1
|
Aksoy-Aksel A, Ferraguti F, Holmes A, Lüthi A, Ehrlich I. Amygdala intercalated cells form an evolutionarily conserved system orchestrating brain networks. Nat Neurosci 2024:10.1038/s41593-024-01836-8. [PMID: 39672964 DOI: 10.1038/s41593-024-01836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/01/2024] [Indexed: 12/15/2024]
Abstract
The amygdala attributes valence and emotional salience to environmental stimuli and regulates how these stimuli affect behavior. Within the amygdala, a distinct class of evolutionarily conserved neurons form the intercalated cell (ITC) clusters, mainly located around the boundaries of the lateral and basal nuclei. Here, we review the anatomical, physiological and molecular characteristics of ITCs, and detail the organization of ITC clusters and their connectivity with one another and other brain regions. We describe how ITCs undergo experience-dependent plasticity and discuss emerging evidence demonstrating how ITCs are innervated and functionally regulated by neuromodulatory systems. We summarize recent findings showing that experience alters the balance of activity between different ITC clusters, thereby determining prevailing behavioral output. Finally, we propose a model in which ITCs form a key system for integrating divergent inputs and orchestrating brain-wide circuits to generate behavioral states attuned to current environmental circumstances and internal needs.
Collapse
Affiliation(s)
- Ayla Aksoy-Aksel
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ingrid Ehrlich
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
3
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
4
|
McDermott MV, Ram A, Mattoon MT, Haderlie EE, Raddatz MC, Thomason MK, Bobeck EN. A small molecule ligand for the novel pain target, GPR171, produces minimal reward in mice. Pharmacol Biochem Behav 2023; 224:173543. [PMID: 36933620 PMCID: PMC11472835 DOI: 10.1016/j.pbb.2023.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
ProSAAS is one of the most abundant proteins in the brain and is processed into several smaller peptides. One of which, BigLEN, is an endogenous ligand for the G protein-coupled receptor, GPR171. Recent work in rodent models has shown that a small-molecule ligand for GPR171, MS15203, increases morphine antinociception and is effective in lessening chronic pain. While these studies provide evidence for GPR171 as a possible pain target, its abuse liability has not yet been assessed and was evaluated in the current study. We first mapped the distribution of GPR171 and ProSAAS throughout the reward circuit of the brain using immunohistochemistry and showed that GPR171 and ProSAAS are localized in the hippocampus, basolateral amygdala, nucleus accumbens, prefrontal cortex. In the major dopaminergic structure, the ventral tegmental area (VTA), GPR171 appeared to be primarily localized in dopamine neurons while ProSAAS is outside of dopamine neurons. Next, MS15203 was administered to mice with or without morphine, and VTA slices were stained for the immediate early gene c-Fos as a marker of neuronal activation. Quantification of c-Fos-positive cells revealed no statistical difference between MS15203 and saline, suggesting that MS15203 does not increase VTA activation and dopamine release. The results of a conditioned place preference experiment showed that treatment with MS15203 produced no place preference indicating a lack of reward-related behavior. Taken together this data provides evidence that the novel pain therapeutic, MS15203, has minimal reward liability. Therefore, GPR171 deserves further exploration as a pain target. SIGNIFICANCE STATEMENT: MS15203, a drug that activates the receptor GPR171, was previously shown to increase morphine analgesia. The authors use in vivo and histological techniques to show that it fails to activate the rodent reward circuitry, providing support for the continued exploration of MS15203 as a novel pain drug, and GPR171 a novel pain target.
Collapse
Affiliation(s)
- Max V McDermott
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Akila Ram
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Matthew T Mattoon
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Emmaline E Haderlie
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Megan C Raddatz
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Madi K Thomason
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America
| | - Erin N Bobeck
- Dept. of Biology, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America; Interdisciplinary Neuroscience Program, Utah State University, 5305 Old Main Hill BNR117, Logan, UT 84322-5305, United States of America.
| |
Collapse
|
5
|
Asede D, Doddapaneni D, Bolton MM. Amygdala Intercalated Cells: Gate Keepers and Conveyors of Internal State to the Circuits of Emotion. J Neurosci 2022; 42:9098-9109. [PMID: 36639901 PMCID: PMC9761677 DOI: 10.1523/jneurosci.1176-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 10/16/2022] [Indexed: 01/09/2023] Open
Abstract
Generating adaptive behavioral responses to emotionally salient stimuli requires evaluation of complex associations between multiple sensations, the surrounding context, and current internal state. Neural circuits within the amygdala parse this emotional information, undergo synaptic plasticity to reflect learned associations, and evoke appropriate responses through their projections to the brain regions orchestrating these behaviors. Information flow within the amygdala is regulated by the intercalated cells (ITCs), which are densely packed clusters of GABAergic neurons that encircle the basolateral amygdala (BLA) and provide contextually relevant feedforward inhibition of amygdala nuclei, including the central and BLA. Emerging studies have begun to delineate the unique contribution of each ITC cluster and establish ITCs as key loci of plasticity in emotional learning. In this review, we summarize the known connectivity and function of individual ITC clusters and explore how different neuromodulators conveying internal state act via ITC gates to shape emotionally motivated behavior. We propose that the behavioral state-dependent function of ITCs, their unique genetic profile, and rich expression of neuromodulator receptors make them potential therapeutic targets for disorders, such as anxiety, schizophrenia spectrum, and addiction.
