplitude or decay time in the absence of bicuculline. When GABAA receptors were blocked using bicuculline, the effects of etomidate on sEPSCs were mostly eliminated. These results suggest that etomidate enhances GABAergic transmission mainly through postsynaptic mechanism in thalamocortical neuronal network. Etomidate attenuates glutamatergic transmission predominantly through presynaptic action and requires presynaptic GABAA receptors involvement.
Collapse
Affiliation(s)
- Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yuan Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Hao Yang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian road 149, Zunyi, 563000, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian road 149, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
14
|
Differential effects of general anesthetics on anxiety-like behavior in formalin-induced pain: involvement of ERK activation in the anterior cingulate cortex. Psychopharmacology (Berl) 2015; 232:4433-44. [PMID: 26400403 DOI: 10.1007/s00213-015-4071-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/31/2015] [Indexed: 01/19/2023]
Abstract
RATIONALE Pain-related anxiety and depression are well known to be comorbid with chronic pain and adversely affect patient quality of life. Recent studies have shown that anxiety-like behaviors also develop with acute surgical pain, but the effects of general anesthetics on acute pain-related anxiety are unknown. OBJECTIVE The present study aimed to compare the effects of different general anesthetics on anxiety-like behaviors that follow formalin-induced acute pain in a rat model. METHODS Formalin-induced acute inflammatory pain was established by intraplantar injection of 1% formalin without anesthesia or with anesthesia using the clinical anesthetics sevoflurane, propofol, or pentobarbital sodium. Anxiety-like behaviors were studied using the open-field test and elevated plus maze. Phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2 expression in the anterior cingulate cortex (ACC) and spinal cord was examined using immunohistochemistry. RESULTS Anxiety-like behaviors were observed at 24 and 72 h post-formalin injection. Concomitantly, p-ERK 1/2 expression was upregulated in the ACC at 1 and 24 h post-formalin injection. While all three general anesthetics effectively blocked nociceptive responses and activation of ERK in the rat ACC following formalin injection during anesthesia, only sevoflurane inhibited ERK activation in the spinal cord and ACC at 24 h post-injection. CONCLUSIONS This study suggests that sevoflurane, but not intravenous anesthetics, inhibits pain-related anxiety, along with ERK activation in the ACC, probably through inhibition of spinal nociceptive transmission. Intraoperative application of inhaled anesthetics may be a better choice to reduce postoperative anxiety.
Collapse
|
15
|
Wakita M, Kotani N, Akaike N. Effects of propofol on glycinergic neurotransmission in a single spinal nerve synapse preparation. Brain Res 2015; 1631:147-56. [PMID: 26616339 DOI: 10.1016/j.brainres.2015.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
The effects of the intravenous anesthetic, propofol, on glycinergic transmission and on glycine receptor-mediated whole-cell currents (IGly) were examined in the substantia gelatinosa (SG) neuronal cell body, mechanically dissociated from the rat spinal cord. This "synaptic bouton" preparation, which retains functional native nerve endings, allowed us to evaluate glycinergic inhibitory postsynaptic currents (IPSCs) and whole-cell currents in a preparation in which experimental solution could rapidly access synaptic terminals. Synaptic IPSCs were measured as spontaneous (s) and evoked (e) IPSCs. The eIPSCs were elicited by applying paired-pulse focal electrical stimulation, while IGly was evoked by a bath application of glycine. A concentration-dependent enhancement of IGly was observed for ≥10µM propofol. Propofol (≥3µM) significantly increased the frequency of sIPSCs and prolonged the decay time without altering the current amplitude. However, propofol (≥3µM) also significantly increased the mean amplitude of eIPSCs and decreased the failure rate (Rf). A decrease in the paired-pulse ratio (PPR) was noted at higher concentrations (≥10µM). The decay time of eIPSCs was prolonged only at the maximum concentration tested (30µM). Propofol thus acts at both presynaptic glycine release machinery and postsynaptic glycine receptors. At clinically relevant concentrations (<1μM) there was no effect on IGly, sIPSCs or eIPSCs suggesting that at anesthetic doses propofol does not affect inhibitory glycinergic synapses in the spinal cord.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Clinical Pharmacology, Medical Corporation, JyuryoGroup, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto 860-8518, Japan; Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kitaku, Kumamoto 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya 343-0821, Japan
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, JyuryoGroup, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto 860-8518, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya 343-0821, Japan; Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
16
|
How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J Comput Neurosci 2015; 39:155-79. [PMID: 26256583 DOI: 10.1007/s10827-015-0569-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Increasing concentrations of the anaesthetic agent propofol initially induces sedation before achieving full general anaesthesia. During this state of anaesthesia, the observed specific changes in electroencephalographic (EEG) rhythms comprise increased activity in the δ- (0.5-4 Hz) and α- (8-13 Hz) frequency bands over the frontal region, but increased δ- and decreased α-activity over the occipital region. It is known that the cortex, the thalamus, and the thalamo-cortical feedback loop contribute to some degree to the propofol-induced changes in the EEG power spectrum. However the precise role of each structure to the dynamics of the EEG is unknown. In this paper we apply a thalamo-cortical neuronal population model to reproduce the power spectrum changes in EEG during propofol-induced anaesthesia sedation. The model reproduces the power spectrum features observed experimentally both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the importance of multiple resting states in brain activity. The work suggests that the α-activity originates from the cortico-thalamic relay interaction, whereas the emergence of δ-activity results from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced thalamic reticular-relay interaction. This model suggests an important role for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the generation of both the δ- and the α- EEG patterns that are seen during propofol anaesthesia sedation.
