1
|
Piña R, Ugarte G, Guevara C, Pino R, Valdebenito K, Romero S, Gómez del Campo A, Cornejo VH, Pertusa M, Madrid R. A functional unbalance of TRPM8 and Kv1 channels underlies orofacial cold allodynia induced by peripheral nerve damage. Front Pharmacol 2024; 15:1484387. [PMID: 39703391 PMCID: PMC11655194 DOI: 10.3389/fphar.2024.1484387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca2+ imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery in vivo, we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch. We found that cold allodynia induced by IoN-CCI is linked to an increase in the proportion of cold-sensitive neurons (CSNs) contributing to this branch and a shift in their thermal thresholds to higher temperatures. These changes are correlated to a reduction of the Kv1.1-1.2-dependent brake potassium current IKD in IoN CSNs and a rise in the percentage of trigeminal neurons expressing TRPM8. The analysis of the electrophysiological properties of CSNs contributing to the IoN suggests that painful cold hypersensitivity involves the recruitment of silent nociceptive afferents that become sensitive to mild cold in response to nerve damage. Notably, pharmacological suppression of TRPM8 channels and AAV-based transduction of trigeminal neurons with the Kv1.1 channel in vivo effectively reverted the nociceptive phenotype in injured animals. Altogether, our results unveil a crucial role of TRPM8 and Kv1 channels in orofacial cold allodynia, suggesting that both the specific TRPM8-blocking and the AAV-driven expression of potassium channels underlying IKD in trigeminal neurons can be effective tools to revert this damage-triggered sensory alteration.
Collapse
Affiliation(s)
- Ricardo Piña
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Gonzalo Ugarte
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camilo Guevara
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
| | - Richard Pino
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Katherine Valdebenito
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sofía Romero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Ana Gómez del Campo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Víctor Hugo Cornejo
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| |
Collapse
|
2
|
Fang H, Li M, Yang J, Ma S, Zhang L, Yang H, Tang Q, Cao J, Yang W. Repressing iron overload ameliorates central post-stroke pain via the Hdac2-Kv1.2 axis in a rat model of hemorrhagic stroke. Neural Regen Res 2024; 19:2708-2722. [PMID: 38595289 PMCID: PMC11168507 DOI: 10.4103/nrr.nrr-d-23-01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 02/04/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00027/figure1/v/2024-04-08T165401Z/r/image-tiff Thalamic hemorrhage can lead to the development of central post-stroke pain. Changes in histone acetylation levels, which are regulated by histone deacetylases, affect the excitability of neurons surrounding the hemorrhagic area. However, the regulatory mechanism of histone deacetylases in central post-stroke pain remains unclear. Here, we show that iron overload leads to an increase in histone deacetylase 2 expression in damaged ventral posterolateral nucleus neurons. Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium (Kv) channel subunit gene in a rat model of central post-stroke pain, thereby increasing Kcna2 expression and relieving central pain. However, in the absence of nerve injury, increasing histone deacetylase 2 expression decreased Kcna2 expression, decreased Kv current, increased the excitability of neurons in the ventral posterolateral nucleus area, and led to neuropathic pain symptoms. Moreover, treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage, reversed histone deacetylase 2 upregulation and Kv1.2 downregulation, and alleviated mechanical hypersensitivity in central post-stroke pain rats. These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation, mediated by iron overload, are important factors in central post-stroke pain pathogenesis and could serve as new targets for central post-stroke pain treatment.
Collapse
Affiliation(s)
- He Fang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jingchen Yang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shunping Ma
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, China
| | - Qiongyan Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan Province, China
| | - Weimin Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
3
|
Xie C, Kessi M, Yin F, Peng J. Roles of KCNA2 in Neurological Diseases: from Physiology to Pathology. Mol Neurobiol 2024; 61:8491-8517. [PMID: 38517617 DOI: 10.1007/s12035-024-04120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Potassium voltage-gated channel subfamily a member 2 (Kv1.2, encoded by KCNA2) is highly expressed in the central and peripheral nervous systems. Based on the patch clamp studies, gain-of function (GOF), loss-of-function (LOF), and a mixed type (GOF/LOF) variants can cause different conditions/disorders. KCNA2-related neurological diseases include epilepsy, intellectual disability (ID), attention deficit/hyperactive disorder (ADHD), autism spectrum disorder (ASD), pain as well as autoimmune and movement disorders. Currently, the molecular mechanisms for the reported variants in causing diverse disorders are unknown. Consequently, this review brings up to date the related information regarding the structure and function of Kv1.2 channel, expression patterns, neuronal localizations, and tetramerization as well as important cell and animal models. In addition, it provides updates on human genetic variants, genotype-phenotype correlations especially highlighting the deep insight into clinical prognosis of KCNA2-related developmental and epileptic encephalopathy, mechanisms, and the potential treatment targets for all KCNA2-related neurological disorders.
Collapse
Affiliation(s)
- Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China.
- Hunan Intellectual and Development Disabilities Research Center, Hunan, Changsha, 410008, China.
| |
Collapse
|
4
|
Peng W, Wang P, Tan C, Zhao H, Chen K, Si H, Tian Y, Lou A, Zhu Z, Yuan Y, Wu K, Chang C, Wu Y, Chen T. High-frequency terahertz stimulation alleviates neuropathic pain by inhibiting the pyramidal neuron activity in the anterior cingulate cortex of mice. eLife 2024; 13:RP97444. [PMID: 39331514 PMCID: PMC11434610 DOI: 10.7554/elife.97444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or disease of the somatosensory system and is characterized by abnormal hypersensitivity to stimuli and nociceptive responses to non-noxious stimuli, affecting approximately 7-10% of the general population. However, current first-line drugs like non-steroidal anti-inflammatory agents and opioids have limitations, including dose-limiting side effects, dependence, and tolerability issues. Therefore, developing new interventions for the management of NP is urgent. In this study, we discovered that the high-frequency terahertz stimulation (HFTS) at approximately 36 THz effectively alleviates NP symptoms in mice with spared nerve injury. Computational simulation suggests that the frequency resonates with the carbonyl group in the filter region of Kv1.2 channels, facilitating the translocation of potassium ions. In vivo and in vitro results demonstrate that HFTS reduces the excitability of pyramidal neurons in the anterior cingulate cortex likely through enhancing the voltage-gated K+ and also the leak K+ conductance. This research presents a novel optical intervention strategy with terahertz waves for the treatment of NP and holds promising applications in other nervous system diseases.
Collapse
Affiliation(s)
- Wenyu Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Pan Wang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Chaoyang Tan
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Han Zhao
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Huaxing Si
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Yuchen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Anxin Lou
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Zhi Zhu
- Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Yifang Yuan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Kaijie Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui UniversityHefeiChina
- School of Electronic and Information Engineering, Anhui UniversityHefeiChina
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- School of Physics, Peking UniversityBeijingChina
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| |
Collapse
|
5
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
6
|
Pozzi E, Terribile G, Cherchi L, Di Girolamo S, Sancini G, Alberti P. Ion Channel and Transporter Involvement in Chemotherapy-Induced Peripheral Neurotoxicity. Int J Mol Sci 2024; 25:6552. [PMID: 38928257 PMCID: PMC11203899 DOI: 10.3390/ijms25126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The peripheral nervous system can encounter alterations due to exposure to some of the most commonly used anticancer drugs (platinum drugs, taxanes, vinca alkaloids, proteasome inhibitors, thalidomide), the so-called chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN can be long-lasting or even permanent, and it is detrimental for the quality of life of cancer survivors, being associated with persistent disturbances such as sensory loss and neuropathic pain at limb extremities due to a mostly sensory axonal polyneuropathy/neuronopathy. In the state of the art, there is no efficacious preventive/curative treatment for this condition. Among the reasons for this unmet clinical and scientific need, there is an uncomplete knowledge of the pathogenetic mechanisms. Ion channels and transporters are pivotal elements in both the central and peripheral nervous system, and there is a growing body of literature suggesting that they might play a role in CIPN development. In this review, we first describe the biophysical properties of these targets and then report existing data for the involvement of ion channels and transporters in CIPN, thus paving the way for new approaches/druggable targets to cure and/or prevent CIPN.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Giulia Terribile
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.T.); (G.S.)
| | - Laura Cherchi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Sara Di Girolamo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Giulio Sancini
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.T.); (G.S.)
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
7
|
Wang H, Zuo W, Feng X, Huo X, Liang Y, Wang B, Sharma D, Li X, Yasin B, Ye JH, Hu H, Tao YX. ESRRG-controlled downregulation of KCNN1 in primary sensory neurons is required for neuropathic pain. JCI Insight 2024; 9:e180085. [PMID: 38912580 PMCID: PMC11383585 DOI: 10.1172/jci.insight.180085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
Peripheral nerve injury-induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiang-Hong Ye
- Department of Anesthesiology
- Department of Physiology, Pharmacology & Neuroscience; and
| | - Huijuan Hu
- Department of Anesthesiology
- Department of Physiology, Pharmacology & Neuroscience; and
| | - Yuan-Xiang Tao
- Department of Anesthesiology
- Department of Physiology, Pharmacology & Neuroscience; and
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
8
|
Kandel MB, Zhuang GZ, Goins WF, Marzulli M, Zhang M, Glorioso JC, Kang Y, Levitt AE, Kwok WM, Levitt RC, Sarantopoulos KD. rdHSV-CA8 non-opioid analgesic gene therapy decreases somatosensory neuronal excitability by activating Kv7 voltage-gated potassium channels. Front Mol Neurosci 2024; 17:1398839. [PMID: 38783904 PMCID: PMC11112096 DOI: 10.3389/fnmol.2024.1398839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic pain is common and inadequately treated, making the development of safe and effective analgesics a high priority. Our previous data indicate that carbonic anhydrase-8 (CA8) expression in dorsal root ganglia (DRG) mediates analgesia via inhibition of neuronal ER inositol trisphosphate receptor-1 (ITPR1) via subsequent decrease in ER calcium release and reduction of cytoplasmic free calcium, essential to the regulation of neuronal excitability. This study tested the hypothesis that novel JDNI8 replication-defective herpes simplex-1 viral vectors (rdHSV) carrying a CA8 transgene (vHCA8) reduce primary afferent neuronal excitability. Whole-cell current clamp recordings in small DRG neurons showed that vHCA8 transduction caused prolongation of their afterhyperpolarization (AHP), an essential regulator of neuronal excitability. This AHP prolongation was completely reversed by the specific Kv7 channel inhibitor XE-991. Voltage clamp recordings indicate an effect via Kv7 channels in vHCA8-infected small DRG neurons. These data demonstrate for the first time that vHCA8 produces Kv7 channel activation, which decreases neuronal excitability in nociceptors. This suppression of excitability may translate in vivo as non-opioid dependent behavioral- or clinical analgesia, if proven behaviorally and clinically.