Collapse
Affiliation(s)
- Douglas Asede
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Divyesh Doddapaneni
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| |
Collapse
|
6
|
Presto P, Neugebauer V. Sex Differences in CGRP Regulation and Function in the Amygdala in a Rat Model of Neuropathic Pain. Front Mol Neurosci 2022; 15:928587. [PMID: 35726298 PMCID: PMC9206543 DOI: 10.3389/fnmol.2022.928587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The amygdala has emerged as a key player in the emotional response to pain and pain modulation. The lateral and capsular regions of the central nucleus of the amygdala (CeA) represent the “nociceptive amygdala” due to their high content of neurons that process pain-related information. These CeA divisions are the targets of the spino-parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin gene-related peptide (CGRP) within the amygdala. Changes in lateral and capsular CeA neurons have previously been observed in pain models, and synaptic plasticity in these areas has been linked to pain-related behavior. CGRP has been demonstrated to play an important role in peripheral and spinal mechanisms, and in pain-related amygdala plasticity in male rats in an acute arthritis pain model. However, the role of CGRP in chronic neuropathic pain-related amygdala function and behaviors remains to be determined for both male and female rats. Here we tested the hypothesis that the CGRP1 receptor is involved in neuropathic pain-related amygdala activity, and that blockade of this receptor can inhibit neuropathic pain behaviors in both sexes. CGRP mRNA expression levels in the CeA of male rats were upregulated at the acute stage of the spinal nerve ligation (SNL) model of neuropathic pain, whereas female rats had significantly higher CGRP and CGRP receptor component expression at the chronic stage. A CGRP1 receptor antagonist (CGRP 8-37) administered into the CeA in chronic neuropathic rats reduced mechanical hypersensitivity (von Frey and paw compression tests) in both sexes but showed female-predominant effects on emotional-affective responses (ultrasonic vocalizations) and anxiety-like behaviors (open field test). CGRP 8-37 inhibited the activity of CeA output neurons assessed with calcium imaging in brain slices from chronic neuropathic pain rats. Together, these findings may suggest that CGRP1 receptors in the CeA are involved in neuropathic pain-related amygdala activity and contribute to sensory aspects in both sexes but to emotional-affective pain responses predominantly in females. The sexually dimorphic function of CGRP in the amygdala would make CGRP1 receptors a potential therapeutic target for neuropathic pain relief, particularly in females in chronic pain conditions.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- *Correspondence: Volker Neugebauer
| |
Collapse
|
7
|
Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats. Neuropharmacology 2022; 210:109031. [PMID: 35304173 DOI: 10.1016/j.neuropharm.2022.109031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
Abstract
The amygdala plays a critical role in the emotional-affective component of pain and pain modulation. The central nucleus of amygdala (CeA) serves major output functions and has been linked to pain-related behaviors. Corticotropin releasing factor (CRF) in the CeA has emerged as an important modulator of pain and affective disorders. Here we measured the effects of optogenetic manipulation of CeA-CRF neurons on pain-related behaviors in a rat neuropathic pain model and under control conditions. Emotional-affective behaviors (vocalizations), mechanosensitivity (electronic von Frey anesthesiometer and calibrated forceps), and anxiety-like behaviors (open field test and elevated plus maze) were assessed in adult rats 1 week and 4 weeks after spinal nerve ligation (SNL model) and sham surgery (control). For optogenetic silencing or activation of CRF neurons, a Cre-inducible viral vector encoding enhanced halorhodopsin (eNpHR3.0) or channelrhodopsin 2 (ChR2) was injected stereotaxically into the right CeA of transgenic Crh-Cre rats. Light of the appropriate wavelength (590 nm for eNpHR3.0; 473 nm for ChR2) was delivered into the CeA with an LED optic fiber. Optical silencing of CeA-CRF neurons decreased the emotional-affective responses in the acute and chronic phases of the neuropathic pain model but had anxiolytic effects only at the chronic stage and no effect on mechanosensitivity. Optogenetic activation of CeA-CRF neurons increased the emotional-affective responses and induced anxiety-like behaviors but had no effect on mechanosensitivity in control rats. The data show the critical contribution of CeA-CRF neurons to pain-related behaviors under normal conditions and beneficial effects of inhibiting CeA-CRF neurons in neuropathic pain.
Collapse
|
8
|
Yeo XY, Cunliffe G, Ho RC, Lee SS, Jung S. Potentials of Neuropeptides as Therapeutic Agents for Neurological Diseases. Biomedicines 2022; 10:343. [PMID: 35203552 PMCID: PMC8961788 DOI: 10.3390/biomedicines10020343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent leaps in modern medicine, progress in the treatment of neurological diseases remains slow. The near impermeable blood-brain barrier (BBB) that prevents the entry of therapeutics into the brain, and the complexity of neurological processes, limits the specificity of potential therapeutics. Moreover, a lack of etiological understanding and the irreversible nature of neurological conditions have resulted in low tolerability and high failure rates towards existing small molecule-based treatments. Neuropeptides, which are small proteinaceous molecules produced by the body, either in the nervous system or the peripheral organs, modulate neurological function. Although peptide-based therapeutics originated from the treatment of metabolic diseases in the 1920s, the adoption and development of peptide drugs for neurological conditions are relatively recent. In this review, we examine the natural roles of neuropeptides in the modulation of neurological function and the development of neurological disorders. Furthermore, we highlight the potential of these proteinaceous molecules in filling gaps in current therapeutics.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
9
|
Bülbül M, Sinen O. Centrally Administered Neuropeptide-S Alleviates Gastrointestinal Dysmotility Induced by Neonatal Maternal Separation. Neurogastroenterol Motil 2022; 34:e14269. [PMID: 34561917 DOI: 10.1111/nmo.14269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuropeptide-S (NPS) regulates autonomic outflow, stress response, and gastrointestinal (GI) motor functions. This study aimed to investigate the effects of NPS on GI dysmotility induced by neonatal maternal separation (MS). METHODS MS was conducted by isolating newborn pups from dams from postnatal day 1 to day 14. In adulthood, rats were also exposed to chronic homotypic stress (CHS). Visceral sensitivity was assessed by colorectal distension-induced abdominal contractions. Gastric emptying (GE) was measured following CHS, whereas fecal output was monitored daily. NPS or NPS receptor (NPSR) antagonist was centrally applied simultaneously with electrocardiography and gastric motility recording. Immunoreactivities for NPS, NPSR, corticotropin-releasing factor (CRF), choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), and c-Fos were assessed by immunohistochemistry. KEY RESULTS NPS alleviated the MS-induced visceral hypersensitivity. Under basal conditions, central exogenous or endogenous NPS had no effect on GE and gastric motility. NPS restored CHS-induced gastric and colonic dysmotility in MS rats while increasing sympatho-vagal balance without affecting vagal outflow. NPSR expression was detected in CRF-producing cells of hypothalamic paraventricular nucleus, and central amygdala, but not in Barrington's nucleus. Moreover, NPSR was present in ChAT-expressing neurons in dorsal motor nucleus of the vagus (DMV), and nucleus ambiguus (NAmb) in addition to the TH-positive neurons in C1/A1, and locus coeruleus (LC). Neurons adjacent to the adrenergic cells in LC were found to produce NPS. NPS administration caused c-Fos expression in C1/A1 cells, while no immunoreactivity was detected in DMV or NAmb. CONCLUSIONS NPS/NPSR system might be a novel target for the treatment of stress-related GI dysmotility.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
10
|