Collapse
|
17
|
Attenuation of high-frequency (50-200 Hz) thalamocortical EEG rhythms by propofol in rats is more pronounced for the thalamus than for the cortex. PLoS One 2015; 10:e0123287. [PMID: 25875024 PMCID: PMC4398544 DOI: 10.1371/journal.pone.0123287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/09/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Thalamocortical EEG rhythms in gamma (30-80 Hz) and high-gamma (80-200 Hz) ranges have been linked to arousal and conscious processes. To test the hypothesis that general anesthetics attenuate these rhythms, we characterized the concentration-effect relationship of propofol on the spectral power of these rhythms. In view of the ongoing debate about cortex versus thalamus as the primary site of anesthetic action for unconsciousness, we also compared the relative sensitivity of cortex and thalamus to this effect propofol. METHODS Adult male Long-Evans rats were chronically implanted with electrodes in somatosensory (barrel) cortex and ventroposteromedial thalamus. Propofol was delivered by a computer-controlled infusion using real-time pharmacokinetic modeling to obtain the desired plasma concentration. Spectral power was assessed during baseline, at four stable propofol plasma-concentrations (0, 3,6,9,12 μg/ml) and during recovery over four frequency ranges (30-50, 51-75, 76-125, 126-200 Hz). Unconsciousness was defined as complete loss of righting reflex. Multiple regression was used to model the change of power (after logarithmic transformation) as a function of propofol concentration and recording site. RESULTS Unconsciousness occurred at the 9 μg/ml concentration in all animals. Propofol caused a robust linear concentration-dependent attenuation of cortical power in the 76-200 Hz range and of thalamic power in the 30-200 Hz range. In all instances the concentration-effect slope for the thalamus was markedly steeper than for the cortex. Furthermore the lowest concentration causing unconsciousness significantly reduced cortical power in the 126-200 Hz range and thalamic power in the 30-200 Hz range. CONCLUSIONS Propofol causes a concentration-dependent attenuation of the power of thalamocortical rhythms in the 30-200 Hz range and this effect is far more pronounced for the thalamus, where the attenuation provides a robust correlate of the hypnotic action of propofol [corrected].
Collapse
|
18
|
Marín T, Hernando D, Kinast N, Churruca I, Sabate S. Anaesthetic management of Stiff Man syndrome. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2015; 62:222-227. [PMID: 25060949 DOI: 10.1016/j.redar.2014.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Stiff Man syndrome or stiff-person syndrome is a rare autoimmune disorder. It is characterized by increased axial muscular tone and limb musculature, and painful spasms triggered by stimulus. The case is presented of a 44-year-old man with stiff-person syndrome undergoing an injection of botulinum toxin in the urethral sphincter under sedation. Before induction, all the surgical team were ready in order to minimise the anaesthetic time. The patient was monitored by continuous ECG, SpO2 and non-invasive blood pressure. He was induced with fractional dose of propofol 150 mg, fentanyl 50 μg and midazolam 1mg. Despite careful titration, the patient had an O2 saturation level of 90%,which was resolved by manual ventilation. There was no muscle rigidity or spasm during the operation. Post-operative recovery was uneventful and the patient was discharged 2 days later. A review of other cases is presented. The anaesthetic concern in patients with stiff-person syndrome is the interaction between the anaesthetic agents, the preoperative medication, and the GABA system. For a safe anaesthetic management, total intravenous anaesthesia is recommended instead of inhalation anaesthetics, as well as the close monitoring of the respiratory function and the application of the electrical nerve stimulator when neuromuscular blockers are used.