Collapse
Affiliation(s)
- Munal B. Kandel
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gerald Z. Zhuang
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yuan Kang
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alexandra E. Levitt
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Roy C. Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- John T. MacDonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Liang Y, Sharma D, Wang B, Wang H, Feng X, Ma R, Berkman T, Char S, Bekker A, Tao YX. Transcription factor EBF1 mitigates neuropathic pain by rescuing Kv1.2 expression in primary sensory neurons. Transl Res 2024; 263:15-27. [PMID: 37607607 PMCID: PMC10840933 DOI: 10.1016/j.trsl.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Nerve injury-induced alternations of gene expression in primary sensory neurons of the dorsal root ganglion (DRG) are molecular basis of neuropathic pain genesis. Transcription factors regulate gene expression. In this study, we examined whether early B cell factor 1 (EBF1), a transcription factor, in the DRG, participated in neuropathic pain caused by chronic constriction injury (CCI) of the sciatic nerve. EBF1 was distributed exclusively in the neuronal nucleus and coexpressed with cytoplasmic/membrane Kv1.2 in individual DRG neurons. The expression of Ebf1 mRNA and protein was time-dependently downregulated in the ipsilateral lumbar (L) 3/4 DRGs after unilateral CCI. Rescuing this downregulation through microinjection of the adeno-associated virus 5 expressing full-length Ebf1 mRNA into the ipsilateral L3/4 DRGs reversed the CCI-induced decrease of DRG Kv1.2 expression and alleviated the development and maintenance of mechanical, heat and cold hypersensitivities. Conversely, mimicking the downregulation of DRG EBF1 through microinjection of AAV5-expressing Ebf1 shRNA into unilateral L3/4 DRGs produced a reduction of Kv1.2 expression in the ipsilateral L3/4 DRGs, spontaneous pain, and the enhanced responses to mechanical, heat and cold stimuli in naive mice. Mechanistically, EBF1 not only bound to the Kcna2 gene (encoding Kv1.2) promoter but also directly activated its activity. CCI decreased the EBF1 binding to the Kcna2 promoter in the ipsilateral L3/4 DRGs. Our findings suggest that DRG EBF1 downregulation contributes to neuropathic pain likely by losing its binding to Kcna2 promoter and subsequently silencing Kv1.2 expression in primary sensory neurons. Exogenous EBF1 administration may mitigate neuropathic pain by rescuing DRG Kv1.2 expression.
Collapse
Affiliation(s)
- Yingping Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Dilip Sharma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Bing Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Huixing Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Ruining Ma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Tolga Berkman
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Steven Char
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Departments of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
10
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
11
|
Wang B, Ma L, Guo X, Du S, Feng X, Liang Y, Govindarajalu G, Wu S, Liu T, Li H, Patel S, Bekker A, Hu H, Tao YX. A sensory neuron-specific long non-coding RNA reduces neuropathic pain by rescuing KCNN1 expression. Brain 2023; 146:3866-3884. [PMID: 37012681 PMCID: PMC10473565 DOI: 10.1093/brain/awad110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Nerve injury to peripheral somatosensory system causes refractory neuropathic pain. Maladaptive changes of gene expression in primary sensory neurons are considered molecular basis of this disorder. Long non-coding RNAs (lncRNAs) are key regulators of gene transcription; however, their significance in neuropathic pain remains largely elusive.Here, we reported a novel lncRNA, named sensory neuron-specific lncRNA (SS-lncRNA), for its expression exclusively in dorsal root ganglion (DRG) and trigeminal ganglion. SS-lncRNA was predominantly expressed in small DRG neurons and significantly downregulated due to a reduction of early B cell transcription factor 1 in injured DRG after nerve injury. Rescuing this downregulation reversed a decrease of the calcium-activated potassium channel subfamily N member 1 (KCNN1) in injured DRG and alleviated nerve injury-induced nociceptive hypersensitivity. Conversely, DRG downregulation of SS-lncRNA reduced the expression of KCNN1, decreased total potassium currents and afterhyperpolarization currents and increased excitability in DRG neurons and produced neuropathic pain symptoms.Mechanistically, downregulated SS-lncRNA resulted in the reductions of its binding to Kcnn1 promoter and heterogeneous nuclear ribonucleoprotein M (hnRNPM), consequent recruitment of less hnRNPM to the Kcnn1 promoter and silence of Kcnn1 gene transcription in injured DRG.These findings indicate that SS-lncRNA may relieve neuropathic pain through hnRNPM-mediated KCNN1 rescue in injured DRG and offer a novel therapeutic strategy specific for this disorder.
Collapse
Affiliation(s)
- Bing Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Longfei Ma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xinying Guo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yingping Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Gokulapriya Govindarajalu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Departments of Biochemistry, Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Departments of Biochemistry, Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shivam Patel
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Huijuan Hu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Ovsepian SV, Waxman SG. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nat Rev Neurosci 2023; 24:252-265. [PMID: 36658346 DOI: 10.1038/s41583-022-00673-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.
Collapse
Affiliation(s)
- Saak V Ovsepian
- School of Science, Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, UK.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Yao C, Ren J, Huang R, Tang C, Cheng Y, Lv Z, Kong L, Fang S, Tao J, Fu Y, Zhu Q, Fang M. Transcriptome profiling of microRNAs reveals potential mechanisms of manual therapy alleviating neuropathic pain through microRNA-547-3p-mediated Map4k4/NF-κb signaling pathway. J Neuroinflammation 2022; 19:211. [PMID: 36045396 PMCID: PMC9434879 DOI: 10.1186/s12974-022-02568-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Local neuroinflammation secondary to spinal nerve compression in lumbar disk herniation (LDH) is a key driver contributing to neuropathic pain. Manual therapy (MT), a widely used nonsurgical therapy, can relieve LDH-mediated pain by reducing inflammation. MT has attracted extensive attention; however, its mechanism remains poorly understood. MicroRNAs (miRNAs) are important regulators of pain signaling transduction, but are rarely reported in the chronic compression of dorsal root ganglia (CCD) model, and further investigation is needed to decipher whether they mediate anti-inflammatory and analgesic effects of MT. METHODS We used a combination of in vivo behavioral and molecular techniques to study MT intervention mechanisms. Neuropathic pain was induced in a CCD rat model and MT intervention was performed according to standard procedures. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory cytokine levels in dorsal root ganglia (DRG). Small RNA sequencing, immunofluorescence, Western blot, and qRT-PCR were performed to screen miRNAs and their target genes and determine core factors in the pathway possibly regulated by miRNA-mediated target gene in DRG of MT-treated CCD rats. RESULTS Compared with naive rats, small RNA sequencing detected 22 differentially expressed miRNAs in DRG of CCD rats, and compared with CCD rats, MT-treated rats presented 19 differentially expressed miRNAs, which were functionally associated with nerve injury and inflammation. Among these, miR-547-3p was screened as a key miRNA mediating neuroinflammation and participating in neuropathic pain. We confirmed in vitro that its function is achieved by directly regulating its target gene Map4k4. Intrathecal injection of miR-547-3p agomir or MT intervention significantly reduced Map4k4 expression and the expression and phosphorylation of IκBα and p65 in the NF-κB pathway, thus reducing the inflammatory cytokine levels and exerting an analgesic effect, whereas intrathecal injection of miR-547-3p antagomir led to opposite effects. CONCLUSIONS In rats, CCD-induced neuropathic pain leads to variation in miRNA expression in DRG, and MT can intervene the transcription and translation of inflammation-related genes through miRNAs to improve neuroinflammation and alleviate neuropathic pain. MiR-547-3p may be a key target of MT for anti-inflammatory and analgesia effects, which is achieved by mediating the Map4k4/NF-κB pathway to regulate downstream inflammatory cytokines.
Collapse
Affiliation(s)
- Chongjie Yao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| | - Jun Ren
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Ruixin Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Cheng Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yanbin Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Zhizhen Lv
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053 People’s Republic of China
| | - Lingjun Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Sitong Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Jiming Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yangyang Fu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Min Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
14
|
Mauceri D. Role of Epigenetic Mechanisms in Chronic Pain. Cells 2022; 11:cells11162613. [PMID: 36010687 PMCID: PMC9406853 DOI: 10.3390/cells11162613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/11/2022] Open
Abstract
Pain is an unpleasant but essential-to-life sensation, usually resulting from tissue damage. When pain persists long after the injury has resolved, it becomes pathological. The precise molecular and cellular mechanisms causing the transition from acute to chronic pain are not fully understood. A key aspect of pain chronicity is that several plasticity events happen along the neural pathways involved in pain. These long-lasting adaptive changes are enabled by alteration in the expression of relevant genes. Among the different modulators of gene transcription in adaptive processes in the nervous system, epigenetic mechanisms play a pivotal role. In this review, I will first outline the main classes of epigenetic mediators and then discuss their implications in chronic pain.
Collapse
Affiliation(s)
- Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
16
|
Jiang M, Huang Y, Hu L, Wu H, Liu Y, Ni K, Zhang X, Sun Y, Gu X. The transcription factor CCAAT/enhancer-binding protein β in spinal microglia contributes to pre-operative stress-induced prolongation of postsurgical pain. Mol Pain 2022; 18:17448069221099360. [PMID: 35451875 PMCID: PMC9257637 DOI: 10.1177/17448069221099360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prolongation of postsurgical pain caused by pre-operative stress is a clinically significant problem, although the mechanisms are not fully understood. Stress can promote the pro-inflammatory activation of microglia, and the transcription factor CCAAT/enhancer-binding protein (C/EBP) β regulates pro-inflammatory gene expression in microglia. Therefore, we speculated that C/EBPβ in spinal microglia may have critical roles in the development of chronic postsurgical pain. Accordingly, in this study, we used a single prolonged stress (SPS) procedure and plantar incisions to evaluate the roles of C/EBPβ in postsurgical pain. Our experiments showed that SPS exposure prolonged mechanical allodynia, increased the expression of C/EBPβ and pro-inflammatory cytokines, and potentiated the activation of spinal microglia. Subsequently, microinjection of C/EBPβ siRNA attenuated the duration of SPS-prolonged postoperative mechanical allodynia and inhibited microglial activation in the spinal cord. Conversely, mimicking this increase in C/EBPβ promoted microglial activation via pretreatment with a pre-injection of AAV5-C/EBPβ, leading to prolongation of postsurgical pain. Overall, these results suggested that spinal microglia may play key roles in prolongation of postsurgical pain induced by pre-operative stress and that C/EBPβ may be a potential target for disease treatment.