Bülbül M, Sinen O, Bayramoğlu O. Central neuropeptide-S administration alleviates stress-induced impairment of gastric motor functions through orexin-A. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:65-72. [PMID: 32009616 DOI: 10.5152/tjg.2020.18626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS The novel brain peptide neuropeptide-S (NPS) is produced exclusively by a small group of cells adjacent to the noradrenergic locus coeruleus. The NPSR mRNA has been detected in several brain areas involved in stress response and autonomic outflow, such as amygdala and hypothalamus, suggesting that central NPS may play a regulatory role in stress-induced changes in gastrointestinal (GI) motor functions. In rodents, exogenous central NPS was shown to inhibit stress-stimulated fecal output. Moreover, exogenous NPS was demonstrated to activate hypothalamic neurons that produce orexin-A (OXA), which has been shown to stimulate postprandial gastric motor functions via central vagal pathways. Therefore, we tested whether OXA mediates the NPS-induced alterations in gastric motor functions under stressed conditions. MATERIALS AND METHODS We investigated the effect of central exogenous NPS on solid gastric emptying (GE) and gastric postprandial motility in acute restraint stress (ARS)-loaded conscious rats. The OXA receptor antagonist SB-334867 was administered centrally prior to the central NPS injection. The expression of NPSR in the hypothalamus and dorsal vagal complex was analyzed by immunofluorescence. RESULTS Central administration of NPS restored the ARS-induced delayed GE and uncoordinated postprandial antro-pyloric contractions. The alleviative effect of NPS on GE was abolished by pretreatment of the OX1R antagonist SB-334867. In addition to hypothalamus, NPSR was detected in the dorsal motor nucleus of vagus, which suggest a direct stimulatory action of exogenous NPS on gastric motility. CONCLUSION NPS may be a novel candidate for the treatment of stress-related gastric disorders.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Onur Bayramoğlu
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
11
|
Kuipers A, Balaskó M, Pétervári E, Koller A, Brunner SM, Moll GN, Kofler B. Intranasal Delivery of a Methyllanthionine-Stabilized Galanin Receptor-2-Selective Agonist Reduces Acute Food Intake. Neurotherapeutics 2021; 18:2737-2752. [PMID: 34859381 PMCID: PMC8804135 DOI: 10.1007/s13311-021-01155-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 11/27/2022] Open
Abstract
The regulatory (neuro)peptide galanin is widely distributed in the central and peripheral nervous systems, where it mediates its effects via three G protein-coupled receptors (GAL1-3R). Galanin has a vast diversity of biological functions, including modulation of feeding behavior. However, the clinical application of natural galanin is not practicable due to its rapid in vivo breakdown by peptidases and lack of receptor subtype specificity. Much effort has been put into the development of receptor-selective agonists and antagonists, and while receptor selectivity has been attained to some degree, most ligands show overlapping affinity. Therefore, we aimed to develop a novel ligand with specificity to a single galanin receptor subtype and increased stability. To achieve this, a lanthionine amino acid was enzymatically introduced into a galanin-related peptide. The residue's subsequent cyclization created a conformational constraint which increased the peptide's receptor specificity and proteolytic resistance. Further exchange of certain other amino acids resulted in a novel methyllanthionine-stabilized galanin receptor agonist, a G1pE-T3N-S6A-G12A-methyllanthionine[13-16]-galanin-(1-17) variant, termed M89b. M89b has exclusive specificity for GAL2R and a prolonged half-life in serum. Intranasal application of M89b to unfasted rats significantly reduced acute 24 h food intake inducing a drop in body weight. Combined administration of M89b and M871, a selective GAL2R antagonist, abolished the anorexigenic effect of M89b, indicating that the effect of M89b on food intake is indeed mediated by GAL2R. This is the first demonstration of in vivo activity of an intranasally administered lanthipeptide. Consequently, M89b is a promising candidate for clinical application as a galanin-related peptide-based therapeutic.
Collapse
Affiliation(s)
- Anneke Kuipers
- Lanthio Health B.V., Rozenburglaan 13B, 9727 DL, Groningen, Netherlands
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti út, H-7624, Pécs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti út, H-7624, Pécs, Hungary
| | - Andreas Koller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Susanne M Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Gert N Moll
- Lanthio Health B.V., Rozenburglaan 13B, 9727 DL, Groningen, Netherlands
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria.
| |
Collapse
|
12
|
Intranasal Administration for Pain: Oxytocin and Other Polypeptides. Pharmaceutics 2021; 13:pharmaceutics13071088. [PMID: 34371778 PMCID: PMC8309171 DOI: 10.3390/pharmaceutics13071088] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Pain, particularly chronic pain, remains one of the most debilitating and difficult-to-treat conditions in medicine. Chronic pain is difficult to treat, in part because it is associated with plastic changes in the peripheral and central nervous systems. Polypeptides are linear organic polymers that are highly selective molecules for neurotransmitter and other nervous system receptors sites, including those associated with pain and analgesia, and so have tremendous potential in pain therapeutics. However, delivery of polypeptides to the nervous system is largely limited due to rapid degradation within the peripheral circulation as well as the blood–brain barrier. One strategy that has been shown to be successful in nervous system deposition of polypeptides is intranasal (IN) delivery. In this narrative review, we discuss the delivery of polypeptides to the peripheral and central nervous systems following IN administration. We briefly discuss the mechanism of delivery via the nasal–cerebral pathway. We review recent studies that demonstrate that polypeptides such as oxytocin, delivered IN, not only reach key pain-modulating regions in the nervous system but, in doing so, evoke significant analgesic effects. IN administration of polypeptides has tremendous potential to provide a non-invasive, rapid and effective method of delivery to the nervous system for chronic pain treatment and management.
Collapse
|
13
|
Li S, Guo C, Zhang X, Liu X, Mu J, Liu C, Peng Y, Chang M. Self-assembling modified neuropeptide S enhances nose-to-brain penetration and exerts a prolonged anxiolytic-like effect. Biomater Sci 2021; 9:4765-4777. [PMID: 34037635 DOI: 10.1039/d1bm00380a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Anxiety disorders are the most common mental diseases and can greatly disrupt everyday life. Although there has been substantial research on anxiety disorders, novel therapeutics are needed. Neuropeptide S (NPS) is a potential therapeutic candidate owing to its strong anxiolytic activity; however, some disadvantages, such as its poor metabolic stability and inability to cross the blood-brain barrier (BBB), limit its use in the clinic. Herein, inspired by nose-to-brain drug delivery strategies, an endogenous 20-amino-acid-long mNPS peptide was modified by incorporating palmitic acid into its functional Lys12 side chain (M-3), which was expected to facilitate nose-to-brain penetration and exert a prolonged anxiolytic-like effect compared to mNPS. We found that M-3 assembled into nanofibers that retained the bioactivity of NPS and exhibited obvious improvements in metabolic stability. Notably, as expected, self-assembled M-3 was able to penetrate into the brain and exert anxiolytic effects. The elevated plus-maze (EPM) results further revealed that M-3 could produce prolonged anxiolytic-like effects in mice. In vivo imaging studies revealed that self-assembled M-3 could be efficiently transported from the nasal cavity to the brain. Furthermore, when intranasally administered, this molecule exhibited a significantly prolonged anxiolytic-like effect, which further illustrated that this molecule has a potent nose-to-brain penetration in vivo. Overall, this self-assembled nanofiber showed potent nose-to-brain penetration ability and prolonged bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chen Guo
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jing Mu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chunxia Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, Fan G, Hu J, Xu W, Bi X, Zhu Y, Song Y, Chen H, Ma T, Zhao R, Jiang H, Zhang B, Feng C, Yuan Y, Gan X, Li Y, Zeng H, Liu Q, Zhang Y, Shao F, Hao S, Zhang H, Xu X, Liu X, Wang D, Zhu M, Zhang G, Zhao W, Qiu Q, He S, Wang W. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 2021; 184:1362-1376.e18. [PMID: 33545087 DOI: 10.1016/j.cell.2021.01.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.