Collapse
Affiliation(s)
- T Marín
- Servicio de Anestesia y Reanimación, Hospital de la Santa Creu i Sant Pau, Barcelona, España.
| | - D Hernando
- Servicio de Anestesia y Reanimación, Fundación Puigvert, Barcelona, España
| | - N Kinast
- Servicio de Anestesia y Reanimación, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - I Churruca
- Servicio de Anestesia y Reanimación, Fundación Puigvert, Barcelona, España
| | - S Sabate
- Servicio de Anestesia y Reanimación, Fundación Puigvert, Barcelona, España
| |
Collapse
|
19
|
Herd MB, Lambert JJ, Belelli D. The general anaesthetic etomidate inhibits the excitability of mouse thalamocortical relay neurons by modulating multiple modes of GABAA receptor-mediated inhibition. Eur J Neurosci 2014; 40:2487-501. [PMID: 24773078 PMCID: PMC4215602 DOI: 10.1111/ejn.12601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022]
Abstract
Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described ‘spillover’ mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors (GABAARs). Previous studies demonstrated that the intravenous anaesthetic etomidate enhances tonic and phasic inhibition in TC relay neurons, but it is not known how etomidate may influence spillover inhibition. Moreover, it is unclear how etomidate influences the excitability of TC neurons. Thus, to investigate the relative contribution of synaptic (α1β2γ2) and extrasynaptic (α4β2δ) GABAARs to the thalamic effects of etomidate, we performed whole-cell recordings from mouse TC neurons lacking synaptic (α10/0) or extrasynaptic (δ0/0) GABAARs. Etomidate (3 μm) significantly inhibited action-potential discharge in a manner that was dependent on facilitation of both synaptic and extrasynaptic GABAARs, although enhanced tonic inhibition was dominant in this respect. Additionally, phasic inhibition evoked by stimulation of the nucleus reticularis exhibited a spillover component mediated by δ-GABAARs, which was significantly prolonged in the presence of etomidate. Thus, etomidate greatly enhanced the transient suppression of TC spike trains by evoked inhibitory postsynaptic potentials. Collectively, these results suggest that the deactivation of thalamus observed during etomidate-induced anaesthesia involves potentiation of tonic and phasic inhibition, and implicate amplification of spillover inhibition as a novel mechanism to regulate the gating of sensory information through the thalamus during anaesthetic states.
Collapse
Affiliation(s)
- Murray B Herd
- Division of Neuroscience, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | | | | |
Collapse
|
20
|
Effects of general anesthetics on substance P release and c-Fos expression in the spinal dorsal horn. Anesthesiology 2013; 119:433-42. [PMID: 23708866 DOI: 10.1097/aln.0b013e31829996b6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The authors examined in vivo the effects of general anesthetics on evoked substance P release (primary afferent excitability) and c-Fos expression (neuronal activation) in superficial dorsal horn. METHODS Rats received saline, propofol (100 mg/kg), pentobarbital (50 mg/kg), isoflurane (2 minimum alveolar concentration), nitrous oxide (66%), or fentanyl (30 μg/kg). During anesthesia, rats received intraplantar 5% formalin (50 μl) to left hind paw. Ten minutes later, rats underwent transcardial perfusion with 4% paraformaldehyde. Substance P release from small primary afferents was assessed by incidence of neurokinin 1 receptor internalization in the superficial dorsal horn. In separate studies, rats were sacrificed after 2 h and c-Fos expression measured. RESULTS Intraplantar formalin-induced robust neurokinin 1 receptor internalization in ipsilateral dorsal horn (ipsilateral: 54 ± 6% [mean ± SEM], contralateral: 12 ± 2%; P < 0.05; n = 4). Fentanyl, but not propofol, pentobarbital, isoflurane, nor nitrous oxide alone inhibited neurokinin 1 receptor internalization. However, 2 minimum alveolar concentration isoflurane + nitrous oxide reduced neurokinin 1 receptor internalization (27 ± 3%; P < 0.05; n = 5). All agents reduced c-Fos expression (control: 34 ± 4, fentanyl: 8 ± 2, isoflurane: 12 ± 3, nitrous oxide: 11 ± 2, isoflurane + nitrous oxide: 12 ± 1, pentobarbital: 11 ± 2, propofol: 13 ± 3; P < 0.05; n = 3). CONCLUSION General anesthetics at anesthetic concentrations block spinal neuron activation through a mechanism that is independent of an effect on small primary afferent peptide release. The effect of fentanyl alone and the synergistic effect of isoflurane and nitrous oxide on substance P release suggest a correlative rationale for the therapeutic use of these anesthetic protocols by blocking nociceptive afferent transmitter release and preventing the initiation of cascade, which is immediately postsynaptic to the primary afferent.