Collapse
Affiliation(s)
- Ming Jiang
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yulin Huang
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Lijun Hu
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Hao Wu
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yue Liu
- Department of Anesthesiology66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Kun Ni
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Xiaokun Zhang
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Yu'e Sun
- 66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| | - Xiaoping Gu
- Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School66506Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
| |
Collapse
|
17
|
Li X, Tao YX. Intrathecal administration of the fat-mass and obesity-associated protein inhibitor mitigates neuropathic pain in female rats. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2022; 9:478-487. [PMID: 36545239 PMCID: PMC9764434 DOI: 10.31480/2330-4871/163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several intracellular signals are involved in the sexual dimorphism of chronic pain. Our previous studies demonstrated that the fat-mass and obesity-associated protein (FTO), a demethylase of RNA N6-methyladenosine, in the injured dorsal root ganglion (DRG) contributed to the development and maintenance of nerve injury-induced nociceptive hypersensitivity in male rats and male mice. However, whether these effects of DRG FTO are in a sex-dependent manner is still unknown. The present study sought to investigate the effect of intrathecal administration of a specific FTO inhibitor, meclofenamic acid (MA), on chronic constriction injury (CCI)-induced nociceptive hypersensitivity in female rats. Intrathecal injection of MA attenuated the CCI-induced mechanical allodynia, heat hyperalgesia, and cold hyperalgesia in both the induction and maintenance periods, without changing acute/basal pain and locomotor function, in female rats. Intrathecal MA also blocked the CCI-induced hyperactivations of neurons and astrocytes in the ipsilateral L4 and L5 dorsal horns of female rats. Mechanistically, intrathecal MA prevented the CCI-induced increase in the histone methyltransferase G9a expression and reversed the G9a-controlled downregulation of mu-opioid receptor and Kv1.2 proteins in the ipsilateral L4 and L5 DRGs of female rats. These findings indicate that the effects of the FTO inhibitor on nerve injury-induced nociceptive hypersensitivity in female rats are similar to those in male rats reported previously. Our data also further confirm the role of DRG FTO in neuropathic pain and suggest potential clinical application of the FTO inhibitors for the prevention and treatment of this disorder in both men and women.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA,Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103, USA,Departments of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
18
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Peng Y, Zhang Q, Cheng H, Yan G, Xing C. Upregulation of ubiquitin conjugating enzyme E2B (Ube2b) ameliorates neuropathic pain by regulating Kcna2 (potassium voltage-gated channel subfamily A member 2) in primary afferent neurons. Bioengineered 2021; 12:7470-7480. [PMID: 34632937 PMCID: PMC8806678 DOI: 10.1080/21655979.2021.1976895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neuropathic pain is a kind of pain caused by damage to somatosensory nervous system. Currently, neuropathic pain is still a medical problem for clinicians. Ubiquitin conjugating enzyme E2B (Ube2b) is validated to be implicated with nerve function, but whether Ube2b can play a role in neuropathic pain is still elusive. In this work, we constructed chronic constriction injury (CCI) rat model by ligating the left sciatic nerve, Ube2b protein expression was confirmed to be decreased in spinal cord tissues of CCI rats via Western blot analysis and immunofluorescence (IF) staining. Moreover, Ube2b elevation alleviated the thermal hyperalgesia and mechanical hyperalgesia in CCI rats according to paw withdrawal thermal latency (PWTL) and paw withdrawal mechanic threshold (PWMT). In addition, Hematoxylin-eosin staining revealed that Ube2b elevation suppressed chronic sciatic nerve injury. All these data suggested that Ube2b could ameliorate neuropathic pain in CCI rats. Mechanically, Ube2b upregulation elevated the protein level of Kcna2 (potassium voltage-gated channel subfamily A member 2) and decreased the protein level of DNMT3a (DNA methyltransferase 3 alpha). Ube2b elevation could increase Kcna2 expression via suppressing DNMT3a. Rescue assays unveiled that Ube2b overexpression modulated-mechanical hyperalgesia and thermal hyperalgesia were reversed by Kcna2 depletion, indicating that Ube2b alleviated neuropathic pain via mediating Kcna2 via the regulation of DNMT3a. In summary, we found that Ube2b elevation ameliorated neuropathic pain through regulating Kcna2, which might offer a novel biomarker for the therapies of neuropathic pain.
Collapse
Affiliation(s)
- Yuanzhi Peng
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| | - Qingqing Zhang
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| | - Hao Cheng
- Department of Cardiovascular Surgery, Changhai Hospital, the Navy Medical University, Shanghai, China
| | - Guizhen Yan
- Department of Neurology, People's Hospital of Lixia District of Jinan, Jinan, Shandong, China
| | - Chunli Xing
- Department of Neurology, People's Hospital of Lixia District of Jinan, Jinan, Shandong, China
| |
Collapse
|
20
|
Pan Z, Du S, Wang K, Guo X, Mao Q, Feng X, Huang L, Wu S, Hou B, Chang Y, Liu T, Chen T, Li H, Bachmann T, Bekker A, Hu H, Tao Y. Downregulation of a Dorsal Root Ganglion-Specifically Enriched Long Noncoding RNA is Required for Neuropathic Pain by Negatively Regulating RALY-Triggered Ehmt2 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004515. [PMID: 34383386 PMCID: PMC8356248 DOI: 10.1002/advs.202004515] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/19/2021] [Indexed: 05/07/2023]
Abstract
Nerve injury-induced maladaptive changes of gene expression in dorsal root ganglion (DRG) neurons contribute to neuropathic pain. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression. Here, a conserved lncRNA is reported, named DRG-specifically enriched lncRNA (DS-lncRNA) for its high expression in DRG neurons. Peripheral nerve injury downregulates DS-lncRNA in injured DRG due, in part, to silencing of POU domain, class 4, transcription factor 3, a transcription factor that interacts with the DS-lncRNA gene promoter. Rescuing DS-lncRNA downregulation blocks nerve injury-induced increases in the transcriptional cofactor RALY-triggered DRG Ehmt2 mRNA and its encoding G9a protein, reverses the G9a-controlled downregulation of opioid receptors and Kcna2 in injured DRG, and attenuates nerve injury-induced pain hypersensitivities in male mice. Conversely, DS-lncRNA downregulation increases RALY-triggered Ehmt2/G9a expression and correspondingly decreases opioid receptor and Kcna2 expression in DRG, leading to neuropathic pain symptoms in male mice in the absence of nerve injury. Mechanistically, downregulated DS-lncRNA promotes more binding of increased RALY to RNA polymerase II and the Ehmt2 gene promoter and enhances Ehmt2 transcription in injured DRG. Thus, downregulation of DS-lncRNA likely contributes to neuropathic pain by negatively regulating the expression of RALY-triggered Ehmt2/G9a, a key neuropathic pain player, in DRG neurons.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Shibin Du
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Kun Wang
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Xinying Guo
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Qingxiang Mao
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Xiaozhou Feng
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Lina Huang
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Shaogen Wu
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Bailing Hou
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Yun‐Juan Chang
- The Office of Advanced Research ComputingRutgersThe State University of New JerseyNewarkNJ07103USA
| | - Tong Liu
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Tong Chen
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Hong Li
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Thomas Bachmann
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Alex Bekker
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Huijuan Hu
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Physiology, Pharmacology & NeuroscienceNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
| | - Yuan‐Xiang Tao
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Physiology, Pharmacology & NeuroscienceNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Cell Biology & Molecular MedicineNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
| |
Collapse
|
21
|
Zheng BX, Guo X, Albik S, Eloy J, Tao YX. Effect of Pharmacological Inhibition of Fat-Mass and Obesity-Associated Protein on Nerve Trauma-Induced Pain Hypersensitivities. Neurotherapeutics 2021; 18:1995-2007. [PMID: 33829413 PMCID: PMC8608999 DOI: 10.1007/s13311-021-01053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Genetic knockout or knockdown of fat-mass and obesity-associated protein (FTO), a demethylase that participates in RNA N6-methyladenosine modification in injured dorsal root ganglion (DRG), has been demonstrated to alleviate nerve trauma-induced nociceptive hypersensitivities. However, these genetic strategies are still impractical in clinical neuropathic pain management. The present study sought to examine the effect of intrathecal administration of two specific FTO inhibitors, meclofenamic acid (MA) and N-CDPCB, on the development and maintenance of nociceptive hypersensitivities caused by unilateral L5 spinal nerve ligation (SNL) in rats. Intrathecal injection of either MA or N-CDPCB diminished dose-dependently the SNL-induced mechanical allodynia, heat hyperalgesia, cold hyperalgesia, and spontaneous ongoing nociceptive responses in both development and maintenance periods, without altering acute/basal pain and locomotor function. Intrathecal MA also reduced the SNL-induced neuronal and astrocyte hyperactivities in the ipsilateral L5 dorsal horn. Mechanistically, intrathecal injection of these two inhibitors blocked the SNL-induced increase in the histone methyltransferase G9a expression and rescued the G9a-controlled downregulation of mu opioid receptor and Kv1.2 proteins in the ipsilateral L5 DRG. These findings further indicate the role of DRG FTO in neuropathic pain and suggest potential clinical application of the FTO inhibitors for management of this disorder.