Collapse
Affiliation(s)
- Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiang Hu
- Grandomics Biosciences, Beijing 102200, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Youan Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Yue Song
- BGI-Qingdao, Qingdao 266555, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Tiantian Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qun Liu
- BGI-Qingdao, Qingdao 266555, China
| | | | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | - He Zhang
- BGI-Qingdao, Qingdao 266555, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, Qingdao 266555, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102200, China
| | - Min Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenming Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
15
|
Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Mol Brain 2020; 13:128. [PMID: 32948219 PMCID: PMC7501648 DOI: 10.1186/s13041-020-00669-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala plays an important role in the emotional-affective aspects of behaviors and pain, but can also modulate sensory aspect of pain ("nociception"), likely through coupling to descending modulatory systems. Here we explored the functional coupling of the amygdala to spinal nociception. We found that pharmacological activation of neurons in the central nucleus of the amygdala (CeA) increased the activity of spinal dorsal horn neurons; and this effect was blocked by optogenetic silencing of corticotropin releasing factor (CRF) positive CeA neurons. A kappa opioid receptor (KOR) agonist (U-69,593) was administered into the CeA by microdialysis. KOR was targeted because of their role in averse-affective behaviors through actions in limbic brain regions. Extracellular single-unit recordings were made of CeA neurons or spinal dorsal horn neurons in anesthetized transgenic Crh-Cre rats. Neurons responded more strongly to noxious than innocuous stimuli. U-69,593 increased the responses of CeA and spinal neurons to innocuous and noxious mechanical stimulation of peripheral tissues. The facilitatory effect of the agonist was blocked by optical silencing of CRF-CeA neurons though light activation of halorhodopsin expressed in these neurons by viral-vector. The CRF system in the amygdala has been implicated in aversiveness and pain modulation. The results suggest that the amygdala can modulate spinal nociceptive processing in a positive direction through CRF-CeA neurons and that KOR activation in the amygdala (CeA) has pro-nociceptive effects.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
16
|
Abstract
The amygdala has emerged as an important brain area for the emotional-affective dimension of pain and pain modulation. The amygdala receives nociceptive information through direct and indirect routes. These excitatory inputs converge on the amygdala output region (central nucleus) and can be modulated by inhibitory elements that are the target of (prefrontal) cortical modulation. For example, inhibitory neurons in the intercalated cell mass in the amygdala project to the central nucleus to serve gating functions, and so do inhibitory (PKCdelta) interneurons within the central nucleus. In pain conditions, synaptic plasticity develops in output neurons because of an excitation-inhibition imbalance and drives pain-like behaviors and pain persistence. Mechanisms of pain related neuroplasticity in the amygdala include classical transmitters, neuropeptides, biogenic amines, and various signaling pathways. An emerging concept is that differences in amygdala activity are associated with phenotypic differences in pain vulnerability and resilience and may be predetermining factors of the complexity and persistence of pain.
Collapse
Affiliation(s)
- Volker Neugebauer
- Professor and Chair, Department of Pharmacology and Neuroscience, Giles McCrary Endowed Chair in Addiction Medicine, Director, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center
- School of Medicine, 3601 4th Street
- Mail Stop 6592, Lubbock, Texas 79430-6592
| |
Collapse
|
17
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Electroacupuncture Alleviates Pain-Related Emotion by Upregulating the Expression of NPS and Its Receptor NPSR in the Anterior Cingulate Cortex and Hypothalamus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8630368. [PMID: 32104195 PMCID: PMC7035524 DOI: 10.1155/2020/8630368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Objective Electroacupuncture (EA) is reported effective in alleviating pain-related emotion; however, the underlying mechanism of its effects still needs to be elucidated. The NPS-NPSR system has been validated for the involvement in the modulation of analgesia and emotional behavior. Here, we aimed to investigate the role of the NPS-NPSR system in the anterior cingulate cortex (ACC), hypothalamus, and central amygdala (CeA) in the use of EA to relieve affective pain modeled by complete Freund's adjuvant- (CFA-) evoked conditioned place aversion (C-CPA). Materials and Methods. CFA injection combined with a CPA paradigm was introduced to establish the C-CPA model, and the elevated O-maze (EOM) was used to test the behavioral changes after model establishment. We further explored the expression of NPS and NPSR at the protein and gene levels in the brain regions of interest by immunofluorescence staining and quantitative real-time PCR. Results We observed that EA stimulation delivered to the bilateral Zusanli (ST36) and Kunlun (BL60) acupoints remarkably inhibited sensory pain, pain-evoked place aversion, and anxiety-like behavior. The current study showed that EA significantly enhanced the protein expression of this peptide system in the ACC and hypothalamus, while the elevated expression of NPSR protein alone was just confined to the affected side in the CeA. Moreover, EA remarkably upregulated the mRNA expression of NPS in CeA, ACC, and hypothalamus and NPSR mRNA in the hypothalamus and CeA. Conclusions These data suggest the effectiveness of EA in alleviating affective pain, and these benefits may at least partially be attributable to the upregulation of the NPS-NPSR system in the ACC and hypothalamus.
Collapse
|
19
|
Du J, Fang J, Xu Z, Xiang X, Wang S, Sun H, Shao X, Jiang Y, Liu B, Fang J. Electroacupuncture suppresses the pain and pain-related anxiety of chronic inflammation in rats by increasing the expression of the NPS/NPSR system in the ACC. Brain Res 2020; 1733:146719. [PMID: 32044336 DOI: 10.1016/j.brainres.2020.146719] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The neuropeptide S/Neuropeptide S receptor (NPS/NPSR) system is involved in the regulation of anxiety in rodents. Chronic inflammation can induce anxiety. Our lab has observed that electroacupuncture (EA) has a beneficial effect on chronic inflammatory pain and pain-related anxiety; however, the mechanism should be further clarified. In the present study, we used an inflammatory pain model to investigate the role of the NPS/NPSR system in the anterior cingulate cortex (ACC) in the analgesic and antianxiety effects of EA. RESULTS In an inflammatory pain model, the paw withdrawal thresholds (PWTs) were decreased, pain-related anxiety-like behaviors were induced, and the ipsilateral protein expression of NPS and NPSR was decreased in the ACC. EA stimulation increased the PWTs, reduced pain-related anxiety-like behavior, and enhanced the ipsilateral protein expression of NPS and NPSR in the ACC. NPS microinjection increased the PWTs and decreased pain-related anxiety-like behaviors. Furthermore, an NPSR inhibitor combined with EA reversed the effect of EA on the PWTs and pain-related anxiety-like behaviors. CONCLUSIONS Our results suggest that EA suppresses pain and pain-related anxiety-like behavior of chronic inflammation in rats by increasing the expression of the NPS/NPSR system in the ACC.
Collapse
Affiliation(s)
- Junying Du
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Zitong Xu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Sisi Wang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Haiju Sun
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
20
|
Ji G, Neugebauer V. Contribution of Corticotropin-Releasing Factor Receptor 1 (CRF1) to Serotonin Receptor 5-HT 2CR Function in Amygdala Neurons in a Neuropathic Pain Model. Int J Mol Sci 2019; 20:E4380. [PMID: 31489921 PMCID: PMC6770811 DOI: 10.3390/ijms20184380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022] Open
Abstract
The amygdala plays a key role in emotional-affective aspects of pain and in pain modulation. The central nucleus (CeA) serves major amygdala output functions related to emotional-affective behaviors and pain modulation. Our previous studies implicated the corticotropin-releasing factor (CRF) system in amygdala plasticity and pain behaviors in an arthritis model. We also showed that serotonin (5-HT) receptor subtype 5-HT2CR in the basolateral amygdala (BLA) contributes to increased CeA output and neuropathic pain-like behaviors. Here, we tested the novel hypothesis that 5-HT2CR in the BLA drives CRF1 receptor activation to increase CeA neuronal activity in neuropathic pain. Extracellular single-unit recordings of CeA neurons in anesthetized adult male rats detected increased activity in neuropathic rats (spinal nerve ligation model) compared to sham controls. Increased CeA activity was blocked by local knockdown or pharmacological blockade of 5-HT2CR in the BLA, using stereotaxic administration of 5-HT2CR short hairpin RNA (shRNA) viral vector or a 5-HT2CR antagonist (SB242084), respectively. Stereotaxic administration of a CRF1 receptor antagonist (NBI27914) into the BLA also decreased CeA activity in neuropathic rats and blocked the facilitatory effects of a 5-HT2CR agonist (WAY161503) administered stereotaxically into the BLA. Conversely, local (BLA) knockdown of 5-HT2CR eliminated the inhibitory effect of NBI27914 and the facilitatory effect of WAY161503 in neuropathic rats. The data suggest that 5-HT2CR activation in the BLA contributes to neuropathic pain-related amygdala (CeA) activity by engaging CRF1 receptor signaling.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA.