Collapse
|
21
|
Wakita M, Kotani N, Nonaka K, Shin MC, Akaike N. Effects of propofol on GABAergic and glutamatergic transmission in isolated hippocampal single nerve-synapse preparations. Eur J Pharmacol 2013; 718:63-73. [DOI: 10.1016/j.ejphar.2013.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 01/12/2023]
|
22
|
Hutt A. The anesthetic propofol shifts the frequency of maximum spectral power in EEG during general anesthesia: analytical insights from a linear model. Front Comput Neurosci 2013; 7:2. [PMID: 23386826 PMCID: PMC3564209 DOI: 10.3389/fncom.2013.00002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/19/2013] [Indexed: 11/30/2022] Open
Abstract
The work introduces a linear neural population model that allows to derive analytically the power spectrum subjected to the concentration of the anesthetic propofol. The analytical study of the power spectrum of the systems activity gives conditions on how the frequency of maximum power in experimental electroencephalographic (EEG) changes dependent on the propofol concentration. In this context, we explain the anesthetic-induced power increase in neural activity by an oscillatory instability and derive conditions under which the power peak shifts to larger frequencies as observed experimentally in EEG. Moreover the work predicts that the power increase only occurs while the frequency of maximum power increases. Numerically simulations of the systems activity complement the analytical results.
Collapse
Affiliation(s)
- Axel Hutt
- INRIA CR Nancy - Grand Est, Team CORTEX Villers-les-Nancy, France
| |
Collapse
|
23
|
Abstract
Anesthetics have been used in clinical practice for over a hundred years, yet their mechanisms of action remain poorly understood. One tempting hypothesis to explain their hypnotic properties posits that anesthetics exert a component of their effects by "hijacking" the endogenous arousal circuitry of the brain. Modulation of activity within sleep- and wake-related neuroanatomic systems could thus explain some of the varied effects produced by anesthetics. There has been a recent explosion of research into the neuroanatomic substrates affected by various anesthetics. In this review, we will highlight the relevant sleep architecture and systems and focus on studies over the past few years that implicate these sleep-related structures as targets of anesthetics. These studies highlight a promising area of investigation regarding the mechanisms of action of anesthetics and provide an important model for future study.
Collapse
|
24
|
|
25
|
The sleep relay--the role of the thalamus in central and decentral sleep regulation. Pflugers Arch 2011; 463:53-71. [PMID: 21912835 DOI: 10.1007/s00424-011-1014-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Surprisingly, the concept of sleep, its necessity and function, the mechanisms of action, and its elicitors are far from being completely understood. A key to sleep function is to determine how and when sleep is induced. The aim of this review is to merge the classical concepts of central sleep regulation by the brainstem and hypothalamus with the recent findings on decentral sleep regulation in local neuronal assemblies and sleep regulatory substances that create a scenario in which sleep is both local and use dependent. The interface between these concepts is provided by thalamic cellular and network mechanisms that support rhythmogenesis of sleep-related activity. The brainstem and the hypothalamus centrally set the pace for sleep-related activity throughout the brain. Decentral regulation of the sleep-wake cycle was shown in the cortex, and the homeostat of non-rapid-eye-movement sleep is made up by molecular networks of sleep regulatory substances, allowing individual neurons or small neuronal assemblies to enter sleep-like states. Thalamic neurons provide state-dependent gating of sensory information via their ability to produce different patterns of electrogenic activity during wakefulness and sleep. Many mechanisms of sleep homeostasis or sleep-like states of neuronal assemblies, e.g. by the action of adenosine, can also be found in thalamic neurons, and we summarize cellular and network mechanisms of the thalamus that may elicit non-REM sleep. It is argued that both central and decentral regulators ultimately target the thalamus to induce global sleep-related oscillatory activity. We propose that future studies should integrate ideas of central, decentral, and thalamic sleep generation.