Collapse
Affiliation(s)
- Bi-Xin Zheng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Xinying Guo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Sfian Albik
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Jean Eloy
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
22
|
Shi J, Shi S, Shi S, Jia Q, Yuan G, Chu Y, Wang H, Hu Y, Cui H. Bibliometric analysis of potassium channel research. Channels (Austin) 2021; 14:18-27. [PMID: 31842669 PMCID: PMC7039634 DOI: 10.1080/19336950.2019.1705055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT Objective: To explore the research status, hotspots, and trends in research on potassium channel. Methods: The Web of Science core collection database was used as the data source and the visual analysis software Citespace5.4 R3 was used to visualize the studies of potassium channel in the past 10 years. The national/institutional distribution, journal distribution, authors, and related research were discussed. Results 17,392 articles were obtained. The USA, Peoples R China, Germany, England, and Japan were the main countries in the field and University of California was the most important institution for the study of potassium channel. PLoS One was the most productive journal and proceedings of the national academy of sciences of the united states of america was the most frequently cited journal in potassium channel research. The author with the highest number was Colin G Nichols and the author with the highest co- cited frequency was Sanguinetti MC. The three hot spots of potassium channel research were gene expression, Ca2+ activated k+ channel and nitric oxide. The top four research frontiers of potassium channel research were bk channel,blood pressure,oxidative stress and electrophysiology. Conclusion The study provides a perspective for understanding the potassium channel research and provides valuable information for potassium channel researchers to identify potential collaborators, partner institutions, hot topics and research frontiers.
Collapse
Affiliation(s)
- Jingjing Shi
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Shi
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiulei Jia
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguang Chu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
TRESK Regulates Gm11874 to Induce Apoptosis of Spinal Cord Neurons via ATP5i Mediated Oxidative Stress and DNA Damage. Neurochem Res 2021; 46:1970-1980. [PMID: 33973102 DOI: 10.1007/s11064-021-03318-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Reportedly, TWIK-related spinal cord K+ (TRESK) deficiency in spinal cord neurons positively correlates with the mechanism underlying neuropathic pain (NP). However, the precise effects of TRESK on neurons of the spinal cord remain elusive. In the present study, we investigated the impact of TRESK silencing on spinal cord neurons to further elucidate the downstream mechanisms of TRESK. Herein, neurons of the dorsal spinal cord were cultured as a cell model for investigations. Apoptosis, oxidative stress, and DNA damage-related proteins were evaluated. Additionally, flow cytometry, microarray profiling, real-time polymerase chain reaction (PCR), western blotting, fluorescence in situ hybridization (FISH), immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed. In cultured neurons, the downregulation of TRESK mRNA expression induced apoptosis of dorsal spinal cord neurons. Using real-time PCR and western blotting, the upregulation of LncRNA Gm11874 (Gm11874) and ATP5i, screened from the gene chip, was confirmed. On silencing TRESK, expression levels of γ-H2AX, poly [ADP-ribose] polymerase 1 (PARP-1), FoxO1, FoxO3, MitoSOX, malondialdehyde (MDA), and 8-hydroxy-2' -deoxyguanosine (8-OHdG), which are known indices of oxidative stress and DNA damage, were significantly elevated. Moreover, ATP induced oxidative stress, DNA damage, and apoptosis were reduced by ATP5i siRNA. Finally, Gm11874 and ATP5i were co-expressed in spinal cord neurons in a FISH experiment, and the expression of ATP5i was positively regulated by Gm11874. These results implied that ATP5i induced oxidative stress and DNA damage, resulting in neuronal apoptosis, and Gm11874 was confirmed to act upstream of ATP5i. Our study revealed that TRESK silencing upregulated Gm11874 to induce apoptosis of spinal cord neurons, which resulted in ATP5i promoting oxidative stress and DNA damage. These findings could highlight the TRESK-mediated NP mechanism.
Collapse
|
24
|
Hasan MM, Ragnarsson L, Cardoso FC, Lewis RJ. Transfection methods for high-throughput cellular assays of voltage-gated calcium and sodium channels involved in pain. PLoS One 2021; 16:e0243645. [PMID: 33667217 PMCID: PMC7935312 DOI: 10.1371/journal.pone.0243645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
Chemical transfection is broadly used to transiently transfect mammalian cells, although often associated with cellular stress and membrane instability, which imposes challenges for most cellular assays, including high-throughput (HT) assays. In the current study, we compared the effectiveness of calcium phosphate, FuGENE and Lipofectamine 3000 to transiently express two key voltage-gated ion channels critical in pain pathways, CaV2.2 and NaV1.7. The expression and function of these channels were validated using two HT platforms, the Fluorescence Imaging Plate Reader FLIPRTetra and the automated patch clamp QPatch 16X. We found that all transfection methods tested demonstrated similar effectiveness when applied to FLIPRTetra assays. Lipofectamine 3000-mediated transfection produced the largest peak currents for automated patch clamp QPatch assays. However, the FuGENE-mediated transfection was the most effective for QPatch assays as indicated by the superior number of cells displaying GΩ seal formation in whole-cell patch clamp configuration, medium to large peak currents, and higher rates of accomplished assays for both CaV2.2 and NaV1.7 channels. Our findings can facilitate the development of HT automated patch clamp assays for the discovery and characterization of novel analgesics and modulators of pain pathways, as well as assisting studies examining the pharmacology of mutated channels.
Collapse
Affiliation(s)
- Md. Mahadhi Hasan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Fernanda C. Cardoso
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
- * E-mail: (FCC); (RJL)
| | - Richard J. Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
- * E-mail: (FCC); (RJL)
| |
Collapse
|
25
|
Zhang Z, Zheng B, Du S, Han G, Zhao H, Wu S, Jia S, Bachmann T, Bekker A, Tao YX. Eukaryotic initiation factor 4 gamma 2 contributes to neuropathic pain through down-regulation of Kv1.2 and the mu opioid receptor in mouse primary sensory neurones. Br J Anaesth 2021; 126:706-719. [PMID: 33303185 PMCID: PMC8014947 DOI: 10.1016/j.bja.2020.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Nerve injury-induced changes in gene expression in the dorsal root ganglion (DRG) contribute to neuropathic pain genesis. Eukaryotic initiation factor 4 gamma 2 (eIF4G2) is a general repressor of cap-dependent mRNA translation. Whether DRG eIF4G2 participates in nerve injury-induced alternations in gene expression and nociceptive hypersensitivity is unknown. METHODS The expression and distribution of eIF4G2 mRNA and protein in mouse DRG after spinal nerve ligation (SNL) were assessed. Effects of eIF4G2 siRNA microinjected through a glass micropipette into the injured DRG on the SNL-induced DRG mu opioid receptor (MOR) and Kv1.2 downregulation and nociceptive hypersensitivity were examined. In addition, effects of DRG microinjection of adeno-associated virus 5-expressing eIF4G2 (AAV5-eIF4G2) on basal DRG MOR and Kv1.2 expression and nociceptive thresholds were analysed. RESULTS eIF4G2 protein co-expressed with Kv1.2 and MOR in DRG neurones. Levels of eIF4G2 mRNA (1.7 [0.24] to 2.3 [0.14]-fold of sham, P<0.01) and protein (1.6 [0.14] to 2.5 [0.22]-fold of sham, P<0.01) in injured DRG were time-dependently increased on days 3-14 after SNL. Blocking increased eIF4G2 through microinjection of eIF4G2 siRNA into the injured DRG attenuated SNL-induced downregulation of DRG MOR and Kv1.2 and development and maintenance of nociceptive hypersensitivities. DRG microinjection of AAV5-eIF4G2 reduced DRG MOR and Kv1.2 expression and elicited hypersensitivities to mechanical, heat and cold stimuli in naïve mice. CONCLUSIONS eIF4G2 contributes to neuropathic pain through participation in downregulation of Kv1.2 and MOR in injured DRG and is a potential target for treatment of this disorder.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Bixin Zheng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Guang Han
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Hui Zhao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Shushan Jia
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Thomas Bachmann
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA; Departments of Cell Biology & Molecular Medicine and Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
26
|
Yang Y, Wen J, Zheng B, Wu S, Mao Q, Liang L, Li Z, Bachmann T, Bekker A, Tao YX. CREB Participates in Paclitaxel-Induced Neuropathic Pain Genesis Through Transcriptional Activation of Dnmt3a in Primary Sensory Neurons. Neurotherapeutics 2021; 18:586-600. [PMID: 33051852 PMCID: PMC8116406 DOI: 10.1007/s13311-020-00931-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathic pain (CIPNP) often occurs in cancer patients treated with antineoplastic drugs. Therapeutic management of CIPNP is very limited, at least in part due to the largely unknown mechanisms that underlie CIPNP genesis. Here, we showed that systemic administration of the chemotherapeutic drug paclitaxel significantly and time-dependently increased the levels of cyclic AMP response element-binding protein (CREB) in dorsal root ganglion (DRG) neurons. Blocking this increase through DRG microinjection of Creb siRNA attenuated paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities. Mimicking this increase through DRG microinjection of the adeno-associated virus 5 expressing full-length Creb mRNA led to enhanced responses to basal mechanical, heat, and cold stimuli in mice in absence of paclitaxel treatment. Mechanically, paclitaxel-induced increase of DRG CREB protein augmented Dnmt3a promoter activity and participated in the paclitaxel-induced upregulation of DNMT3a protein in the DRG. CREB overexpression also elevated the expression of DNMT3a in in vivo and in vitro DRG neurons of naïve mice. Given that DNMT3a is an endogenous instigator of CIPNP and that CREB co-expresses with DNMT3a in DRG neurons, CREB may be a key player in CIPNP through transcriptional activation of the Dnmt3a gene in primary sensory neurons. CREB is thus a likely potential target for the therapeutic management of this disorder.
Collapse
Affiliation(s)
- Yong Yang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Jing Wen
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Bixin Zheng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Qingxiang Mao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Zhisong Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Thomas Bachmann
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA.