| |
Collapse
|
21
|
Holanda VAD, Oliveira MC, Souza LS, Lobão-Soares B, André E, Da Silva Junior ED, Guerrini R, Calo G, Ruzza C, Gavioli EC. Dopamine D 1 and D 2 receptors mediate neuropeptide S-induced antinociception in the mouse formalin test. Eur J Pharmacol 2019; 859:172557. [PMID: 31326375 DOI: 10.1016/j.ejphar.2019.172557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
Abstract
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor named NPS receptor. The NPS system controls several biological functions, including anxiety, wakefulness, locomotor activity, food intake, and pain transmission. A growing body of evidence supports facilitatory effects for NPS over dopaminergic neurotransmission. The present study was aimed to investigate the role of dopamine receptors signaling in the antinociceptive effects of NPS in the mouse formalin test. The following dopamine receptor antagonists were employed: SCH 23390 (selective dopamine D1 antagonist, 0.05 mg/kg, ip), haloperidol (non-selective dopamine D2-like receptor antagonist; 0.03 mg/kg, ip), and sulpiride (selective dopamine D2-like receptor antagonist; 25 mg/kg, ip). Mice were pretreated with dopamine antagonists before the supraspinal administration of NPS (0.1 nmol, icv). Morphine (5 mg/kg, sc) and indomethacin (10 mg/kg, ip) were used as positive controls to set up the experimental conditions. Morphine-induced antinociceptive effects were observed during phases 1 and 2 of the test, while indomethacin was only active at phase 2. Central NPS significantly reduced formalin-induced nociception during both phases. The systemic administration of SCH 23390 slightly blocked the effects of NPS only during phase 2. Haloperidol prevented NPS-induced antinociceptive effects. Similar to haloperidol, sulpiride also counteracted the antinociceptive effects of NPS in both phases of the formalin test. In conclusion, the present findings suggest that the analgesic effects of NPS are linked with dopaminergic neurotransmission mainly through dopamine D2-like receptor signaling.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Matheus C Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Lisiane S Souza
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Bruno Lobão-Soares
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Edilson D Da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
22
|
Bülbül M, Sinen O, Özkan A, Aslan MA, Ağar A. Central neuropeptide-S treatment improves neurofunctions of 6-OHDA-induced Parkinsonian rats. Exp Neurol 2019; 317:78-86. [PMID: 30825442 DOI: 10.1016/j.expneurol.2019.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the dopaminergic neurons in substantia nigra (SN). The motor symptoms of PD include tremor, rigidity, bradykinesia and postural impairment. In rodents, central administration of neuropeptide-S (NPS) has been shown to induce locomotor activity, dopamine release and neuronal survival by decreasing lipid peroxidation, additionally, the NPS receptor (NPSR) was detected in SN. Accumulating findings suggest that central NPS may ameliorate the parkinsonian symptoms, however, this has been explored incompletely due to the scarcity of experimental studies. Therefore, the present study was designed to test whether central NPS treatment exerts protective and/or alleviative effects on 6-OHDA-induced rat experimental PD model. Adult male Wistar rats received acute (alleviate; 10 nmol, icv) or chronic (protective; 1 nmol, icv for 7 days) NPS treatment following the central injection of 6-OHDA in medial forebrain bundle. Motor performance tests and in vivo nigral microdialysis were performed before and 7 days after the central 6-OHDA injection. The immunoreactivities for tyrosine hydroxylase (TH), NPSR, 4-hydroxynonenal (4-HNE) and c-Fos were detected by immunohistochemistry in frozen SN sections. Our double immunofluorescence labeling studies demonstrated that NPSR is present in the nigral TH-positive neurons. Central NPS injection caused a remarkable c-Fos expression in SN; whereas, no change was observed following vehicle injection. In both chronic and acute treatment groups, the 6-OHDA-induced motor dysfunction and impaired nigral dopamine release were improved significantly. However, only chronic, but not acute treatment restored the loss of nigral TH-positive cells, while decreasing the 4-HNE immunoreactivity in SN. Our findings demonstrate that central NPS treatment not only exerts a neuroprotective action on nigral dopaminergic neurons, it also improves the striatal dopaminergic signaling. Therefore, the present study candidates the NPSR agonism as a novel therapeutic approach for PD treatment.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Osman Sinen
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Ayşe Özkan
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Mutay Aydın Aslan
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Aysel Ağar
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
23
|
Abstract
Pain has a strong emotional component and is defined by its unpleasantness. Chronic pain represents a complex disorder with anxio-depressive symptoms and cognitive deficits. Underlying mechanisms are still not well understood but an important role for interactions between prefrontal cortical areas and subcortical limbic structures has emerged. Evidence from preclinical studies in the rodent brain suggests that neuroplastic changes in prefrontal (anterior cingulate, prelimbic and infralimbic) cortical and subcortical (amygdala and nucleus accumbens) brain areas and their interactions (corticolimbic circuitry) contribute to the complexity and persistence of pain and may be predetermining factors as has been proposed in recent human neuroimaging studies.
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, United States; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
24
|
Thompson JM, Yakhnitsa V, Ji G, Neugebauer V. Small conductance calcium activated potassium (SK) channel dependent and independent effects of riluzole on neuropathic pain-related amygdala activity and behaviors in rats. Neuropharmacology 2018; 138:219-231. [PMID: 29908238 DOI: 10.1016/j.neuropharm.2018.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain is an important healthcare issue with significant emotional components. The amygdala is a brain region involved in pain and emotional-affective states and disorders. The central amygdala output nucleus (CeA) contains small-conductance calcium-activated potassium (SK) channels that can control neuronal activity. A clinically available therapeutic, riluzole can activate SK channels and may have antinociceptive effects through a supraspinal action. We tested the hypothesis that riluzole inhibits neuropathic pain behaviors by inhibiting pain-related changes in CeA neurons, in part at least through SK channel activation. EXPERIMENTAL APPROACH Brain slice physiology and behavioral assays were done in adult Sprague Dawley rats. Audible and ultrasonic vocalizations and von Frey thresholds were measured in sham and neuropathic rats 4 weeks after left L5 spinal nerve ligation (SNL model). Whole cell patch-clamp recordings of regular firing CeA neurons in brain slices were used to measure synaptic transmission and neuronal excitability. KEY RESULTS In brain slices, riluzole increased the SK channel-mediated afterhyperpolarization and synaptic inhibition, but inhibited neuronal excitability through an SK channel independent action. SNL rats had increased vocalizations and decreased withdrawal thresholds compared to sham rats, and intra-CeA administration of riluzole inhibited vocalizations and depression-like behaviors but did not affect withdrawal thresholds. Systemic riluzole administration also inhibited these changes, demonstrating the clinical utility of this strategy. SK channel blockade in the CeA attenuated the inhibitory effects of systemic riluzole on vocalizations, confirming SK channel involvement in these effects. CONCLUSIONS AND IMPLICATIONS The results suggest that riluzole has beneficial effects on neuropathic pain behaviors through SK channel dependent and independent mechanisms in the amygdala.