Collapse
|
26
|
Hackett ES, Gustafson DL. Alterations of drug metabolism in critically ill animals. Vet Clin North Am Small Anim Pract 2011; 41:805-15, vii. [PMID: 21757094 DOI: 10.1016/j.cvsm.2011.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Critically ill animals are by nature a diverse group with multiple presenting complaints and differing levels of organ function. Pharmacokinetics and pharmacodynamics of administered compounds are affected both by the disease processes and by the interventions of the treating veterinarian. Polypharmacy is not an exception but a rule within this caseload. Basic principles of pharmacology allow for safe and effective administration of pharmaceuticals, especially in the critically ill. Future research evaluating the pharmacokinetics and pharmacodynamics of drugs important in the management of critically ill animals is imperative, and will allow evidence-based dose modification.
Collapse
Affiliation(s)
- Eileen S Hackett
- Department of Clinical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
27
|
Changes in resting neural connectivity during propofol sedation. PLoS One 2010; 5:e14224. [PMID: 21151992 PMCID: PMC2996305 DOI: 10.1371/journal.pone.0014224] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/04/2010] [Indexed: 11/24/2022] Open
Abstract
Background The default mode network consists of a set of functionally connected brain regions (posterior cingulate, medial prefrontal cortex and bilateral parietal cortex) maximally active in functional imaging studies under “no task” conditions. It has been argued that the posterior cingulate is important in consciousness/awareness, but previous investigations of resting interactions between the posterior cingulate cortex and other brain regions during sedation and anesthesia have produced inconsistent results. Methodology/Principal Findings We examined the connectivity of the posterior cingulate at different levels of consciousness. “No task” fMRI (BOLD) data were collected from healthy volunteers while awake and at low and moderate levels of sedation, induced by the anesthetic agent propofol. Our data show that connectivity of the posterior cingulate changes during sedation to include areas that are not traditionally considered to be part of the default mode network, such as the motor/somatosensory cortices, the anterior thalamic nuclei, and the reticular activating system. Conclusions/Significance This neuroanatomical signature resembles that of non-REM sleep, and may be evidence for a system that reduces its discriminable states and switches into more stereotypic patterns of firing under sedation.
Collapse
|
28
|
Effect of propofol on the levels of neurotransmitters in normal human brain: A magnetic resonance spectroscopy study. Neurosci Lett 2009; 467:247-51. [DOI: 10.1016/j.neulet.2009.10.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/15/2009] [Accepted: 10/16/2009] [Indexed: 11/20/2022]
|
29
|
Kang BJ, Kim SK, Lee GW, Kwon MA, Song JG, Ahn SC. The correlation between the effects of propofol on the auditory brainstem response and the postsynaptic currents of the auditory circuit in brainstem slices in the rat. Korean J Anesthesiol 2009; 56:552-558. [PMID: 30625787 DOI: 10.4097/kjae.2009.56.5.552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although there have been reports showing the changes of the auditory brainstem response (ABR) waves by propofol, no detailed studies have been done at the level of brainstem auditory circuit. So, we studied the effects of propofol on the postsynaptic currents of the medial nucleus of the trapezoid body (MNTB)-lateral superior olive (LSO) synapses by using the whole cell voltage clamp technique and we compared this data with that obtained by the ABR. METHODS 5 rats at postnatal (P) 15 days were used for the study of the ABR. After inducing deep anesthesia using xylazine 6 mg/kg and ketamine 25 mg/kg, the ABRs were recorded before and after intraperitoneal propofol injection (10 mg/kg) and the effects of propofol on the latencies of the I, III, and V waves and the I-III and III-V interwave intervals were evaluated. Rats that were aged under P11 were used in the voltage clamp experiments. After making brainstem slices, the postsynaptic currents (PSCs) elicited by MNTB stimulation were recorded at the LSO, and the changes of the PSCs by the bath application of propofol (100 microM) were monitored. RESULTS We found small, but statistically significant increases in the latencies of ABR waves III and V and the interwave intervals of I-III and III-V by propofol. However, no significant changes were observed in the glycinergic or glutamatergic PSCs of the MNTB-LSO synpases by the application of propofol (100 microM). CONCLUSIONS Glycinergic or glutamatergic transmission of the MNTB-LSO synapses might not contribute to the propofol-induced changes of the ABR.
