1
|
Giannoulis SV, Müller D, Kennedy JL, Gonçalves V. Systematic review of mitochondrial genetic variation in attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2024; 33:1675-1685. [PMID: 35796884 DOI: 10.1007/s00787-022-02030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The global prevalence of attention-deficit/hyperactivity disorder (ADHD) is estimated to be between 6% and 7% in children worldwide. The pathophysiology of this heterogeneous neurodevelopmental disorder remains unknown. Mitochondrial dysfunction has been proposed as a possible contributing factor to the etiology of ADHD. There is limited literature available to help our understanding of this hypothesis, and thus we conducted a systematic review of the number and quality of studies pertaining to mitochondrial genetic alterations in ADHD. A systematic search was conducted in the relevant databases Medline (PubMed) and Embase up to March 2021. Inclusion criteria included randomized control trials, cross-sectional studies, and case-control studies. This search resulted in a total of 507 articles that emerged from the search criteria. Of these results, 10 primary research articles were selected for in depth review based on the inclusion and exclusion criteria. These studies all reported on mitochondrial genetic variation in ADHD cases such as increased copy number, single-nucleotide polymorphisms, and haplogroup associations. This initial review of the experimental literature suggests mitochondrial genetic variation, in both the mitochondrial DNA and nuclear-encoded mitochondrial genes, may indeed contribute to ADHD pathophysiology. The studies reviewed here provide promising evidence for future research to further examine the mitochondrial genetics contributing to ADHD pathophysiology. We suggest that expansion of investigations into mitochondrial mechanisms may have potential to inform new treatment options for ADHD.
Collapse
Affiliation(s)
- Stavroula V Giannoulis
- Molecular Brain Science Research Department, Tannenbaum Centre for Pharmacogenetics, Centre for Addiction and Mental Health, Neurogenetics Section, Campbell Family Mental Health Research Institute, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Daniel Müller
- Molecular Brain Science Research Department, Tannenbaum Centre for Pharmacogenetics, Centre for Addiction and Mental Health, Neurogenetics Section, Campbell Family Mental Health Research Institute, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Research Department, Tannenbaum Centre for Pharmacogenetics, Centre for Addiction and Mental Health, Neurogenetics Section, Campbell Family Mental Health Research Institute, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vanessa Gonçalves
- Molecular Brain Science Research Department, Tannenbaum Centre for Pharmacogenetics, Centre for Addiction and Mental Health, Neurogenetics Section, Campbell Family Mental Health Research Institute, 250 College Street, Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Sui Q, Hu Z, Liang J, Lu T, Bian Y, Jin X, Li M, Huang Y, Yang H, Wang Q, Lin Z, Chen Z, Zhan C. Targeting TAM-secreted S100A9 effectively enhances the tumor-suppressive effect of metformin in treating lung adenocarcinoma. Cancer Lett 2024; 581:216497. [PMID: 38008395 DOI: 10.1016/j.canlet.2023.216497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Metformin's effect on tumor treatment was complex, because it significantly reduced cancer cell proliferation in vitro, but made no difference in prognosis in several clinical cohorts. Our transcriptome sequencing results revealed that tumor-associated macrophage (TAM) infiltration significantly increased in active lung adenocarcinoma (LUAD) patients with long-term metformin use. We further identified that the tumor suppressive effect of metformin was more significant in mice after the depletion of macrophages, suggesting that TAMs might play an important role in metformin's effects in LUAD. Combining 10X Genomics single-cell sequencing of tumor samples, transcriptome sequencing of metformin-treated TAMs, and the ChIP-Seq data of the Encode database, we identified and validated that metformin significantly increased the expression and secretion of S100A9 of TAMs through AMPK-CEBP/β pathway. For the downstream, S100A9 binds to RAGE receptors on the surface of LUAD cells, and then activates the NF-κB pathway to promote EMT and progression of LUAD, counteracting the inhibitory effect of metformin on LUAD cells. In cell-derived xenograft models (CDX) and patient-derived xenograft models (PDX) models, our results showed that neutralizing antibodies targeting TAM-secreted S100A9 effectively enhanced the tumor suppressive effect of metformin in treating LUAD. Our results will enable us to better comprehend the complex role of metformin in LUAD, and advance its clinical application in cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Öğütlü H, Kaşak M, Tabur ST. Mitochondrial Dysfunction in Attention Deficit Hyperactivity Disorder. Eurasian J Med 2022; 54:187-195. [PMID: 36655466 PMCID: PMC11163340 DOI: 10.5152/eurasianjmed.2022.22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/14/2022] [Indexed: 01/19/2023] Open