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
25
|
Abstract
The amygdala is a limbic brain region that plays a key role in emotional processing, neuropsychiatric disorders, and the emotional-affective dimension of pain. Preclinical and clinical studies have identified amygdala hyperactivity as well as impairment of cortical control mechanisms in pain states. Hyperactivity of basolateral amygdala (BLA) neurons generates enhanced feedforward inhibition and deactivation of the medial prefrontal cortex (mPFC), resulting in pain-related cognitive deficits. The mPFC sends excitatory projections to GABAergic neurons in the intercalated cell mass (ITC) in the amygdala, which project to the laterocapsular division of the central nucleus of the amygdala (CeLC; output nucleus) and serve gating functions for amygdala output. Impairment of these cortical control mechanisms allows the development of amygdala pain plasticity. Mechanisms of abnormal amygdala activity in pain with particular focus on loss of cortical control mechanisms as well as new strategies to correct pain-related amygdala dysfunction will be discussed in the present review.
Collapse
|
26
|
Jinushi K, Kushikata T, Kudo T, Calo G, Guerrini R, Hirota K. Central noradrenergic activity affects analgesic effect of Neuropeptide S. J Anesth 2017; 32:48-53. [PMID: 29128909 DOI: 10.1007/s00540-017-2427-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuropeptide S (NPS) is an endogenous neuropeptide controlling anxiolysis, wakefulness, and analgesia. NPS containing neurons exist near to the locus coeruleus (LC) involved in the descending anti-nociceptive system. NPS interacts with central noradrenergic neurons; thus brain noradrenergic signaling may be involved in NPS-induced analgesia. We tested NPS analgesia in noradrenergic neuron-lesioned rats using a selective LC noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). METHODS A total 66 male Sprague-Dawley rats weighing 350-450 g were used. Analgesic effects of NPS were evaluated using hot-plate and tail-flick test with or without DSP-4. The animal allocated into 3 groups; hot-plate with NPS alone intracerebroventricular (icv) (0.0, 1.0, 3.3, and 10.0 nmol), tail-flick NPS alone icv (0.0 and 10.0 nmol), and hot-plate with NPS and DSP-4 (0 or 50 mg/kg ip). In hot-plate with NPS and DSP-4 group, noradrenaline content in the cerebral cortex, pons, hypothalamus, were measured. RESULTS NPS 10 nmol icv prolonged hot plate (%MPE) but not tail flick latency at 30 and 40 min after administration. DSP-4 50 mg/kg decreased noradrenaline content in the all 3 regions. The NA depletion inhibited NPS analgesic effect in the hot plate test but not tail flick test. There was a significant correlation between hot plate latency (percentage of maximum possible effect: %MPE) with NPS 10 nmol and NA content in the cerebral cortex (p = 0.017, r 2 = 0.346) which noradrenergic innervation arisen mainly from the LC. No other regions had the correlation. CONCLUSIONS NPS analgesia interacts with LC noradrenergic neuronal activity.
Collapse
Affiliation(s)
- Kei Jinushi
- Department of Anesthesiology, Hirosaki University Hospital, Hirosaki, 036-8563, Japan
| | - Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Zaifu 5, Hirosaki, 036-8562, Japan.
| | - Takashi Kudo
- Department of Anesthesiology, Hirosaki University Hospital, Hirosaki, 036-8563, Japan
| | - Girolamo Calo
- Section of Pharmacology, Department of Medical Science, National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, LTTA, University of Ferrara, 44121, Ferrara, Italy
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Zaifu 5, Hirosaki, 036-8562, Japan
| |
Collapse
|
27
|
Meneses G, Gevorkian G, Florentino A, Bautista MA, Espinosa A, Acero G, Díaz G, Fleury A, Pérez Osorio IN, Del Rey A, Fragoso G, Sciutto E, Besedovsky H. Intranasal delivery of dexamethasone efficiently controls LPS-induced murine neuroinflammation. Clin Exp Immunol 2017; 190:304-314. [PMID: 28752628 DOI: 10.1111/cei.13018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2017] [Indexed: 01/13/2023] Open
Abstract
Neuroinflammation is the hallmark of several infectious and neurodegenerative diseases. Synthetic glucocorticoids (GCs) are the first-line immunosuppressive drugs used for controlling neuroinflammation. A delayed diffusion of GCs molecules and the high systemic doses required for brain-specific targeting lead to severe undesirable effects, particularly when lifelong treatment is required. Therefore, there is an urgent need for improving this current therapeutic approach. The intranasal (i.n.) route is being employed increasingly for drug delivery to the brain via the olfactory system. In this study, the i.n. route is compared to the intravenous (i.v.) administration of GCs with respect to their effectiveness in controlling neuroinflammation induced experimentally by systemic lipopolysaccharide (LPS) injection. A statistically significant reduction in interleukin (IL)-6 levels in the central nervous system (CNS) in the percentage of CD45+ /CD11b+ /lymphocyte antigen 6 complex locus G6D [Ly6G+ and in glial fibrillary acidic protein (GFAP) immunostaining was observed in mice from the i.n.-dexamethasone (DX] group compared to control and i.v.-DX-treated animals. DX treatment did not modify the percentage of microglia and perivascular macrophages as determined by ionized calcium binding adaptor molecule 1 (Iba1) immunostaining of the cortex and hippocampus. The increased accumulation of DX in brain microvasculature in DX-i.n.-treated mice compared with controls and DX-IV-treated animals may underlie the higher effectiveness in controlling neuroinflammation. Altogether, these results indicate that IN-DX administration may offer a more efficient alternative than systemic administration to control neuroinflammation in different neuropathologies.
Collapse
Affiliation(s)
- G Meneses
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - G Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - A Florentino
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - M A Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - A Espinosa
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - G Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - G Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - A Fleury
- Unidad Periférica del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, México, D.F., México
| | - I N Pérez Osorio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - A Del Rey
- Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University, Marburg, Germany
| | - G Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - E Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - H Besedovsky
- Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University, Marburg, Germany
| |
Collapse
|
28
|
Cragg B, Ji G, Neugebauer V. Differential contributions of vasopressin V1A and oxytocin receptors in the amygdala to pain-related behaviors in rats. Mol Pain 2016; 12:12/0/1744806916676491. [PMID: 27837170 PMCID: PMC5117246 DOI: 10.1177/1744806916676491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Neuroplastic changes in the amygdala account for emotional-affective aspects of pain and involve neuropeptides such as calcitonin gene-related peptide and corticotropin-releasing factor. Another neuropeptide system, central arginine vasopressin, has been implicated in neuropsychiatric disorders, but its role in pain-related emotional expression and neuroplasticity remains to be determined. Here, we tested the hypothesis that arginine vasopressin in the amygdala contributes to pain-related emotional-affective responses, using stereotaxic applications of arginine vasopressin and antagonists for G-protein coupled vasopressin V1A and oxytocin receptors in adult male Sprague-Dawley rats. In normal animals, arginine vasopressin increased audible and ultrasonic vocalizations and anxiety-like behavior (decreased open-arm preference in the elevated plus maze). The facilitatory effects were blocked by a selective V1A antagonist (SR 49059, Relcovaptan) but not by an oxytocin receptor antagonist (L-371,257). L-371,257 had some facilitatory effects on vocalizations. Arginine vasopressin had no effect in arthritic rats (kaolin/carrageenan knee joint pain model). SR 49059 inhibited vocalizations and anxiety-like behavior (elevated plus maze) in arthritic, but not normal, rats and conveyed anxiolytic properties to arginine vasopressin. Arginine vasopressin, SR 49059, and L-371,257 had no significant effects on spinal reflexes. We interpret the data to suggest that arginine vasopressin through V1A in the amygdala contributes to emotional-affective aspects of pain (arthritis model), whereas oxytocin receptors may mediate some inhibitory effects of the vasopressin system.