Collapse
Affiliation(s)
- Bong Jin Kang
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Seok Kon Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Gwan Woo Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Min A Kwon
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Jae Gyok Song
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Seung Chul Ahn
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| |
Collapse
|
30
|
Shoda E, Kitagawa J, Suzuki I, Nitta-Kubota I, Miyamoto M, Tsuboi Y, Kondo M, Masuda Y, Oi Y, Ren K, Iwata K. Increased phosphorylation of extracellular signal-regulated kinase in trigeminal nociceptive neurons following propofol administration in rats. THE JOURNAL OF PAIN 2009; 10:573-85. [PMID: 19398380 DOI: 10.1016/j.jpain.2008.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 01/23/2023]
Abstract
UNLABELLED Although propofol (PRO) is widely used in clinic as a hypnotic agent, the underlying mechanisms of its action on pain pathways is still unknown. Sprague-Dawley rats were assigned to receive PRO or pentobarbital (PEN) and were divided into 2 groups as LIGHT and DEEP hypnotic levels based on the EEG analysis. Rats in each hypnotic level received capsaicin injection into the face and phosphorylated extracellular signal-regulated kinase (pERK) immunohistochemistry was performed in subnucleus caudalis (Vc) and upper cervical spinal cord. In the rats with PEN or PRO administration, a large number of pERK-like immunoreactive (LI) cells was observed in the trigeminal spinal subnuclei interpolaris and caudalis transition zone (Vi/Vc), middle Vc, and transition zone between Vc and upper cervical spinal cord (Vc/C2) following capsaicin injection into the whisker-pad region. The number of pERK-LI cells in Vi/Vc, middle Vc, and Vc/C2 was significantly larger in rats with PRO infusion than those with PEN infusion. The number of pERK-LI cells was increased following an increase in the dose of PRO but not in PEN. The pERK-LI cells were mainly distributed in the Vi/Vc, middle Vc, and Vc/C2 after the bolus infusion of PRO. The expression of pERK-LI cells was depressed after the intravenous lidocaine application before bolus PRO infusion. The present findings suggest that PRO induced an enhancement of the activity of trigeminal nociceptive pathways through nociceptors innervating the venous structure, as indicated by a lidocaine-sensitive increase in pERK. This may explain deep pain around the injection regions during intravenous bolus infusion of PRO. PERSPECTIVE The effect of propofol administration on ERK phosphorylation in the subregions of the spinal trigeminal complex and upper cervical spinal cord neurons were precisely analyzed in rats with PRO infusion. A large number of pERK-LI cells was observed following intravenous PRO administration, suggesting an enhancement of trigeminal nociceptive activity and that PRO may produce pain through nociceptors innervating the venous structures during infusion.
Collapse
Affiliation(s)
- Emi Shoda
- Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang SM, Constable RT, Tokoglu FS, Weiss DA, Freyle D, Kain ZN. Acupuncture-induced blood oxygenation level-dependent signals in awake and anesthetized volunteers: a pilot study. Anesth Analg 2007; 105:499-506. [PMID: 17646512 DOI: 10.1213/01.ane.0000270216.71234.f5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND There are conflicting data regarding clinical efficacy of acupuncture applied while patients are under general anesthesia. We hypothesize that these conflicting data are a result of the inhibitory effect of anesthesia on acupuncture-induced central nervous system activity that can be demonstrated using magnetic resonance imaging. METHODS Using a crossover study design, volunteers received standardized Stomach 36 manual acupuncture in two experimental conditions: while undergoing a propofol-based general anesthetic, and while awake. Functional magnetic resonance imaging was conducted during both experimental sessions. Paired-t-test analyses were performed to examine the differences in acupuncture-induced blood oxygenation level-dependent (BOLD) signals between awake and anesthesia conditions. A secondary analysis was performed to account for the changes in regional cerebral blood flow at six regions of interest (thalamus, red nucleus, insula, periaqueductal gray, retrosplenial cingular gyri, and the inferior temporal region). RESULTS Using BOLD, we found significant differences between the two experimental sessions in brain areas, including postcentral gyri, retrosplenial cingular area, left posterior insula, bilateral precuneus, thalamus, red nuclei, and substantia nigra (cluster 100, P < 0.01). A secondary analysis correcting for background cerebral blood flow found that BOLD signal differences between experimental conditions were not directly caused by changes in regional blood flow. DISCUSSION Propofol-based anesthesia reduces the neurophysiological response to acupuncture stimulation as measured by acupuncture-induced BOLD signals. Further work should be conducted to determine the clinical significance of these findings.