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
27
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Alles SR, Gomez K, Moutal A, Khanna R. Putative roles of SLC7A5 (LAT1) transporter in pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100050. [PMID: 32715162 PMCID: PMC7369351 DOI: 10.1016/j.ynpai.2020.100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Large amino acid transporter 1 (LAT1), also known as SLC7A5, is an essential amino acid transporter that forms a heterodimeric complex with the glycoprotein cell-surface antigen heavy chain (4F2hc (CD98, SLC3A2)). Within nociceptive pathways, LAT1 is expressed in the dorsal root ganglia and spinal cord. Although LAT1 expression is upregulated following spinal cord injury, little is known about LAT1 in neuropathic pain. To date, only circumstantial evidence supports LAT1/4F2hc's role in pain. Notably, LAT1's expression and regulation link it to key cell types and pathways implicated in pain. Transcriptional regulation of LAT1 expression occurs via the Wnt/frizzled/β-catenin signal transduction pathway, which has been shown to be involved in chronic pain. The LAT1/4F2hc complex may also be involved in pain pathways related to T- and B-cells. LAT1's expression induces activation of the mammalian target of rapamycin (mTOR) signaling axis, which is involved in inflammation and neuropathic pain. Similarly, hypoxia and cancer induce activation of hypoxia-inducible factor 2 alpha, promoting not only LAT1's expression but also mTORC1's activation. Perhaps the strongest evidence linking LAT1 to pain is its interactions with key voltage-gated ion channels connected to nociception, namely the voltage-gated potassium channels Kv1.1 and Kv1.2 and the voltage-gated sodium channel Nav1.7. Through functional regulation of these channels, LAT1 may play a role in governing the excitatory to inhibitory ratio which is altered in chronic neuropathic pain states. Remarkably, the most direct role for LAT1 in pain is to mediate the influx of gabapentin and pregabalin, two first-line neuropathic pain drugs, that indirectly inhibit high voltage-activated calcium channel auxiliary subunit α2δ-1. In this review, we discuss the expression, regulation, relevant signaling pathways, and protein interactions of LAT1 that may link it to the development and/or maintenance of pain. We hypothesize that LAT1 expressed in nociceptive pathways may be a viable new target in pain.
Collapse
Affiliation(s)
- Sascha R.A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, United States
| | - Kimberly Gomez
- Department of Pharmacology, University of Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, United States
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, United States
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ 85724, United States
- BIO5 Institute, University of Arizona, 1657 East Helen Street Tucson, AZ 85719, United States
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, United States
- Regulonix Holding Inc., Tucson, AZ, United States
| |
Collapse
|
29
|
Zhang J, Rong L, Shao J, Zhang Y, Liu Y, Zhao S, Li L, Yu W, Zhang M, Ren X, Zhao Q, Zhu C, Luo H, Zang W, Cao J. Epigenetic restoration of voltage-gated potassium channel Kv1.2 alleviates nerve injury-induced neuropathic pain. J Neurochem 2020; 156:367-378. [PMID: 32621322 DOI: 10.1111/jnc.15117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Voltage-gated potassium channels (Kv) are important regulators of neuronal excitability for its role of regulating resting membrane potential and repolarization. Recent studies show that Kv channels participate in neuropathic pain, but the detailed underlying mechanisms are far from being clear. In this study, we used siRNA, miR-137 agomir, and antagomir to regulate the expression of Kv1.2 in spinal cord and dorsal root ganglia (DRG) of naïve and chronic constriction injury (CCI) rats. Kv currents and neuron excitability in DRG neurons were examined by patch-clamp whole-cell recording to verify the change in Kv1.2 function. The results showed that Kv1.2 was down-regulated in DRG and spinal dorsal horn (SDH) by CCI. Knockdown of Kv1.2 by intrathecally injecting Kcna2 siRNA induced significant mechanical and thermal hypersensitivity in naïve rats. Concomitant with the down-regulation of Kv1.2 was an increase in the expression of the miR-137. The targeting and regulating of miR-137 on Kcna2 was verified by dual-luciferase reporter system and intrathecal injecting miR-137 agomir. Furthermore, rescuing the expression of Kv1.2 in CCI rats, achieved through inhibiting miR-137, restored the abnormal Kv currents and excitability in DRG neurons, and alleviated mechanical allodynia and thermal hyperalgesia. These results indicate that the miR-137-mediated Kv1.2 impairment is a crucial etiopathogenesis for the nerve injury-induced neuropathic pain and can be a novel potential therapeutic target for neuropathic pain management.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lina Rong
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinping Shao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yidan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaping Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sen Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenli Yu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengya Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qingzan Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden.,Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Huan Luo
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Relationship between Pain Behavior and Changes in KCNA2 Expression in the Dorsal Root Ganglia of Rats with Osteoarthritis. Pain Res Manag 2020. [DOI: 10.1155/2020/4636838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the relationship between pain behavior and potassium voltage-gated channel subfamily A member 2 (KCNA2) expression in dorsal root ganglia (DRGs) of rats with osteoarthritis (OA). Methods. Male Sprague-Dawley rats were randomly divided into three groups: blank control group (group C), normal saline group (group S), and group OA. Paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured one day before injection and one, two, four, and six weeks after injection. At one, two, four, and six weeks after injection, pathological knee joint changes and activated transcription factor-3 (ATF-3) and KCNA2 expressions in DRGs were analyzed. Results. Compared with preinjection, PWMT and PWTL at two, four, and six weeks after injection were significantly decreased in the group OA (P<0.05 or 0.01). Compared with group C, PWMT and PWTL at two, four, and six weeks after injection were significantly decreased in the group OA (P<0.05 or 0.01). In the group OA, slight local articular cartilage surface destruction was found at week one. The cartilage surface destruction gradually developed, and the exacerbation of cartilage matrix reduction and bone hyperplasia were increasingly aggravated and eventually evolved into advanced OA in the second to sixth weeks. Compared with group C, ATF-3 expression was significantly increased, and KCNA2 expression was significantly decreased in the group OA at two, four, and six weeks after injection (P<0.05 or 0.01). Compared to baseline, ATF-3 expression was significantly increased, and KCNA2 expression was significantly decreased in the group OA (P<0.05 or 0.01). Conclusion. Pain behavior in OA rats was associated with decreased KCNA2 expression in DRGs.
Collapse
|
31
|
Miller RE, Tran PB, Ishihara S, Syx D, Ren D, Miller RJ, Valdes AM, Malfait AM. Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis. Osteoarthritis Cartilage 2020; 28:581-592. [PMID: 31982564 PMCID: PMC7214125 DOI: 10.1016/j.joca.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Following destabilization of the medial meniscus (DMM), mice develop experimental osteoarthritis (OA) and associated pain behaviors that are dependent on the stage of disease. We aimed to describe changes in gene expression in knee-innervating dorsal root ganglia (DRG) after surgery, in order to identify molecular pathways associated with three pre-defined pain phenotypes: "post-surgical pain", "early-stage OA pain", and "persistent OA pain". DESIGN We performed DMM or sham surgery in 10-week old male C57BL/6 mice and harvested L3-L5 DRG 4, 8, and 16 weeks after surgery or from age-matched naïve mice (n = 3/group). RNA was extracted and an Affymetrix Mouse Transcriptome Array 1.0 was performed. Three pain phenotypes were defined: "post-surgical pain" (sham and DMM 4-week vs 14-week old naïve), "early OA pain" (DMM 4-week vs sham 4-week), and "persistent OA pain" (DMM 8- and 16-week vs naïve and sham 8- and 16-week). 'Top hit' genes were defined as P < 0.001. Pathway analysis (Ingenuity Pathway Analysis) was conducted using differentially expressed genes defined as P < 0.05. In addition, we performed qPCR for Ngf and immunohistochemistry for F4/80+ macrophages in the DRG. RESULTS For each phenotype, top hit genes identified a small number of differentially expressed genes, some of which have been previously associated with pain (7/67 for "post-surgical pain"; 2/14 for "early OA pain"; 8/37 for "persistent OA pain"). Overlap between groups was limited, with 8 genes differentially regulated (P < 0.05) in all three phenotypes. Pathway analysis showed that in the persistent OA pain phase many of the functions of differentially regulated genes are related to immune cell recruitment and activation. Genes previously linked to OA pain (CX3CL1, CCL2, TLR1, and NGF) were upregulated in this phenotype and contributed to activation of the neuroinflammation canonical pathway. In separate sets of mice, we confirmed that Ngf was elevated in the DRG 8 weeks after DMM (P = 0.03), and numbers of F4/80+ macrophages were increased 16 weeks after DMM (P = 0.002 vs Sham). CONCLUSION These transcriptomics findings support the idea that distinct molecular pathways discriminate early from persistent OA pain. Pathway analysis suggests neuroimmune interactions in the DRG contribute to initiation and maintenance of pain in OA.
Collapse
Affiliation(s)
- Rachel E. Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Phuong B. Tran
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Delfien Syx
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Dongjun Ren
- Department of Pharmacology, Northwestern University, Chicago IL
| | | | - Ana M. Valdes
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham UK
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| |
Collapse
|
32
|
Li H, Liu S, Wang Z, Zhang Y, Wang K. Hydrogen sulfide attenuates diabetic neuropathic pain through NO/cGMP/PKG pathway and μ-opioid receptor. Exp Biol Med (Maywood) 2020; 245:823-834. [PMID: 32268802 DOI: 10.1177/1535370220918193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT There are currently approximately 425 million diabetic patients worldwide, of which approximately 90% of patients with diabetes suffer from neuropathy. Diabetic neuropathic pain (DNP) is a common complication of diabetic neuropathy. Nearly half of the patients hospitalized with diabetes have pain symptoms or symptoms related to neurological injury, and the incidence increases with age and diabetic duration. Anti-DNP analgesics have either limited therapeutic effects or serious side effects or lack of clinical trials, which has limited their application. Physiopathological mechanisms and treatment of DNP remain a significant challenge. The present confirmed that inhalation of H2S may attenuate the diabetic neuropathic pain through NO/cGMP/PKG pathway and μ-opioid receptor. It provides us the animal study foundation for the application of H2S on the treatment of DNP and clarifies some target molecules in the pain modulation of DNP.
Collapse
Affiliation(s)
- Hao Li
- Medical Management Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Shulin Liu
- Department of Aviation Medicine, Naval Medical Institute, Second Military Medical University, Shanghai 200433, China
| | - Zheng Wang
- Pre Hospital Emergency Department, Shandong Otolaryngology Hospital Affiliated to Shandong University (West Hospital of Shandong Provincial Hospital), Shandong 250117, China
| | - Yonglai Zhang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Kaiguo Wang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong 250117, China
| |
Collapse
|
33
|
Wen J, Yang Y, Wu S, Wei G, Jia S, Hannaford S, Tao YX. Long noncoding RNA H19 in the injured dorsal root ganglion contributes to peripheral nerve injury-induced pain hypersensitivity. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2020; 7:176-184. [PMID: 32099850 PMCID: PMC7041488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peripheral nerve injury-induced changes in gene transcription and translation in the dorsal root ganglion (DRG) play a critical role in the development and maintenance of neuropathic pain. Long noncoding RNAs (lncRNAs) regulate gene expression. Here, we report that peripheral nerve injury caused by ligation of the fourth spinal nerve (SNL) led to a time-dependent increase in the expression in H19, an lncRNA, in the injured DRG. Microinjection of a specific H19 siRNA, but not negative control scrambled siRNA, into the injured DRG 4 days before SNL alleviated mechanical allodynia and thermal hyperalgesia on days 3 and 5 post-SNL. Additionally, DRG microinjection of the H19 siRNA on day 7 after SNL reduced mechanical allodynia and thermal hyperalgesia on days 10 and 12 post-SNL. DRG microinjection of neither siRNA affected locomotor activity and acute basal responses to mechanical and thermal stimuli. Our findings suggest that H19 participates in the peripheral mechanism underlying the development and maintenance of neuropathic pain. H19 may be a potential target for treatment of this disorder.