Abstract
Attention deficit hyperactivity disorder is a neurodevelopmental disorder with primary symptoms of inattention, hyperactivity, and impulsivity, beginning in early childhood. Attention deficit hyperactivity disorder has a complex etiology based on neurobiological foundations, involving genetic, environmental, and biological factors in the early development process. The etiology of attention deficit hyperactivity disorder has not been completely clarified yet, but it has been suggested that increased oxidative stress is one of the possible common etiologies in attention deficit hyperactivity disorder. Oxidative stress can cause cellular damage, DNA repair system malfunction, and mitochondrial dysfunction. Mitochondrial dysfunction is thought to be a susceptibility factor in the development of psychiatric diseases. This article aims to review the research conducted to evaluate the possible relationship between attention deficit hyperactivity disorder and mitochondrial dysfunction and systematically examine the data obtained from these studies. Although studies considering the relationship between attention deficit hyperactivity disorder and mitochondrial dysfunction are less than those of autism spectrum disorder, schizophrenia, and mood disorders, studies on attention deficit hyperactivity disorder are increasing. A compensating system against mitochondrial dysfunction caused by hereditary and environmental factors may be generated by an increase in mitochondrial DNA copy number. Mitochondrial DNA copies may decrease with the reduction of attention deficit hyperactivity disorder severity and attention deficit in patients receiving treatment and may positively affect mitochondrial functions. The literature data of this review show that mitochondrial dysfunction could be a crucial factor in the pathophysiology of attention deficit hyperactivity disorder. Understanding mitochondrial contributions in the pathogenesis of attention deficit hyperactivity disorder may result in new diagnostic tools and the development of new therapeutic strategies for attention deficit hyperactivity disorder treatment.
Collapse
Affiliation(s)
- Hakan Öğütlü
- Department of Child and Adolescent Psychiatry, Cognitive Behavioral Psychotherapies Association, Ankara, Turkey
| | - Meryem Kaşak
- Department of Child and Adolescent Psychiatry, Ankara City Hospital, Ankara, Turkey
| | - Selin Tutku Tabur
- Department of Psychology, Hasan Kalyoncu University Faculty of Economics, Administrative and Social Sciences, Turkey
| |
Collapse
|
4
|
Orihuel J, Capellán R, Roura-Martínez D, Ucha M, Ambrosio E, Higuera-Matas A. Δ 9-Tetrahydrocannabinol During Adolescence Reprograms the Nucleus Accumbens Transcriptome, Affecting Reward Processing, Impulsivity, and Specific Aspects of Cocaine Addiction-Like Behavior in a Sex-Dependent Manner. Int J Neuropsychopharmacol 2021; 24:920-933. [PMID: 34436576 PMCID: PMC8598305 DOI: 10.1093/ijnp/pyab058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cannabis exposure during adolescence is associated with emotional and motivational alterations that may entail an enhanced risk of developing psychiatric disorders. In rodent models, exposure to cannabinoids during adolescence leads to increased self-administration of opiates and cocaine, however, the psychological and neural mechanisms and the sex-specificity of this phenomenon are largely unknown. METHODS We exposed male and female adolescent rats to Δ9-tetrahydrocannabinol (THC) and studied at adulthood the effects of such treatment on psychological processes related to reward, such as Pavlovian conditioned approach, Pavlovian to instrumental transfer, habit formation and waiting impulsivity. In the light of these data and given the involvement of the nucleus accumbens in the processes examined, we performed an RNASeq transcriptomic study and assessed cocaine addiction-like behavior. RESULTS THC exposure increased goal-tracking (in males and females) and enhanced Pavlovian to instrumental transfer (especially in males) but did not affect habit formation. THC-exposed rats exhibited subtle, state-dependent changes in premature responding in the 2-CSRTT task. RNASeq data showed gene expression alterations in a marked sex-specific manner. While no effects were found on the acquisition of cocaine self-administration or punished drug-seeking, rats exposed to THC self-administered more cocaine under a progressive ratio schedule (males), had a higher rebound upon returning to continuous access to the drug (females) and showed reduced drug-seeking after 30 days of withdrawal (females). CONCLUSIONS Adolescent THC affects specific aspects of reward- (and cocaine-) guided behavior and the function of a key brain region mediating these effects, in a remarkable sex-specific manner.