Collapse
Affiliation(s)
- Shu-Ming Wang
- Center for Advancement of Perioperative Health, Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Ying SW, Jia F, Abbas SY, Hofmann F, Ludwig A, Goldstein PA. Dendritic HCN2 channels constrain glutamate-driven excitability in reticular thalamic neurons. J Neurosci 2007; 27:8719-32. [PMID: 17687049 PMCID: PMC6672930 DOI: 10.1523/jneurosci.1630-07.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 06/27/2007] [Accepted: 06/27/2007] [Indexed: 01/07/2023] Open
Abstract
Hyperpolarization activated cyclic nucleotide (HCN) gated channels conduct a current, I(h); how I(h) influences excitability and spike firing depends primarily on channel distribution in subcellular compartments. For example, dendritic expression of HCN1 normalizes somatic voltage responses and spike output in hippocampal and cortical neurons. We reported previously that HCN2 is predominantly expressed in dendritic spines in reticular thalamic nucleus (RTN) neurons, but the functional impact of such nonsomatic HCN2 expression remains unknown. We examined the role of HCN2 expression in regulating RTN excitability and GABAergic output from RTN to thalamocortical relay neurons using wild-type and HCN2 knock-out mice. Pharmacological blockade of I(h) significantly increased spike firing in RTN neurons and large spontaneous IPSC frequency in relay neurons; conversely, pharmacological enhancement of HCN channel function decreased spontaneous IPSC frequency. HCN2 deletion abolished I(h) in RTN neurons and significantly decreased sensitivity to 8-bromo-cAMP and lamotrigine. Recapitulating the effects of I(h) block, HCN2 deletion increased both temporal summation of EPSPs in RTN neurons as well as GABAergic output to postsynaptic relay neurons. The enhanced excitability of RTN neurons after I(h) block required activation of ionotropic glutamate receptors; consistent with this was the colocalization of HCN2 and glutamate receptor 4 subunit immunoreactivities in dendritic spines of RTN neurons. The results indicate that, in mouse RTN neurons, HCN2 is the primary functional isoform underlying I(h) and expression of HCN2 constrains excitatory synaptic integration.
Collapse
Affiliation(s)
- Shui-Wang Ying
- C. V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College, Cornell University, New York, New York 10021
| | - Fan Jia
- C. V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College, Cornell University, New York, New York 10021
| | - Syed Y. Abbas
- C. V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College, Cornell University, New York, New York 10021
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, 80802 München, Germany, and
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Peter A. Goldstein
- C. V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College, Cornell University, New York, New York 10021
| |
Collapse
|
33
|
Antognini JF, Bravo E, Atherley R, Carstens E. Propofol, more than halothane, depresses electroencephalographic activation resulting from electrical stimulation in reticular formation. Acta Anaesthesiol Scand 2006; 50:993-8. [PMID: 16923096 DOI: 10.1111/j.1399-6576.2006.01114.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Halothane and propofol depress the central nervous system, and this is partly manifested by a decrease in electroencephalographic (EEG) activity. Little work has been performed to determine the differences between these anesthetics with regard to their effects on evoked EEG activity. We examined the effects of halothane and propofol on EEG responses to electrical stimulation of the reticular formation. METHODS Rats (n= 12) were anesthetized with either halothane or propofol, and EEG responses were recorded before and after electrical stimulation of the reticular formation. Two anesthetic concentrations were used (0.8 and 1.2 times the amount needed to prevent gross, purposeful movement in response to supramaximal noxious stimulation), and both anesthetics were studied in each rat using a cross-over design. RESULTS Electrical stimulation in the reticular formation increased the spectral edge (SEF) and median edge (MEF) frequencies by approximately 1-2 Hz during halothane anesthesia at low and high concentrations. During propofol anesthesia, MEF increased at the low propofol infusion rate, but SEF was unaffected. At the high propofol infusion rate, SEF and MEF decreased following electrical stimulation in the reticular formation. CONCLUSIONS At immobilizing concentrations, propofol produces a larger decrease than halothane in EEG responses to reticular formation stimulation, consistent with propofol having a more profound depressant effect on cortical and subcortical structures.