Collapse
Affiliation(s)
- Jing Wen
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yong Yang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Guihua Wei
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shushan Jia
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Stephen Hannaford
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
34
|
Meng L, Zhao Y, Qu D, Xie Z, Guo X, Zhu Z, Chen Z, Zhang L, Li W, Cao Z, Tian C, Wu Y. Ion channel modulation by scorpion hemolymph and its defensin ingredients highlights origin of neurotoxins in telson formed in Paleozoic scorpions. Int J Biol Macromol 2020; 148:351-363. [PMID: 31954123 DOI: 10.1016/j.ijbiomac.2020.01.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
An increasing number of scorpion fossils indicate that the venomous telson developed from the sharp telson in sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era and then further evolved into the fetal venom system. This hypothesis led us to evaluate the inhibition of scorpion venom-sensitive potassium channels by hemolymph from the scorpion Mesobuthus martensii. Scorpion hemolymph diluted 1:10 inhibited Kv1.1, Kv1.2, Kv1.3 and SK3 potassium channel currents by 76.4%, 90.2%, 85.8%, and 52.8%, respectively. These discoveries encouraged us to investigate the functional similarity between the more ancient defensin ingredients in hemolymph and the evolved neurotoxins in the venom. In addition to the expression of the representative defensin BmKDfsin3 and BmKDfsin5 in both venomous and non-venomous tissues, NMR analysis revealed structural similarities between scorpion defensin and neurotoxin. Functional experiments further indicated that scorpion defensin used the same mechanism as classical neurotoxin to block the neurotoxin-sensitive Kv1.1, Kv1.2, Kv1.3 and SK3 channels. These findings emphasize the likelihood that scorpion defensins evolved into neurotoxins that were adapted to the emergence of the scorpion telson from the sharp telson of sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daliang Qu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xingchen Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
35
|
Jiang K, Shi J, Shi J. Morin Alleviates Vincristine-Induced Neuropathic Pain via Nerve protective Effect and Inhibition of NF-κB Pathway in Rats. Cell Mol Neurobiol 2019; 39:799-808. [PMID: 31011938 DOI: 10.1007/s10571-019-00679-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
Vincristine is a toxic chemotherapeutic agent which often triggers neuropathic pain through inflammation. Morin isolated from figs (Ficus carica) exerts anti-inflammatory and neuroprotective activities. We investigated whether morin ameliorates vincristine-induced neuropathic pain and the underlying mechanism. Vincristine was injected i.p. for 10 days (day 1-5 and day 8-12). Morin was orally administered every other day from day 1 to 21. The pain behaviors were determined by measuring paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The axons of sciatic nerves were stained with toluidine blue to study the histological abnormality. Function deficit of sciatic nerves was evaluated by sciatic functional index and the sciatic nerve conduction velocity. Neuronal excitability was assessed electrophysiologically and inflammatory mediators were detected using western blotting in dorsal root ganglia. The vincristine-induced reduction in PWT, PWL, and body weight gain was attenuated by morin. Morin restored the sciatic nerve deficits both histologically and functionally in vincristine-injected rats. The vincristine-induced neuronal hyperexcitability and increase in the expression of IL-6, NF-κB, and pNF-κB were abolished after morin administration. This study suggests that morin treatment suppressed vincristine-induced neuropathic pain by protecting the sciatic nerve and inhibiting inflammation through NF-κB pathway.
Collapse
Affiliation(s)
- Ke Jiang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jinshan Shi
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jing Shi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
36
|
Li L, Shao J, Wang J, Liu Y, Zhang Y, Zhang M, Zhang J, Ren X, Su S, Li Y, Cao J, Zang W. MiR-30b-5p attenuates oxaliplatin-induced peripheral neuropathic pain through the voltage-gated sodium channel Nav1.6 in rats. Neuropharmacology 2019; 153:111-120. [DOI: 10.1016/j.neuropharm.2019.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
|
37
|
Contribution of DNMT1 to Neuropathic Pain Genesis Partially through Epigenetically Repressing Kcna2 in Primary Afferent Neurons. J Neurosci 2019; 39:6595-6607. [PMID: 31182635 DOI: 10.1523/jneurosci.0695-19.2019] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023] Open
Abstract
Expressional changes of pain-associated genes in primary sensory neurons of DRG are critical for neuropathic pain genesis. DNA methyltransferase (DNMT)-triggered DNA methylation silences gene expression. We show here that DNMT1, a canonical maintenance methyltransferase, acts as the de novo DNMT and is required for neuropathic pain genesis likely through repressing at least DRG Kcna2 gene expression in male mice. Peripheral nerve injury upregulated DNMT1 expression in the injured DRG through the transcription factor cAMP response element binding protein-triggered transcriptional activation of Dnmt1 gene. Blocking this upregulation prevented nerve injury-induced DNA methylation within the promoter and 5'-untranslated region of Kcna2 gene, rescued Kcna2 expression and total Kv current, attenuated hyperexcitability in the injured DRG neurons, and alleviated nerve injury-induced pain hypersensitivities. Given that Kcna2 is a key player in neuropathic pain, our findings suggest that DRG DNMT1 may be a potential target for neuropathic pain management.SIGNIFICANCE STATEMENT In the present study, we reported that DNMT1, a canonical DNA maintenance methyltransferase, is upregulated via the activation of the transcription factor CREB in the injured DRG after peripheral nerve injury. This upregulation was responsible for nerve injury-induced de novo DNA methylation within the promoter and 5'-untranslated region of the Kcna2 gene, reductions in Kcna2 expression and Kv current and increases in neuronal excitability in the injured DRG. Since pharmacological inhibition or genetic knockdown of DRG DNMT1 alleviated nerve injury-induced pain hypersensitivities, DRG DNMT1 contributes to neuropathic pain genesis partially through repression of DRG Kcna2 gene expression.
Collapse
|
38
|
[Expression of KCNA2 in the dorsal root ganglia of rats with osteoarthritis pain induced by monoiodoacetate]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:579-585. [PMID: 31140423 PMCID: PMC6743928 DOI: 10.12122/j.issn.1673-4254.2019.05.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To investigate the changes in the expression of voltage-gated potassium channel subunit KCNA2 in the dorsal root ganglion (DRG) neurons of rats with osteoarthritis (OA) pain induced by sodium monoiodoacetate and explore the mechanism. METHODS A total of 156 adult male Sprague-Dawley rats were randomly divided into blank control group, saline group and intra-articular monoiodoacetate injection-induced OA group. The paw withdrawal mechanical threshold (PWMT) was measured before and at 1, 2, 4, and 6 weeks after monoiodoacetate injection. At 4 weeks after the injection, the pathological changes in the knee joints were analyzed using HE staining and Safranin O-Fast Green staining, and the expression of activating transcription factor 3 (ATF-3) and inducible nitric oxide synthase (iNOS) in the DRG neurons were detected by immunofluorescence staining. The expression of Kcna2 mRNA in the DRG neurons was detected by RT-qPCR at 1, 2, 4 and 6 weeks after the injection. The expression of KCNA2 in the DRG was measured by Western blotting, and the methylation level of Kcna2 promoter region was measured by MSPCR at 4 weeks after the injection. RESULTS The PWMT of the rats in OA group was significantly decreased at 2, 4, and 6 weeks after the injection as compared with the baseline (P < 0.05 or P < 0.001) as well as the control group (P < 0.05 or P < 0.001). Four weeks after the intra-articular injection, fractures and defects on the surface of the articular cartilage, bone hyperplasia, and blurred tidal line were observed in the rats in OA group, but no obvious pathological changes were detected in the control or saline groups. Compared with those in the control group, the expressions of ATF-3 and iNOS were significantly increased (P < 0.01) at 4 weeks after injection; the expression of Kcna2 mRNA at 2, 4 and 6 weeks and the expression of KCNA2 protein at 4 weeks were all significantly decreased (P < 0.05 or P < 0.01), and the methylation level of Kcna2 gene was significantly increased at 4 weeks after the injection in OA group (P < 0.01). CONCLUSIONS The expression of KCNA2 is decreased in the DRG neurons of rats with OA pain likely as a result of enhanced methylation of Kcna2 promoter region.
Collapse
|
39
|
Tang S, Zhou J, Jing H, Liao M, Lin S, Huang Z, Huang T, Zhong J, HanbingWang. Functional roles of lncRNAs and its potential mechanisms in neuropathic pain. Clin Epigenetics 2019; 11:78. [PMID: 31092294 PMCID: PMC6521530 DOI: 10.1186/s13148-019-0671-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NP) is ranked as one of the major forms of chronic pain and emerges as a direct consequence of a lesion or disease affecting the somatosensory nervous system. Despite great advances into the mechanisms of NP, clinical practice is still not satisfactory. Fortunately, progress in elucidating unique features and multiple molecular mechanisms of long non-coding RNAs (lncRNAs) in NP has emerged in the past 10 years, suggesting that novel therapeutic strategies for pain treatment may be proposed. In this review, we will concentrate on recent studies associated with lncRNAs in NP. First, we will describe the alterations of lncRNA expression after spinal cord injury (SCI) and peripheral nerve injury (PNI), and then we illustrate the role of some specific lncRNAs in detail, which may offer new insights into our understanding of the etiology and pathophysiology of NP. Finally, we put special emphasis on the altered expression of lncRNAs in the diverse biological process of NP. Recent advances we summarized above in the development of NP may facilitate translation of these findings from bench to bedside in the future.