Collapse
Affiliation(s)
- Javier Orihuel
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
- Institut de Neurosciences de la Timone, Marseille, France
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| |
Collapse
|
5
|
Pujol-Gualdo N, Sánchez-Mora C, Ramos-Quiroga JA, Ribasés M, Soler Artigas M. Integrating genomics and transcriptomics: Towards deciphering ADHD. Eur Neuropsychopharmacol 2021; 44:1-13. [PMID: 33495110 DOI: 10.1016/j.euroneuro.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable condition that represents the most common neurodevelopmental disorder in childhood, persisting into adulthood in around 40-65% of the cases. ADHD is characterised by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity. Mounting evidence points towards ADHD having a strong genetic component and the first genome-wide significant findings have recently been reported. However, the functional characterization of variants unravelled by genome-wide association studies (GWAS) is challenging. Likewise, gene expression profiling studies have also been undertaken and novel integrative approaches combining genomic and transcriptomic data are starting to be conducted, which offers an exciting way that might provide a more informative insight towards the genetic architecture of ADHD. In this review, we summarised current knowledge on genomics, transcriptomics and integrative approaches in ADHD, focusing on GWAS and GWAS meta-analyses (GWAS-MA)- as genomics analyses- microarray and RNA-seq- as transcriptomics analyses-, and studies integrating genomics and transcriptomics data. In addition, current strengths and limitations of such approaches are discussed and further research avenues are proposed in order to face unsolved issues. Although important progress has been made, there is still a long way ahead to elucidate the biological mechanisms of ADHD, which eventually may lead to more personalized approaches in the future. Large- scale research efforts and new technological and statistical approaches are envisaged as important means towards deciphering ADHD in the upcoming years.
Collapse
Affiliation(s)
- Natàlia Pujol-Gualdo
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Raoofi A, Delbari A, Mahdian D, Mojadadi MS, Akhlaghi M, Dadashizadeh G, Ebrahimi V, Amini A, Golmohammadi R, Javadinia SS, Khaneghah AM. Effects of curcumin nanoparticle on the histological changes and apoptotic factors expression in testis tissue after methylphenidate administration in rats. Acta Histochem 2021; 123:151656. [PMID: 33249311 DOI: 10.1016/j.acthis.2020.151656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022]
Abstract
The present article sought to evaluate the impact of curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles (NPs) on the histological variables and apoptotic agents in adult male rats after 3-weeks of methylphenidate (MPH) oral administration (20 mg/kg) versus vehicle therapy on the testis. Twenty-four male rats have been categorized randomly into four groups, in which Group 1 has been chosen as the controls, and Group 2 has been a vehicle and taken the sesame oil as curcumin carrier. Moreover, Group 3 has been taken MPH (20 mg/kg by gavage for 21 consecutive days). Group 4 received MPH plus Curcumin nanoparticles (5.4 mg/100 g) for twenty-one consecutive days. Then, testis histology, apoptosis as well as stereology have been examined. According to the examinations, curcumin nanoparticles are significantly capable of improving the sperms and stereological variables; for example, round spermatid and Leydig cells by enhancing the level of the serum testosterone in comparison with the MPH and vehicle groups. Besides, it was found that the gene expression in inflammation pathways and apoptosis genes largely diminished in the treatment group by curcumin nanoparticles in comparison with the MPH and vehicle groups, also we observed considerable differences for the weight of testes between the examined groups. Therefore, Curcumin effectively inhibited the testis damages and MPH-induced apoptosis, indicating possible protecting features of the Curcumin nanoparticles in opposition to MPH.
Collapse
Affiliation(s)
- Amir Raoofi
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Delbari
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Mahdian
- Cellular and Molecular Research Center, Department of Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad-Shafi Mojadadi
- Leishmaniasis Research Center, Department of Immunology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maedeh Akhlaghi
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ghazaleh Dadashizadeh
- Cellular and Molecular Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Ebrahimi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rahim Golmohammadi
- Cellular and Molecular Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Sara Sadat Javadinia
- Cellular and Molecular Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Kashefi A, Tomaz C, Jamali S, Rashidy-Pour A, Vafaei AA, Haghparast A. Cannabidiol attenuated the maintenance and reinstatement of extinguished methylphenidate-induced conditioned place preference in rats. Brain Res Bull 2020; 166:118-127. [PMID: 33264654 DOI: 10.1016/j.brainresbull.2020.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Methylphenidate (MPH) is a mild CNS stimulant that has been used in hyperactive children, and patients with neurodegenerative and major depressive disorders. Exposure to MPH-associated cues enhances craving and arousal in drug users. On the other hand, cannabidiol (CBD) has antipsychotic potential that might be useful in alleviating symptoms of drug addiction. The aim of this study was to investigate the effect of CBD administration on extinction and reinstatement of MPH-induced conditioning place preference (CPP) in rats. Male rats received MPH (1, 2.5 or 5 mg/kg, i.p) or morphine (5 or 10 mg/kg, s.c.) during the conditioning phase. Following the establishment of CPP, during extinction training, 60 min prior to every CPP session, animals were given daily ICV CBD (10 or 50 μg/5 μL), vehicle alone (DMSO) 10 % or were treatment-naïve. On the reinstatement day animals after receiving the initial dose of MPH, 0.5 mg/kg, and were placed into the CPP box to evaluate the CPP scoring for 10-min. Our findings indicated that morphine (5 and 10 mg/kg; s.c.) and MPH (1 and 2.5 mg/kg; i.p.) induced a CPP. The ICV administration of both doses of CBD (10 and 50 μg/5 μL) prevented the reinstatement of MPH-induced CPP, which displayed shorter extinction latency compared to treatment-naïve or DMSO 10 % groups. Therefore, CBD's site of action is a potential target for reducing the risk of MPH relapse; however, more investigation is required.