Collapse
Affiliation(s)
- Bryce Cragg
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Psychiatry, University of Miami Miller School of Medicine, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA .,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
29
|
Ruzza C, Calò G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005-2016). Expert Opin Ther Pat 2016; 27:347-362. [PMID: 27788040 DOI: 10.1080/13543776.2017.1254195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuropeptide S (NPS) is a 20-residue peptide and endogenous ligand of the NPS receptor (NPSR). This receptor was a formerly orphan GPCR whose activation increases calcium and cyclic adenosine monophosphate levels. The NPS/NPSR system is expressed in several brain regions where it controls important biological functions including locomotor activity, arousal and sleep, anxiety, food intake, memory, pain, and drug addiction. Areas covered: This review furnishes an updated overview of the patent literature covering NPSR ligands since 2005, when the first example of an NPSR antagonist was disclosed. Expert opinion: Several potent NPSR antagonists are available as valuable pharmacological tools despite showing suboptimal pharmacokinetic properties in vivo. The optimization of these ligands is needed to speed up their potential clinical advancement as pharmaceuticals to treat drug addiction. In order to support the design of novel NPSR antagonists, we performed a ligand-based conformational analysis recognizing some structural requirements for NPSR antagonism. The identification of small-molecule NPSR agonists now represents an unmet challenge to be addressed. These molecules will allow investigation of the beneficial effects of selective NPSR activation in a large panel of psychiatric disorders and to foresee their therapeutic potential as anxiolytics, nootropics, and analgesics.
Collapse
Affiliation(s)
- Chiara Ruzza
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | - Girolamo Calò
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | | | - Salvatore Pacifico
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Claudio Trapella
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Severo Salvadori
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Delia Preti
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Remo Guerrini
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
30
|
Yang F, Peng L, Luo J, Yi H, Hu X. Intra-amygdala microinfusion of neuropeptide S attenuates neuropathic pain and suppresses the response of spinal microglia and astrocytes after spinal nerve ligation in rats. Peptides 2016; 82:26-34. [PMID: 27224019 DOI: 10.1016/j.peptides.2016.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 01/04/2023]
Abstract
The amygdala circuitry and neuropeptide S (NPS) have been shown to play an important role in the pain modulation. However, the alleviative effect of NPS in amygdala on neuropathic pain (NP) is not fully understood. Here, we demonstrate a possibility that the intra-amygdala microinfusion of NPS attenuates NP symptoms and suppresses the response of spinal microglia and astrocytes after spinal nerve injury. Spinal nerve ligation (SNL) in rats resulted in a striking decline in level of NPS and density of NPS-immunopositive cells in amygdala. SNL rats randomly received chronic bilateral microinjections of NPS (1, 10 and 100pmol/side) or saline into the amygdala via cannulas on days 3, 6, 9, 12, 15 and 18 post-surgery. Chronic treatment with NPS increased thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) on day 11-21 post-SNL. The simultaneous treatment with SHA68 as non-peptide NPS receptor antagonist decreased the TWL and MWT, and reversed the inhibitory effects of NPS in SNL rats. NPS also significantly attenuated immunoreactivities of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein for microglia and astrocytes. Furthermore, the elevated levels of inflammatory mediators and expressions of nuclear factor κB p65 and CX3C chemokine receptor 1 due to SNL were significantly attenuated by NPS in amygdala. These effects of NPS were also counteracted by SHA 68. SHA 68 per se deteriorated the symptom of NP and the response of spinal microglia and astrocytes in SNL rats. Our study identified a protective role for NPS in amygdala against the development of NP, possibly attributing to its anti-inflammatory activity and inhibition of spinal microglia and astrocytes.
Collapse
Affiliation(s)
- Fengrui Yang
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Liangyu Peng
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jingjing Luo
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Han Yi
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Xiaoling Hu
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China.
| |
Collapse
|
31
|
Zhang S, You Z, Wang S, Yang J, Yang L, Sun Y, Mi W, Yang L, McCabe MF, Shen S, Chen L, Mao J. Neuropeptide S modulates the amygdaloidal HCN activities (Ih) in rats: Implication in chronic pain. Neuropharmacology 2016; 105:420-433. [PMID: 26855147 DOI: 10.1016/j.neuropharm.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Neuropeptide S (NPS), an endogenous anxiolytic, has been shown to protect against chronic pain through interacting with its cognate NPS receptor (NPSR) in the brain. However, the cellular mechanism of this NPS action remains unclear. We report that NPS inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channel current (Ih) in the rat's amygdala through activation of NPSR. This NPS effect is mediated through ERK1/2 phosphorylation in a subset of pyramidal-like neurons located in the medial amygdala. The characters of the recorded Ih suggest a major role for HCN1 activity in this process. Inhibition of Ih by NPS stimulates the glutamatergic drive onto fast spiking intra-amygdalolidal GABAergic interneurons, which in turn facilitates GABA release onto pyramidal-like neurons. Moreover, the HCN1 expression is increased in the amygdala of rats with peripheral nerve injury and intra-amygdaloidal administration of the HCN channel inhibitor ZD7288 attenuates nociceptive behavior in these rats. These results suggest that NPS-mediated modulation of intra-amygdaloidal HCN channel activities may be an important central inhibitory mechanism for regulation of chronic pain.
Collapse
Affiliation(s)
- Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lujia Yang
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Yan Sun
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Wenli Mi
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liling Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael F McCabe
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Abstract
Accumulating evidence suggests an important contribution of reactive oxygen species (ROS) to pain and neuropsychiatric disorders, but their role in pain-related plasticity in the brain is largely unknown. Neuroplasticity in the central nucleus of the amygdala (CeA) correlates positively with pain behaviors in different models. Little is known, however, about mechanisms of visceral pain-related amygdala changes. The electrophysiological and behavioral studies reported here addressed the role of ROS in the CeA in a visceral pain model induced by intracolonic zymosan. Vocalizations to colorectal distension and anxiety-like behavior increased after intracolonic zymosan and were inhibited by intra-CeA application of a ROS scavenger (tempol, a superoxide dismutase mimetic). Tempol also induced a place preference in zymosan-treated rats but not in controls. Single-unit recordings of CeA neurons in anesthetized rats showed increases of background activity and responses to visceral stimuli after intracolonic zymosan. Intra-CeA application of tempol inhibited the increased activity but had no effect under normal conditions. Whole-cell patch-clamp recordings of CeA neurons in brain slices from zymosan-treated rats showed that tempol decreased neuronal excitability and excitatory synaptic transmission of presumed nociceptive inputs from the brainstem (parabrachial area) through a combination of presynaptic and postsynaptic actions. Tempol had no effect in brain slices from sham controls. The results suggest that ROS contribute to visceral pain-related hyperactivity of amygdala neurons and amygdala-dependent behaviors through a mechanism that involves increased excitatory transmission and excitability of CeA neurons.