Collapse
Affiliation(s)
- Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.,Sun Yet-sen University, Guangzhou, 510000, Guangdong Province, China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.
| | - Huan Jing
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.,ZunYi Medical University, ZunYi, 563100, China
| | - Meijuan Liao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Sen Lin
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Teng Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - HanbingWang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| |
Collapse
|
40
|
Wu Q, Wei G, Ji F, Jia S, Wu S, Guo X, He L, Pan Z, Miao X, Mao Q, Yang Y, Cao M, Tao YX. TET1 Overexpression Mitigates Neuropathic Pain Through Rescuing the Expression of μ-Opioid Receptor and Kv1.2 in the Primary Sensory Neurons. Neurotherapeutics 2019; 16:491-504. [PMID: 30515739 PMCID: PMC6554405 DOI: 10.1007/s13311-018-00689-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Peripheral nerve injury downregulates the expression of the μ-opioid receptor (MOR) and voltage-gated potassium channel subunit Kv1.2 by increasing their DNA methylation in the dorsal root ganglion (DRG). Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) causes DNA demethylation. Given that DRG MOR and Kv1.2 downregulation contribute to neuropathic pain genesis, this study investigated the effect of DRG TET1 overexpression on neuropathic pain. Overexpression of TET1 in the DRG through microinjection of herpes simplex virus expressing full-length TET1 mRNA into the injured rat DRG significantly alleviated the fifth lumbar spinal nerve ligation (SNL)-induced pain hypersensitivities during the development and maintenance periods, without altering acute pain or locomotor function. This microinjection also restored morphine analgesia and attenuated morphine analgesic tolerance development after SNL. Mechanistically, TET1 microinjection rescued the expression of MOR and Kv1.2 by reducing the level of 5-methylcytosine and increasing the level of 5-hydroxymethylcytosine in the promoter and 5' untranslated regions of the Oprml1 gene (encoding MOR) and in the promoter region of the Kcna2 gene (encoding Kv1.2) in the DRG ipsilateral to SNL. These findings suggest that DRG TET1 overexpression mitigated neuropathic pain likely through rescue of MOR and Kv1.2 expression in the ipsilateral DRG. Virus-mediated DRG delivery of TET1 may open a new avenue for neuropathic pain management.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Guihua Wei
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
- Department of Pharmacy, Institute of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Fengtao Ji
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Shushan Jia
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Xinying Guo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Long He
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Zhiqiang Pan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Xuerong Miao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Qingxiang Mao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Yong Yang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA.
| |
Collapse
|
41
|
Yuan J, Wen J, Wu S, Mao Y, Mo K, Li Z, Su S, Gu H, Ai Y, Bekker A, Zhang W, Tao YX. Contribution of dorsal root ganglion octamer transcription factor 1 to neuropathic pain after peripheral nerve injury. Pain 2019; 160:375-384. [PMID: 30247265 PMCID: PMC6344274 DOI: 10.1097/j.pain.0000000000001405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neuropathic pain genesis is related to gene alterations in the dorsal root ganglion (DRG) after peripheral nerve injury. Transcription factors control gene expression. In this study, we investigated whether octamer transcription factor 1 (OCT1), a transcription factor, contributed to neuropathic pain caused by chronic constriction injury (CCI) of the sciatic nerve. Chronic constriction injury produced a time-dependent increase in the level of OCT1 protein in the ipsilateral L4/5 DRG, but not in the spinal cord. Blocking this increase through microinjection of OCT1 siRNA into the ipsilateral L4/5 DRG attenuated the initiation and maintenance of CCI-induced mechanical allodynia, heat hyperalgesia, and cold allodynia and improved morphine analgesia after CCI, without affecting basal responses to acute mechanical, heat, and cold stimuli as well as locomotor functions. Mimicking this increase through microinjection of recombinant adeno-associated virus 5 harboring full-length OCT1 into the unilateral L4/5 DRG led to marked mechanical allodynia, heat hyperalgesia, and cold allodynia in naive rats. Mechanistically, OCT1 participated in CCI-induced increases in Dnmt3a mRNA and its protein and DNMT3a-mediated decreases in Oprm1 and Kcna2 mRNAs and their proteins in the injured DRG. These findings indicate that OCT1 may participate in neuropathic pain at least in part by transcriptionally activating Dnmt3a and subsequently epigenetic silencing of Oprm1 and Kcan2 in the DRG. OCT1 may serve as a potential target for therapeutic treatments against neuropathic pain.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methyltransferase 3A
- Disease Models, Animal
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Hyperalgesia/drug therapy
- Hyperalgesia/etiology
- Kv1.2 Potassium Channel/metabolism
- Male
- Microinjections
- Morphine/therapeutic use
- Octamer Transcription Factor-1/genetics
- Octamer Transcription Factor-1/metabolism
- Pain Measurement/drug effects
- Pain Threshold/drug effects
- Pain Threshold/physiology
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Sciatica/complications
- Sciatica/drug therapy
- Sciatica/pathology
- Signal Transduction/drug effects
- Transduction, Genetic
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jing Wen
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuanyuan Mao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Kai Mo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Zhisong Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan 45001, China
| | - Songxue Su
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan 45001, China
| | - Hanwen Gu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yanqiu Ai
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan 45001, China
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan 45001, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
42
|
Wu S, Bono J, Tao YX. Long noncoding RNA (lncRNA): a target in neuropathic pain. Expert Opin Ther Targets 2018; 23:15-20. [PMID: 30451044 DOI: 10.1080/14728222.2019.1550075] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Current treatments for neuropathic pain are limited in part due to the incomplete understanding of its underlying mechanisms. Recent evidence reveals the dysregulated expression of long non-coding RNAs (lncRNAs) in the damaged nerve, dorsal root ganglion (DRG), and spinal cord dorsal horn following peripheral nerve injury. However, the role of the majority of lncRNAs in neuropathic pain genesis is still elusive. Unveiling the mechanisms of how lncRNAs participate in neuropathic pain may develop new strategies to prevent and/or treat this disorder. Areas covered: This review focuses on the dysregulation of lncRNAs in the DRG, dorsal horn, and the injured nerves from preclinical models of neuropathic pain. We provide evidence of how peripheral nerve injury causes the dysregulation of lncRNAs in these pain-related regions. The potential mechanisms of how dysregulated lncRNAs contribute to the pathogenesis of neuropathic pain are discussed. Expert opinion: The investigation on the role of the dysregulated lncRNAs in neuropathic pain might open up a novel avenue for therapeutic treatment of this disorder. However, current investigation is at the infancy stage, which challenges the translation of preclinical findings. More intensive studies on lncRNAs are required before the preclinical findings are translated into therapeutic management for neuropathic pain.
Collapse
Affiliation(s)
- Shaogen Wu
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| | - Jamie Bono
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| | - Yuan-Xiang Tao
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| |
Collapse
|
43
|
MBD1 Contributes to the Genesis of Acute Pain and Neuropathic Pain by Epigenetic Silencing of Oprm1 and Kcna2 Genes in Primary Sensory Neurons. J Neurosci 2018; 38:9883-9899. [PMID: 30266739 DOI: 10.1523/jneurosci.0880-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
The transmission of normal sensory and/or acute noxious information requires intact expression of pain-associated genes within the pain pathways of nervous system. Expressional changes of these genes after peripheral nerve injury are also critical for neuropathic pain induction and maintenance. Methyl-CpG-binding domain protein 1 (MBD1), an epigenetic repressor, regulates gene transcriptional activity. We report here that MBD1 in the primary sensory neurons of DRG is critical for the genesis of acute pain and neuropathic pain as DRG MBD1-deficient mice exhibit the reduced responses to acute mechanical, heat, cold, and capsaicin stimuli and the blunted nerve injury-induced pain hypersensitivities. Furthermore, DRG overexpression of MBD1 leads to spontaneous pain and evoked pain hypersensitivities in the WT mice and restores acute pain sensitivities in the MBD1-deficient mice. Mechanistically, MDB1 represses Oprm1 and Kcna2 gene expression by recruiting DNA methyltransferase DNMT3a into these two gene promoters in the DRG neurons. DRG MBD1 is likely a key player under the conditions of acute pain and neuropathic pain.SIGNIFICANCE STATEMENT In the present study, we revealed that the mice with deficiency of methyl-CpG-binding domain protein 1 (MBD1), an epigenetic repressor, in the DRG displayed the reduced responses to acute noxious stimuli and the blunted neuropathic pain. We also showed that DRG overexpression of MBD1 produced the hypersensitivities to noxious stimuli in the WT mice and rescued acute pain sensitivities in the MBD1-deficient mice. We have also provided the evidence that MDB1 represses Oprm1 and Kcna2 gene expression by recruiting DNA methyltransferase DNMT3a into these two gene promoters in the DRG neurons. DRG MBD1 may participate in the genesis of acute pain and neuropathic pain likely through regulating DNMT3a-controlled Oprm1 and Kcna2 gene expression in the DRG neurons.
Collapse
|
44
|
Miao XR, Fan LC, Wu S, Mao Q, Li Z, Lutz B, Xu JT, Lu Z, Tao YX. DNMT3a contributes to the development and maintenance of bone cancer pain by silencing Kv1.2 expression in spinal cord dorsal horn. Mol Pain 2018; 13:1744806917740681. [PMID: 29056068 PMCID: PMC5676500 DOI: 10.1177/1744806917740681] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Metastatic bone tumor-induced changes in gene transcription and translation in pain-related regions of the nervous system may participate in the development and maintenance of bone cancer pain. Epigenetic modifications including DNA methylation regulate gene transcription. Here, we report that intrathecal injection of decitabine, a DNA methyltransferase (DNMT) inhibitor, dose dependently attenuated the development and maintenance of bone cancer pain induced by injecting prostate cancer cells into the tibia. The level of the de novo DNMT3a, but not DNMT3b, time dependently increased in the ipsilateral L4/5 dorsal horn (not L4/5 dorsal root ganglion) after prostate cancer cells injection. Blocking this increase through microinjection of recombinant adeno-associated virus 5 (AAV5) expressing Dnmt3a shRNA into dorsal horn rescued prostate cancer cells-induced downregulation of dorsal horn Kv1.2 expression and impaired prostate cancer cells-induced pain hypersensitivity. In turn, mimicking this increase through microinjection of AAV5 expressing full-length Dnmt3a into dorsal horn reduced dorsal horn Kv1.2 expression and produced pain hypersensitivity in the absence of prostate cancer cells injection. Administration of neither decitabine nor virus affected locomotor function and acute responses to mechanical, thermal, or cold stimuli. Given that Dnmt3a mRNA is co-expressed with Kcna2 mRNA (encoding Kv1.2) in individual dorsal horn neurons, our findings suggest that increased dorsal horn DNMT3a contributes to bone cancer pain through silencing dorsal horn Kv1.2 expression. DNMT3a may represent a potential new target for cancer pain management.