Collapse
Affiliation(s)
- Adel Kashefi
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, University of Brasilia, Brasília, Brazil; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Carlos Tomaz
- Laboratory of Neuroscience and Behavior, University CEUMA, São Luís, Maranhão, Brazil
| | - Shole Jamali
- Neuroscience Research Center, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Raoofi A, Delbari A, Mahdian D, Mojadadi MS, Amini A, Javadinia SS, Dadashizadeh G, Ahrabi B, Ebrahimi V, Mousavi Khaneghah A. Toxicology of long-term and high-dose administration of methylphenidate on the kidney tissue - a histopathology and molecular study. Toxicol Mech Methods 2020; 30:611-619. [PMID: 32746681 DOI: 10.1080/15376516.2020.1805665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present study aims to assess the influences of oral methylphenidate on kidney function and structure versus vehicle treatment in adult male rats. In this study, thirty adult male rats equally into two treatment groups divided randomly, and among them, MPH has been administered for 21 days, at doses of 20 mg/kg, and the control group has received salin. In renal, under the effect of MPH applying quantitative real-time PCR, we analyzed nephrotoxicity-related molecular pathways like autophagy, inflammation, and apoptosis. Moreover, the levels of GSH, CAT, and SOD were investigated as antioxidant enzymes. Afterward, stereological analysis in MPH-treated rats has been performed. Analysis of qPCR displayed inflammation, impaired autophagy, and enhanced apoptosis with histological changes in the kidney's tissue, also an important rise in the antioxidant enzymes' level. Besides, 20 mg/kg of MPH led to a decline in the mean of Bowman's space thickness and renal corpuscle's volume in comparison to the control rats. Collectively, our histological and molecular data implicit that in the kidney region, administrating of MPH evoked discriminative expression alterations in nephrotoxicity-associated signaling cascades, specifically autophagy, inflammation, and apoptosis paired with important damage to kidney tissue.
Collapse
Affiliation(s)
- Amir Raoofi
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Delbari
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Mahdian
- Cellular and Molecular Research Center, Department of Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad-Shafi Mojadadi
- Leishmaniasis Research Center, Department of Immunology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sadat Javadinia
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ghazaleh Dadashizadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Ebrahimi
- Faculty of Medicine, Department of Anatomy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mousavi Khaneghah
- Faculty of Food Engineering, Department of Food Science, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
9
|
Bahn GH, Lee YS, Yoo HK, Kim EJ, Park S, Han DH, Hong M, Kim B, Lee SI, Bhang SY, Lee SY, Hong JP, Joung YS. Development of the Korean Practice Parameter for Adult Attention-Deficit/Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak 2020; 31:5-25. [PMID: 32612409 PMCID: PMC7324844 DOI: 10.5765/jkacap.190030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Adult attention-deficit/hyperactivity disorder (ADHD) is an important mental health problem that needs resolution, especially considering the high rates of ADHD continuation from childhood to adolescence/adulthood and the high prevalence of ADHD in adults. Adults with ADHD have lifelong negative impacts and require close monitoring with long-term follow-up. Hence, the establishment of a Korean practice parameter for adult ADHD is necessary to minimize discontinuation of treatment and enable information sharing among Korean mental health professionals. METHODS The Korean practice parameter was developed using an evidence-based approach consisting of expert consensus survey coupled with literature review. RESULTS According to the expert consensus survey, the most commonly used diagnostic methods were clinical psychiatric interview (20.66%) and self-report scales (19.25%) followed by attention (14.71%) and psychological tests (14.24%). Key evaluation instruments currently available in Korea are the World Health Organization Adult ADHD Self-Report Rating Scale, Korean Adult ADHD Rating Scale, Diagnostic Interview for ADHD in Adults, Barkley Deficits in Executive Functioning Scale for adults, Comprehensive Attention Test, Conners' Continuous Performance Test, and the subtests of Wechsler Adult Intelligence Scale, Digit Span and Letter-Number Sequencing. Although pharmacotherapy is recommended as the first-line of treatment for adult ADHD, we recommend that it be followed by a multimodal and multidisciplinary approach including psychoeducation, pharmacotherapy, cognitive behavior therapy and coaching. CONCLUSION The Korean practice parameter introduces not only general information for the diagnosis and treatment of adult ADHD on a global scale, but also the process of diagnosis and treatment options tailored to the Korean population.