Collapse
|
33
|
Kiritoshi T, Ji G, Neugebauer V. Rescue of Impaired mGluR5-Driven Endocannabinoid Signaling Restores Prefrontal Cortical Output to Inhibit Pain in Arthritic Rats. J Neurosci 2016; 36:837-50. [PMID: 26791214 PMCID: PMC4719019 DOI: 10.1523/jneurosci.4047-15.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022] Open
Abstract
The medial prefrontal cortex (mPFC) serves executive functions that are impaired in neuropsychiatric disorders and pain. Underlying mechanisms remain to be determined. Here we advance the novel concept that metabotropic glutamate receptor 5 (mGluR5) fails to engage endocannabinoid (2-AG) signaling to overcome abnormal synaptic inhibition in pain, but restoring endocannabinoid signaling allows mGluR5 to increase mPFC output hence inhibit pain behaviors and mitigate cognitive deficits. Whole-cell patch-clamp recordings were made from layer V pyramidal cells in the infralimbic mPFC in rat brain slices. Electrical and optogenetic stimulations were used to analyze amygdala-driven mPFC activity. A selective mGluR5 activator (VU0360172) increased pyramidal output through an endocannabinoid-dependent mechanism because intracellular inhibition of the major 2-AG synthesizing enzyme diacylglycerol lipase or blockade of CB1 receptors abolished the facilitatory effect of VU0360172. In an arthritis pain model mGluR5 activation failed to overcome abnormal synaptic inhibition and increase pyramidal output. mGluR5 function was rescued by restoring 2-AG-CB1 signaling with a CB1 agonist (ACEA) or inhibitors of postsynaptic 2-AG hydrolyzing enzyme ABHD6 (intracellular WWL70) and monoacylglycerol lipase MGL (JZL184) or by blocking GABAergic inhibition with intracellular picrotoxin. CB1-mediated depolarization-induced suppression of synaptic inhibition (DSI) was also impaired in the pain model but could be restored by coapplication of VU0360172 and ACEA. Stereotaxic coadministration of VU0360172 and ACEA into the infralimbic, but not anterior cingulate, cortex mitigated decision-making deficits and pain behaviors of arthritic animals. The results suggest that rescue of impaired endocannabinoid-dependent mGluR5 function in the mPFC can restore mPFC output and cognitive functions and inhibit pain. Significance statement: Dysfunctions in prefrontal cortical interactions with subcortical brain regions, such as the amygdala, are emerging as important players in neuropsychiatric disorders and pain. This study identifies a novel mechanism and rescue strategy for impaired medial prefrontal cortical function in an animal model of arthritis pain. Specifically, an integrative approach of optogenetics, pharmacology, electrophysiology, and behavior is used to advance the novel concept that a breakdown of metabotropic glutamate receptor subtype mGluR5 and endocannabinoid signaling in infralimbic pyramidal cells fails to control abnormal amygdala-driven synaptic inhibition in the arthritis pain model. Restoring endocannabinoid signaling allows mGluR5 activation to increase infralimbic output hence inhibit pain behaviors and mitigate pain-related cognitive deficits.
Collapse
Affiliation(s)
| | | | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, Texas 79430-6592
| |
Collapse
|
34
|
Structural bases for neurophysiological investigations of amygdaloid complex of the brain. Sci Rep 2015; 5:17052. [PMID: 26608527 PMCID: PMC4660295 DOI: 10.1038/srep17052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/23/2015] [Indexed: 11/08/2022] Open
Abstract
Amygdala (Am) as a part of limbic system of the brain defines such important functions as adaptive behavior of animals, formation of emotions and memory, regulation of endocrine and visceral functions. We worked out, with the help of mathematic modelling of the pattern recognition theory, principles for organization of neurophysiological and neuromorphological studies of Am nuclei, which take into account the existing heterogeneity of its formations and optimize, to a great extent, the protocol for carrying out of such investigations. The given scheme of studies of Am's structural-functional organization at its highly-informative sections can be used as a guide for precise placement of electrodes', cannulae's and microsensors into particular Am nucleus in the brain with the registration not only the nucleus itself, but also its extensions. This information is also important for defining the number of slices covering specific Am nuclei which must be investigated to reveal the physiological role of a particular part of amygdaloid complex.
Collapse
|
35
|
Thompson JM, Ji G, Neugebauer V. Small-conductance calcium-activated potassium (SK) channels in the amygdala mediate pain-inhibiting effects of clinically available riluzole in a rat model of arthritis pain. Mol Pain 2015; 11:51. [PMID: 26311432 PMCID: PMC4551697 DOI: 10.1186/s12990-015-0055-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Arthritis pain is an important healthcare issue with significant emotional and affective consequences. Here we focus on potentially beneficial effects of activating small-conductance calcium-activated potassium (SK) channels in the amygdala, a brain center of emotions that plays an important role in central pain modulation and processing. SK channels have been reported to regulate neuronal activity in the central amygdala (CeA, output nucleus). We tested the effects of riluzole, a clinically available drug for the treatment of amyotrophic lateral sclerosis, for the following reasons. Actions of riluzole include activation of SK channels. Evidence in the literature suggests that riluzole may have antinociceptive effects through an action in the brain but not the spinal cord. Mechanism and site of action of riluzole remain to be determined. Here we tested the hypothesis that riluzole inhibits pain behaviors by acting on SK channels in the CeA in an arthritis pain model. RESULTS Systemic (intraperitoneal) application of riluzole (8 mg/kg) inhibited audible (nocifensive response) and ultrasonic (averse affective response) vocalizations of adult rats with arthritis (5 h postinduction of a kaolin-carrageenan monoarthritis in the knee) but did not affect spinal withdrawal thresholds, which is consistent with a supraspinal action. Stereotaxic administration of riluzole into the CeA by microdialysis (1 mM, concentration in the microdialysis fiber, 15 min) also inhibited vocalizations, confirming the CeA as a site of action of riluzole. Stereotaxic administration of a selective SK channel blocker (apamin, 1 µM, concentration in the microdialysis fiber, 15 min) into the CeA had no effect by itself but inhibited the effect of systemic riluzole on vocalizations. Off-site administration of apamin into the basolateral amygdala (BLA) as a placement control or stereotaxic application of a selective blocker of large-conductance calcium-activated potassium (BK) channels (charybdotoxin, 1 µM, concentration in the microdialysis fiber, 15 min) into the CeA did not affect the inhibitory effects of systemically applied riluzole. CONCLUSIONS The results suggest that riluzole can inhibit supraspinally organized pain behaviors in an arthritis model by activating SK, but not BK, channels in the amygdala (CeA but not BLA).
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|