Collapse
Affiliation(s)
| | | | | | - Qingxiang Mao
- Xinqiao Hospital, The Third Military Medical University
| | | | | | | | - Zhijie Lu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University
| | | |
Collapse
|
45
|
Mao Q, Yuan J, Ming X, Wu S, Chen L, Bekker A, Yang T, Tao YX. Role of dorsal root ganglion K2p1.1 in peripheral nerve injury-induced neuropathic pain. Mol Pain 2018; 13:1744806917701135. [PMID: 28326939 PMCID: PMC5367768 DOI: 10.1177/1744806917701135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Peripheral nerve injury-caused hyperexcitability and abnormal ectopic discharges in the primary sensory neurons of dorsal root ganglion (DRG) play a key role in neuropathic pain development and maintenance. The two-pore domain background potassium (K2P) channels have been identified as key determinants of the resting membrane potential and neuronal excitability. However, whether K2P channels contribute to neuropathic pain is still elusive. We reported here that K2P1.1, the first identified mammalian K2P channel, was highly expressed in mouse DRG and distributed in small-, medium-, and large-sized DRG neurons. Unilateral lumbar (L) 4 spinal nerve ligation led to a significant and time-dependent reduction of K2P1.1 mRNA and protein in the ipsilateral L4 DRG, but not in the contralateral L4 or ipsilateral L3 DRG. Rescuing this reduction through microinjection of adeno-associated virus-DJ expressing full-length K2P1.1 mRNA into the ipsilateral L4 DRG blocked spinal nerve ligation-induced mechanical, thermal, and cold pain hypersensitivities during the development and maintenance periods. This DRG viral microinjection did not affect acute pain and locomotor function. Our findings suggest that K2P1.1 participates in neuropathic pain development and maintenance and may be a potential target in the management of this disorder.
Collapse
Affiliation(s)
- Qingxiang Mao
- Xinqiao Hospital, The Third Military Medical University
| | | | | | | | - Liyong Chen
- Daping Hospital, Institute of Surgery Research, The Third Military Medical University
| | | | - Tiande Yang
- Xinqiao Hospital, The Third Military Medical University
| | | |
Collapse
|
46
|
North RY, Lazaro TT, Dougherty PM. Ectopic Spontaneous Afferent Activity and Neuropathic Pain. Neurosurgery 2018; 65:49-54. [PMID: 31076785 DOI: 10.1093/neuros/nyy119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Robert Y North
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Tyler T Lazaro
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Patrick M Dougherty
- The Departments of Pain Medicine Research, The Division of Anesthesia, Critical Care and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
47
|
Hernández-Araiza I, Morales-Lázaro SL, Canul-Sánchez JA, Islas LD, Rosenbaum T. Role of lysophosphatidic acid in ion channel function and disease. J Neurophysiol 2018; 120:1198-1211. [PMID: 29947596 DOI: 10.1152/jn.00226.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that exhibits a wide array of functions that include regulation of protein synthesis and adequate development of organisms. LPA is present in the membranes of cells and in the serum of several mammals and has also been shown to participate importantly in pathophysiological conditions. For several decades it was known that LPA produces some of its effects in cells through its interaction with specific G protein-coupled receptors, which in turn are responsible for signaling pathways that regulate cellular function. Among the target proteins for LPA receptors are ion channels that modulate diverse aspects of the physiology of cells and organs where they are expressed. However, recent studies have begun to unveil direct effects of LPA on ion channels, highlighting this phospholipid as a direct agonist and adding to the knowledge of the field of lipid-protein interactions. Moreover, the roles of LPA in pathophysiological conditions associated with the function of some ion channels have also begun to be clarified, and molecular mechanisms have been identified. This review focuses on the effects of LPA on ion channel function under normal and pathological conditions and highlights our present knowledge of the mechanisms by which it regulates the function and expression of N- and T-type Ca++ channels; M-type K+ channel and inward rectifier K+ channel subunit 2.1; transient receptor potential (TRP) melastatin 2, TRP vanilloid 1, and TRP ankyrin 1 channels; and TWIK-related K+ channel 1 (TREK-1), TREK-2, TWIK-related spinal cord K+ channel (TRESK), and TWIK-related arachidonic acid-stimulated K+ channel (TRAAK).
Collapse
Affiliation(s)
- Ileana Hernández-Araiza
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Jesús Aldair Canul-Sánchez
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| |
Collapse
|
48
|
Raouf R, Lolignier S, Sexton JE, Millet Q, Santana-Varela S, Biller A, Fuller AM, Pereira V, Choudhary JS, Collins MO, Moss SE, Lewis R, Tordo J, Henckaerts E, Linden M, Wood JN. Inhibition of somatosensory mechanotransduction by annexin A6. Sci Signal 2018; 11:11/535/eaao2060. [PMID: 29921656 DOI: 10.1126/scisignal.aao2060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mechanically activated, slowly adapting currents in sensory neurons have been linked to noxious mechanosensation. The conotoxin NMB-1 (noxious mechanosensation blocker-1) blocks such currents and inhibits mechanical pain. Using a biotinylated form of NMB-1 in mass spectrometry analysis, we identified 67 binding proteins in sensory neurons and a sensory neuron-derived cell line, of which the top candidate was annexin A6, a membrane-associated calcium-binding protein. Annexin A6-deficient mice showed increased sensitivity to mechanical stimuli. Sensory neurons from these mice showed increased activity of the cation channel Piezo2, which mediates a rapidly adapting mechano-gated current linked to proprioception and touch, and a decrease in mechanically activated, slowly adapting currents. Conversely, overexpression of annexin A6 in sensory neurons inhibited rapidly adapting currents that were partially mediated by Piezo2. Furthermore, overexpression of annexin A6 in sensory neurons attenuated mechanical pain in a mouse model of osteoarthritis, a disease in which mechanically evoked pain is particularly problematic. These data suggest that annexin A6 can be exploited to inhibit chronic mechanical pain.
Collapse
Affiliation(s)
- Ramin Raouf
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Stéphane Lolignier
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Jane E Sexton
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Anna Biller
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Alice M Fuller
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Vanessa Pereira
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | | | - Mark O Collins
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Stephen E Moss
- Institute of Ophthalmology, UCL, 11-43 Bath Street, London EC1V 9EL, UK
| | - Richard Lewis
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Julie Tordo
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, UK
| | - Els Henckaerts
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, UK
| | - Michael Linden
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Opioid use and abuse has led to a worldwide opioid epidemic. And while opioids are clinically useful when appropriately indicated, they are associated with a wide range of dangerous side effects and whether they are effective at treating or eliminating chronic pain is controversial. There has long been a need for the development of nonopioid alternative treatments for patients that live in pain, and until recently, only a few effective treatments were available. Today, there are a wide range of nonopioid treatments available including NSAIDs, acetaminophen, corticosteroids, nerve blocks, SSRIs, neurostimulators, and anticonvulsants. However, these treatments are still not entirely effective at treating pain, which has sparked a new exploration of novel nonopioid pharmacotherapies. RECENT FINDINGS This manuscript will outline the most recent trends in novel nonopioid pharmacotherapy development including tramadol/dexketoprofen, TrkA inhibitors, tapentadol, opioid agonists, Nektar 181, TRV 130, ßarrestin2, bisphosphonates, antibodies, sodium channel blockers, NMDA antagonists, TRP receptors, transdermal vitamin D, AAK1 kinase inhibition, calcitonin gene-related peptide (CGRP), TRPV4 antagonists, cholecystokinin, delta opioid receptor, neurokinin, and gene therapy. The pharmacotherapies discussed in this manuscript outline promising opioid alternatives which can change the future of chronic pain treatment.
Collapse
|
50
|
Xu B, Cao J, Zhang J, Jia S, Wu S, Mo K, Wei G, Liang L, Miao X, Bekker A, Tao YX. Role of MicroRNA-143 in Nerve Injury-Induced Upregulation of Dnmt3a Expression in Primary Sensory Neurons. Front Mol Neurosci 2017; 10:350. [PMID: 29170626 PMCID: PMC5684171 DOI: 10.3389/fnmol.2017.00350] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/13/2017] [Indexed: 12/02/2022] Open
Abstract
Peripheral nerve injury increased the expression of the DNA methyltransferase 3A (Dnmt3a) mRNA and its encoding Dnmt3a protein in injured dorsal root ganglia (DRG). This increase is considered as an endogenous instigator in neuropathic pain genesis through epigenetic silencing of pain-associated genes (such as Oprm1) in injured DRG. However, how DRG DNMT3a is increased following peripheral nerve injury is still elusive. We reported here that peripheral nerve injury caused by the fifth spinal nerve ligation (SNL) downregulated microRNA (miR)-143 expression in injured DRG. This downregulation was required for SNL-induced DRG Dnmt3a increase as rescuing miR-143 downregulation through microinjection of miR-143 mimics into injured DRG blocked the SNL-induced increase in Dnmt3a and restored the SNL-induced decreases in Oprm1 mRNA and its encoding mu opioid receptor (MOR) in injured DRG, impaired spinal cord central sensitization and neuropathic pain, and improved morphine analgesic effects following SNL. Mimicking SNL-induced DRG miR-143 downregulation through DRG microinjection of miR143 inhibitors in naive rats increased the expression of Dnmt3a and reduced the expression of Oprm1 mRNA and MOR in injected DRG and produced neuropathic pain-like symptoms. These findings suggest that miR-143 is a negative regulator in Dnmt3a expression in the DRG under neuropathic pain conditions and may be a potential target for therapeutic management of neuropathic pain.
Collapse
Affiliation(s)
- Bo Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Department of Anesthesiology, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jing Cao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Department of Anesthesiology, Union Medical Center, Tianjin, China
| | - Shushan Jia
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaogen Wu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Kai Mo
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Guihua Wei
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Lingli Liang
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Xuerong Miao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Departments of Cell Biology & Molecular Medicine and Physiology, Pharmacology & Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|