Collapse
Affiliation(s)
- Geon Ho Bahn
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Young Sik Lee
- Department of Psychiatry, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | | | - Eui-Jung Kim
- Department of Psychiatry, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Subin Park
- Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Minha Hong
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Bongseog Kim
- Department of Psychiatry, Inje University College of Medicine, Seoul, Korea
| | - Soyoung Irene Lee
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Buchun, Korea
| | - Soo Young Bhang
- Department of Psychiatry, Eulji University School of Medicine, Seoul, Korea
| | - Seung Yup Lee
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jin Pyo Hong
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoo-Sook Joung
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Long-term administration of high-dose methylphenidate-induced cerebellar morphology and function damage in adult rats. J Chem Neuroanat 2020; 103:101712. [DOI: 10.1016/j.jchemneu.2019.101712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/25/2023]
|
11
|
Integrative proteomics and pharmacogenomics analysis of methylphenidate treatment response. Transl Psychiatry 2019; 9:308. [PMID: 31740662 PMCID: PMC6861257 DOI: 10.1038/s41398-019-0649-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/09/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023] Open
Abstract
Transcriptomics and candidate gene/protein expression studies have indicated several biological processes modulated by methylphenidate (MPH), widely used in attention-deficit/hyperactivity disorder (ADHD) treatment. However, the lack of a differential proteomic profiling of MPH treatment limits the understanding of the most relevant mechanisms by which MPH exerts its pharmacological effects at the molecular level. Therefore, our aim is to investigate the MPH-induced proteomic alterations using an experimental design integrated with a pharmacogenomic analysis in a translational perspective. Proteomic analysis was performed using the cortices of Wistar-Kyoto rats, which were treated by gavage with MPH (2 mg/kg) or saline for two weeks (n = 6/group). After functional enrichment analysis of the differentially expressed proteins (DEP) in rats, the significant biological pathways were tested for association with MPH response in adults with ADHD (n = 189) using genome-wide data. Following MPH treatment in rats, 98 DEPs were found (P < 0.05 and FC < -1.0 or > 1.0). The functional enrichment analysis of the DEPs revealed 18 significant biological pathways (gene-sets) modulated by MPH, including some with recognized biological plausibility, such as those related to synaptic transmission. The pharmacogenomic analysis in the clinical sample evaluating these pathways revealed nominal associations for gene-sets related to neurotransmitter release and GABA transmission. Our results, which integrate proteomics and pharmacogenomics, revealed putative molecular effects of MPH on several biological processes, including oxidative stress, cellular respiration, and metabolism, and extended the results involving synaptic transmission pathways to a clinical sample. These findings shed light on the molecular signatures of MPH effects and possible biological sources of treatment response variability.
Collapse
|
12
|
Integrated Analysis of microRNA and mRNA Expression Profiles: An Attempt to Disentangle the Complex Interaction Network in Attention Deficit Hyperactivity Disorder. Brain Sci 2019; 9:brainsci9100288. [PMID: 31652596 PMCID: PMC6826944 DOI: 10.3390/brainsci9100288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/11/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a childhood-onset neurodevelopmental disorder, whose etiology and pathogenesis are still largely unknown. In order to uncover novel regulatory networks and molecular pathways possibly related to ADHD, we performed an integrated miRNA and mRNA expression profiling analysis in peripheral blood samples of children with ADHD and age-matched typically developing (TD) children. The expression levels of 13 miRNAs were evaluated with microfluidic qPCR, and differentially expressed (DE) mRNAs were detected on an Illumina HiSeq 2500 genome analyzer. The miRNA targetome was identified using an integrated approach of validated and predicted interaction data extracted from seven different bioinformatic tools. Gene Ontology (GO) and pathway enrichment analyses were carried out. Results showed that six miRNAs (miR-652-3p, miR-942-5p, let-7b-5p, miR-181a-5p, miR-320a, and miR-148b-3p) and 560 genes were significantly DE in children with ADHD compared to TD subjects. After correction for multiple testing, only three miRNAs (miR-652-3p, miR-148b-3p, and miR-942-5p) remained significant. Genes known to be associated with ADHD (e.g., B4GALT2, SLC6A9 TLE1, ANK3, TRIO, TAF1, and SYNE1) were confirmed to be significantly DE in our study. Integrated miRNA and mRNA expression data identified critical key hubs involved in ADHD. Finally, the GO and pathway enrichment analyses of all DE genes showed their deep involvement in immune functions, reinforcing the hypothesis that an immune imbalance might contribute to the ADHD etiology. Despite the relatively small sample size, in this study we were able to build a complex miRNA-target interaction network in children with ADHD that might help in deciphering the disease pathogenesis. Validation in larger samples should be performed in order to possibly suggest novel therapeutic strategies for treating this complex disease.