Collapse
Affiliation(s)
- J F Antognini
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
34
|
Abbas SY, Ying SW, Goldstein PA. Compartmental distribution of hyperpolarization-activated cyclic-nucleotide-gated channel 2 and hyperpolarization-activated cyclic-nucleotide-gated channel 4 in thalamic reticular and thalamocortical relay neurons. Neuroscience 2006; 141:1811-25. [PMID: 16806719 DOI: 10.1016/j.neuroscience.2006.05.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/27/2006] [Accepted: 05/16/2006] [Indexed: 01/07/2023]
Abstract
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels conduct a monovalent cationic current, I(h), which contributes to the electrophysiological properties of neurons and regulates thalamic oscillations in circuits containing the glutamatergic ventrobasal complex (VB) and GABAergic reticular thalamic nucleus (RTN). Four distinct HCN channel isoforms (HCN1-4) have been identified, and mRNAs and proteins for HCN channels have been detected in the RTN and VB, with HCN2 and HCN4 being the predominant isoforms. RTN and VB neurons have distinct electrophysiological properties, and those differences may reflect variable compartmental distribution of HCN channels. Whole cell patch clamp recordings from thalamic neurons in brain slices obtained from C57/Bl6 mice demonstrate that I(h) is much smaller in RTN than in VB neurons although the time constants for I(h) current activation are very similar. To study the compartmental distribution of the underlying channels, we performed qualitative and quantitative examination of HCN2 and HCN4 expression using fluorescent immunohistochemistry and confocal microscopy. HCN2-immunoreactivity (IR) on the somata of RTN neurons was approximately 10-fold less than that seen in VB neurons while HCN4-IR was detected on the somata of RTN and VB neurons to an equal degree. HCN2-IR in RTN and VB did not overlap with synaptophysin-IR, but strongly colocalized with cortactin-IR, indicating that HCN2 was not present in axon terminals but was present in dendritic spines. Although HCN2-IR in spines was more pronounced in VB than in RTN, the ratio of spinous to somatic expression in RTN was dramatically higher than that in VB, strongly suggesting that HCN2-IR in RTN is principally located in sites distal to the soma. In contrast, HCN4-IR did not colocalize with either synaptophysin or cortactin. The colocalization of HCN2-IR with HCN4-IR was greater in VB than in RTN. The results suggest that the distinct compartmental distribution of HCN2 channels in RTN and VB neurons contributes to the profound differences in the I(h)-dependent properties of these cells.
Collapse
Affiliation(s)
- S Y Abbas
- C. V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Avenue, Room A-1050, New York, NY 10021, USA
| | | | | |
Collapse
|
35
|
Ying SW, Abbas SY, Harrison NL, Goldstein PA. Propofol block of I(h) contributes to the suppression of neuronal excitability and rhythmic burst firing in thalamocortical neurons. Eur J Neurosci 2006; 23:465-80. [PMID: 16420453 DOI: 10.1111/j.1460-9568.2005.04587.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the depressant effects of the general anesthetic propofol on thalamocortical relay neurons clearly involve gamma-aminobutyric acid (GABA)(A) receptors, other mechanisms may be involved. The hyperpolarization-activated cation current (I(h)) regulates excitability and rhythmic firing in thalamocortical relay neurons in the ventrobasal (VB) complex of the thalamus. Here we investigated the effects of propofol on I(h)-related function in vitro and in vivo. In whole-cell current-clamp recordings from VB neurons in mouse (P23-35) brain slices, propofol markedly reduced the voltage sag and low-threshold rebound excitation that are characteristic of the activation of I(h). In whole-cell voltage-clamp recordings, propofol suppressed the I(h) conductance and slowed the kinetics of activation. The block of I(h) by propofol was associated with decreased regularity and frequency of delta-oscillations in VB neurons. The principal source of the I(h) current in these neurons is the hyperpolarization-activated cyclic nucleotide-gated (HCN) type 2 channel. In human embryonic kidney (HEK)293 cells expressing recombinant mouse HCN2 channels, propofol decreased I(h) and slowed the rate of channel activation. We also investigated whether propofol might have persistent effects on thalamic excitability in the mouse. Three hours following an injection of propofol sufficient to produce loss-of-righting reflex in mice (P35), I(h) was decreased, and this was accompanied by a corresponding decrease in HCN2 and HCN4 immunoreactivity in thalamocortical neurons in vivo. These results suggest that suppression of I(h) may contribute to the inhibition of thalamocortical activity during propofol anesthesia. Longer-term effects represent a novel form of propofol-mediated regulation of I(h).
Collapse
Affiliation(s)
- Shui-Wang Ying
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|