Collapse
|
13
|
Lorenzo G, Braun J, Muñoz G, Casarejos MJ, Bazán E, Jimenez-Escrig A. RNA-Seq blood transcriptome profiling in familial attention deficit and hyperactivity disorder (ADHD). Psychiatry Res 2018; 270:544-546. [PMID: 30343239 DOI: 10.1016/j.psychres.2018.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
We have carried an exploratory study by blood transcriptome to find RNA expression signatures in familial ADHD. Samples were collected from three cases with familial ADHD and their paired controls and evaluated by RNA-Seq. Transcriptome profiling identified 7 differentially expressed transcripts with a FDR <0.05 that were involved in pathways in Huntington's disease or axonal guidance signaling previously implicated in ADHD, and enriched for signal peptide, growth factor binding, and notably the lipid metabolism pathways. These findings show that blood transcriptome can have an associated signature and highlight a potential to use blood transcriptome to identify patterns of ADHD.
Collapse
Affiliation(s)
- Gustavo Lorenzo
- Department of Pediatrics, Hospital Ramon y Cajal, Madrid, Spain
| | - Jorge Braun
- Research Department, IRYCIS, Hospital Ramon y Cajal, Madrid, Spain
| | - Gonzalo Muñoz
- Research Department, IRYCIS, Hospital Ramon y Cajal, Madrid, Spain
| | | | - Eulalia Bazán
- Research Department, IRYCIS, Hospital Ramon y Cajal, Madrid, Spain
| | | |
Collapse
|
14
|
Ryu DY, Rahman MS, Pang MG. Determination of Highly Sensitive Biological Cell Model Systems to Screen BPA-Related Health Hazards Using Pathway Studio. Int J Mol Sci 2017; 18:ijms18091909. [PMID: 28878155 PMCID: PMC5618558 DOI: 10.3390/ijms18091909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023] Open
Abstract
Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| |
Collapse
|
15
|
Lima LDA, Feio-dos-Santos AC, Belangero SI, Gadelha A, Bressan RA, Salum GA, Pan PM, Moriyama TS, Graeff-Martins AS, Tamanaha AC, Alvarenga P, Krieger FV, Fleitlich-Bilyk B, Jackowski AP, Brietzke E, Sato JR, Polanczyk GV, Mari JDJ, Manfro GG, do Rosário MC, Miguel EC, Puga RD, Tahira AC, Souza VN, Chile T, Gouveia GR, Simões SN, Chang X, Pellegrino R, Tian L, Glessner JT, Hashimoto RF, Rohde LA, Sleiman PMA, Hakonarson H, Brentani H. An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in Attention-Deficit/Hyperactivity Disorder. Sci Rep 2016; 6:22851. [PMID: 26947246 PMCID: PMC4780010 DOI: 10.1038/srep22851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two "in silico" protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.
Collapse
Affiliation(s)
- Leandro de Araújo Lima
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Sintia Iole Belangero
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ary Gadelha
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Affonseca Bressan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Mario Pan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tais Silveira Moriyama
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ana Soledade Graeff-Martins
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Ana Carina Tamanaha
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Pedro Alvarenga
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Fernanda Valle Krieger
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Bacy Fleitlich-Bilyk
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Andrea Parolin Jackowski
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Elisa Brietzke
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - João Ricardo Sato
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Center of Mathematics, Computation and Cognition. Universidade Federal do ABC, Santo André, Brazil
| | - Guilherme Vanoni Polanczyk
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Jair de Jesus Mari
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Gisele Gus Manfro
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Conceição do Rosário
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Eurípedes Constantino Miguel
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Renato David Puga
- Hospital Israelita Albert Einstein, Clinical Research, São Paulo, SP, Brazil
| | - Ana Carolina Tahira
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Viviane Neri Souza
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Thais Chile
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Gisele Rodrigues Gouveia
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Sérgio Nery Simões
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Federal Institute of Espírito Santo, Serra, ES, Brazil
| | - Xiao Chang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ronaldo Fumio Hashimoto
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Mathematics &Statistics Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Luis Augusto Rohde
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrick M A Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Helena Brentani
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| |
Collapse
|
16
|
Orsini CA, Setlow B, DeJesus M, Galaviz S, Loesch K, Ioerger T, Wallis D. Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Mol Genet Genomic Med 2016; 4:322-43. [PMID: 27247960 PMCID: PMC4867566 DOI: 10.1002/mgg3.207] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background The Latrophilin 3 (LPHN3) gene (recently renamed Adhesion G protein‐coupled receptor L3 (ADGRL3)) has been linked to susceptibility to attention deficit/hyperactivity disorder (ADHD) and vulnerability to addiction. However, its role and function are not well understood as there are no known functional variants. Methods To characterize the function of this little known gene, we phenotyped Lphn3 null mice. We assessed motivation for food reward and working memory via instrumental responding tasks, motor coordination via rotarod, and depressive‐like behavior via forced swim. We also measured neurite outgrowth of primary hippocampal and cortical neuron cultures. Standard blood chemistries and blood counts were performed. Finally, we also evaluated the transcriptome in several brain regions. Results Behaviorally, loss of Lphn3 increases both reward motivation and activity levels. Lphn3 null mice display significantly greater instrumental responding for food than wild‐type mice, particularly under high response ratios, and swim incessantly during a forced swim assay. However, loss of Lphn3 does not interfere with working memory or motor coordination. Primary hippocampal and cortical neuron cultures demonstrate that null neurons display comparatively enhanced neurite outgrowth after 2 and 3 days in vitro. Standard blood chemistry panels reveal that nulls have low serum calcium levels. Finally, analysis of the transcriptome from prefrontal cortical, striatal, and hippocampal tissue at different developmental time points shows that loss of Lphn3 results in genotype‐dependent differential gene expression (DGE), particularly for cell adhesion molecules and calcium signaling proteins. Much of the DGE is attenuated with age, and is consistent with the idea that ADHD is associated with delayed cortical maturation. Conclusions Transcriptome changes likely affect neuron structure and function, leading to behavioral anomalies consistent with both ADHD and addiction phenotypes. The data should further motivate analyses of Lphn3 function in the developmental timing of altered gene expression and calcium signaling, and their effects on neuronal structure/function during development.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry McKnight Brain Institute University of Florida College of Medicine Gainesville Florida 32610
| | - Barry Setlow
- Department of Psychiatry McKnight Brain Institute University of Florida College of Medicine Gainesville Florida 32610
| | - Michael DeJesus
- Department of Computer Science and Engineering Texas A&M University College Station Texas 77843
| | - Stacy Galaviz
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| | - Kimberly Loesch
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| | - Thomas Ioerger
- Department of Computer Science and Engineering Texas A&M University College Station Texas 77843
| | - Deeann Wallis
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| |
Collapse
|
17
|
Motaghinejad M, Motevalian M, Shabab B. Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats. Neurosci Lett 2015; 619:106-13. [PMID: 26687276 DOI: 10.1016/j.neulet.2015.12.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
Methylphenidate (MPH) is a central stimulant, prescribed for the treatment of attention deficit/hyperactivity disorder. The long-term behavioral consequences of MPH treatment are unknown. In this study, the oxidative stress and neuroinflammation induced by various doses of MPH were investigated. Forty adult male rats were divided into 5 groups; and treated with different doses of MPH for 21 days. Twenty four hours after drug treatment, Open Field Test (OFT) was performed in all animals. At the end of the study, blood cortisol level (BCL) was measured and hippocampus was isolated and oxidative stress and inflammation parameters and histological changes were analyzed. Chronic MPH at all doses decreased central square entries, number of rearing, ambulation distance and time spent in central square in OFT. BCL increased in doses 10 and 20mg/kg of MPH. Furthermore, MPH in all doses markedly increased lipid peroxidation, mitochondrial oxidized glutathione (GSSG) level, Interleukin 1β (IL-1β) and Tumor Necrosis Factor α (TNF-α) in isolated hippocampus. MPH (10 and 20mg/kg) treated groups had decreased mitochondrial reduced glutathione (GSH) content, and reduced superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRx) activities. 10 and 20mg/kg of MPH change cell density and morphology of cells in Dentate Gyrus (DG) and CA1 areas of hippocampus. Chronic treatment with high doses of MPH can cause oxidative stress, neuroinflammation and neurodegeneration in hippocampus of adult rats.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Behnaz Shabab
- Solid Dosage Form Department, Iran Hormone Pharmaceutical Company, Tehran, Iran
| |
Collapse
|
18
|
Dela Peña I, Bang M, Lee J, de la Peña JB, Kim BN, Han DH, Noh M, Shin CY, Cheong JH. Common prefrontal cortical gene expression profiles between adolescent SHR/NCrl and WKY/NCrl rats which showed inattention behavior. Behav Brain Res 2015; 291:268-276. [PMID: 26048425 DOI: 10.1016/j.bbr.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
Abstract
Factor analyses of attention-deficit/hyperactivity (ADHD) symptoms divide the behavioral symptoms of ADHD into two separate domains, one reflecting inattention and the other, a combination of hyperactivity and impulsivity. Identifying domain-specific genetic risk variants may aid in the discovery of specific biological risk factors for ADHD. In contrast with data available on genes involved in hyperactivity and impulsivity, there is limited information on the genetic influences of inattention. Transcriptional profiling analysis in animal models of disorders may provide an important tool to identify genetic involvement in behavioral phenotypes. To explore some of the potential genetic underpinnings of ADHD inattention, we examined common differentially expressed genes (DEGs) in the prefrontal cortex of SHR/NCrl, the most validated animal model of ADHD and WKY/NCrl, animal model of ADHD-inattentive type. In contrast with Wistar rats, strain representing the "normal" heterogeneous population, SHR/NCrl and WKY/NCrl showed inattention behavior in the Y-maze task. The common DEGs in the PFC of SHR/NCrl and WKY/NCrl vs. Wistar rats are those involved in transcription (e.g. Creg1, Thrsp, Zeb2), synaptic transmission (e.g. Atp2b2, Syt12, Chrna5), neurological system process (e.g. Atg7, Cacnb4, Grin3a), and immune response (e.g. Atg7, Ip6k2, Mx2). qRT-PCR analyses validated expression patterns of genes representing the major functional gene families among the DEGs (Grin3a, Thrsp, Vof-16 and Zeb2). Although further studies are warranted, the present findings indicate novel genes associated with known functional pathways of relevance to ADHD which are assumed to play important roles in the etiology of ADHD-inattentive subtype.
Collapse
Affiliation(s)
- Ike Dela Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea; Department of Pharmaceutical and Administrative Sciences, Loma Linda University, CA 92350, USA.
| | - Minji Bang
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jinhee Lee
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Clinical Research Institute, Seoul National University Hospital, 28 Yungundong, Chongrogu, Seoul 110-744, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Medical School, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
19
|
dela Peña I, de la Peña JB, Kim BN, Han DH, Noh M, Cheong JH. Gene expression profiling in the striatum of amphetamine-treated spontaneously hypertensive rats which showed amphetamine conditioned place preference and self-administration. Arch Pharm Res 2014; 38:865-75. [PMID: 25163681 DOI: 10.1007/s12272-014-0470-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD), the most commonly diagnosed neurobehavioral disorder of childhood, is usually treated with psychostimulants (e.g., amphetamine). Little is known about the neuronal and behavioral consequences of chronic amphetamine use or abuse in individuals with ADHD. Of all ADHD animal models, the spontaneously hypertensive rat (SHR) is the most validated and widely used. Here, we analyzed striatal transcriptomes in amphetamine-pretreated SHRs (5 mg/kg, i.p. for 7 days [twice daily]), which showed a conditioned place preference to and self-administration of amphetamine. Microarray analyses revealed increased mRNA expression of 55 genes (>1.65-fold increase), while 17 genes were downregulated (<0.6-fold) in the striatum of SHRs. The main functional categories overrepresented among the differentially expressed genes in the striatum include those involved in transcription (e.g., Cebpb, Per2), genes associated with angiogenesis (e.g., Kdr, Klf5), cell adhesion (e.g., Col11a1, Ctgf), apoptosis (e.g., Nfkbia, Perp) and neuronal development (e.g., Egr2, Nr4a3). In conclusion, we dissected the striatal transcriptional responses to the reinforcing effects of repeated amphetamine treatment in the SHR model of ADHD. Future studies should determine the influence of these altered transcripts on amphetamine reinforcement in amphetamine-treated SHRs, and the clinical relevance of the present findings with regard to amphetamine use/abuse in ADHD individuals.
Collapse
Affiliation(s)
- Ike dela Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul, 139-742, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Brain apoptosis signaling pathways are regulated by methylphenidate treatment in young and adult rats. Brain Res 2014; 1583:269-76. [PMID: 25128604 DOI: 10.1016/j.brainres.2014.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 06/05/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
Abstract
Methylphenidate (MPH) is commonly prescribed for children who have been diagnosed with attention deficit hyperactivity disorder (ADHD); however, the action mechanisms of methylphenidate have not been fully elucidated. Studies have shown a relationship between apoptosis signaling pathways and psychiatric disorders, as well as in therapeutic targets for such disorders. So, we investigated if chronic treatment with MPH at doses of 1, 2 and 10mg/kg could alter the levels of pro-apoptotic protein, Bax, anti-apoptotic protein, Bcl-2, caspase-3 and cytochrome c in the brain of young and adult Wistar rats. Our results showed that MPH at all doses increased Bax in the cortex; the Bcl-2 and caspase-3 were increased with MPH (1mg/kg) and were reduced with MPH (2 and 10mg/kg); the cytochrome c was reduced in the cortex after treatment with MPH at all doses; in the cerebellum there was an increase of Bax with MPH at all doses, however, there was a reduction of Bcl-2, caspase-3, and cytochrome c with MPH (2 and 10mg/kg); in the striatum the treatment with MPH (10mg/kg) decreased caspase-3 and cytochrome c; treatment with MPH (2 and 10mg/kg) increased Bax and decreased Bcl-2 in the hippocampus; and the caspase-3 and cytochrome c were reduced in the hippocampus with MPH (10mg/kg). In conclusion, our results suggest that MPH influences plasticity in the brain of young and adult rats; however, the effects were dependent of age and brain area, on the one hand activating the initial cascade of apoptosis, increasing Bax and reducing Bcl-2, but otherwise inhibiting apoptosis by reduction of caspase-3 and cytochrome c.
Collapse
|