1
|
Zhang P, Gao W, Guo L, Chen M, Ma J, Tian T, Wang Y, Zhang X, Wei Y, Chen T, Yang D. Functional Characterization of Plant Peptide-Containing Sulfated Tyrosine (PSY) Family in Wheat ( Triticum aestivum L.). Int J Mol Sci 2024; 25:12663. [PMID: 39684375 DOI: 10.3390/ijms252312663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The plant peptide-containing sulfated tyrosine (PSY) family plays critical roles in plant cell proliferation and stress responses. However, the functional characterization of the PSY peptide family in wheat remains unclear. This study systematically identified a total of 29 TaPSY genes at the genome-wide level, classifying them into six subgroups based on PSY-like motifs. These peptides contain a highly conserved active peptide domain, closely resembling the Arabidopsis AtPSY1 motif. All TaPSY homologs are predicted to have a sulfated tyrosine catalyzed by plant tyrosylprotein sulfotransferase (TPST). The TaPSY genes displayed distinct expression patterns across various tissues, with most genes showing higher expression levels in roots and stems. Synthetic sulfated TaPSY peptides enhanced root growth in both wild-type Arabidopsis and the tpst-1 mutant plants. In wheat, exogenous application of TaPSY peptides also promoted root growth, with the synthetic TaPSY5 peptide affecting reactive oxygen species levels in wheat taproots to stimulate primary root growth. Furthermore, transgenic Arabidopsis plants overexpressing TaPSY10 exhibited longer primary roots and increased lateral root numbers. These findings provide insights into the physiological roles of TaPSY peptides in regulating wheat root growth.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Weidong Gao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijian Guo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ming Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingfu Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tian Tian
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanjie Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongtong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Zhang J, Zhou D, Chen W, Lin P, Zhao S, Wang M, Wang H, Shi S, Mehmood F, Ye X, Meng J, Zhuang W. Comparison of the chloroplast genomics of nine endangered Habenaria species and phylogenetic analysis. BMC PLANT BIOLOGY 2024; 24:1046. [PMID: 39497089 PMCID: PMC11536600 DOI: 10.1186/s12870-024-05766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Habenaria, a genus in the family Orchidaceae, are the nearly cosmopolitan orchids, and most species have significant medicinal and ornamental values. Despite the morphological and molecular data that have been studied in recent years, the phylogenetic relationship is still unclear. RESULTS We sequenced, assembled, and annotated the chloroplast (cp) genomes of two species (Habenaria aitchisonii Rchb.f. and Habenaria tibetica Schltr.ex Limpricht) of Habenaria grown on the Qinghai-Tibetan Plateau (QTP), and compared them with seven previously published cp genomes which may aid in the genomic profiling of these species. The two genomes ranged from 155,259-155,269 bp in length and both included 132 genes, encoding 86 proteins, 38 tRNAs and 8 rRNAs. In the cp genomes, the tandem repeats (797), SSRs (2195) and diverse loci (3214) were identified. Comparative analyses of codon usage, amino frequency, microsatellite, oligo repeats and transition and transversion substitutions revealed similarities between the species. Moreover, we identified 16 highly polymorphic regions with a nucleotide diversity above 0.02, which may be suitable for robust authentic barcoding and inferring in the phylogeny of Habenaria species. Among the polymorphic regions, positive selection was significantly exerted on several genes, such as cemA, petA, and ycf1. This finding may suggest an important adaptation strategy for the two Habenaria species on the QTP. The phylogenetic relationship revealed that H. aitchisonii and H. tibetica were more closely related to each other than to the other species, and the other seven species were clustered in three groups. In addition, the estimated divergence time suggested that the two species separated from the others approximately 0.39 Mya in the Neogene period. Our findings also suggest that Habenaria can be divided into different sections. CONCLUSIONS The results of this study enriched the genomics resources of Habenaria, and SSR marker may aid in the conservation management of two endangered species.
Collapse
Affiliation(s)
- Jinkui Zhang
- College of Management and Economics, Tianjin University, Tianjin, 300072, China
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Dangwei Zhou
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- College of Medicine, Xi'an International University, Xi'an, Shaanxi, 710077, People's Republic of China.
| | - Weidong Chen
- College of Management and Economics, Tianjin University, Tianjin, 300072, China
| | - Pengcheng Lin
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Suqin Zhao
- School of Physicsand, Electronic Information Engineering , Qinghai Nationalities University, Xining, Qinghai, 810007, People's Republic of China
| | - Min Wang
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Huan Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Shengbo Shi
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Furrukh Mehmood
- Research and Innovation Center, Foudazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Xing Ye
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Jing Meng
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Wenyuan Zhuang
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| |
Collapse
|
3
|
Zhang CH, Wang HY, Wang Y, Chi ZH, Liu YS, Zu GH. The first two complete mitochondrial genomes for the genus Anagyrus (Hymenoptera, Encyrtidae) and their phylogenetic implications. Zookeys 2024; 1206:81-98. [PMID: 39006402 PMCID: PMC11245640 DOI: 10.3897/zookeys.1206.121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Anagyrus, a genus of Encyrtidae (Hymenoptera, Chalcidoidea), represents a successful group of parasitoid insects that attack various mealybug pests of agricultural and forestry plants. Until now, only 20 complete mitochondrial genomes have been sequenced, including those in this study. To enrich the diversity of mitochondrial genomes in Encyrtidae and to gain insights into their phylogenetic relationships, the mitochondrial genomes of two species of Anagyrus were sequenced, and the mitochondrial genomes of these species were compared and analyzed. Encyrtid mitochondrial genomes exhibit similarities in nucleotide composition, gene organization, and control region patterns. Comparative analysis of protein-coding genes revealed varying molecular evolutionary rates among different genes, with six genes (ATP8, ND2, ND4L, ND6, ND4 and ND5) showing higher rates than others. A phylogenetic analysis based on mitochondrial genome sequences supports the monophyly of Encyrtidae; however, the two subfamilies, Encyrtinae and Tetracneminae, are non-monophyletic. This study provides valuable insights into the phylogenetic relationships within the Encyrtidae and underscores the utility of mitochondrial genomes in the systematics of this family.
Collapse
Affiliation(s)
- Cheng-Hui Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Hai-Yang Wang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Yan Wang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Zhi-Hao Chi
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Yue-Shuo Liu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Guo-Hao Zu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| |
Collapse
|
4
|
Han F, Bi C, Zhao Y, Gao M, Wang Y, Chen Y. Unraveling the complex evolutionary features of the Cinnamomum camphora mitochondrial genome. PLANT CELL REPORTS 2024; 43:183. [PMID: 38922445 DOI: 10.1007/s00299-024-03256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
KEY MESSAGE We reported the mitochondrial genome of Cinnamomum camphora for the first time, revealing frequent rearrangement events in the non-coding regions of Magnoliids mitochondrial genomes. As one of the representative species in the Lauraceae family of Magnoliids, Cinnamomum camphora holds significant economic and ecological value. In this study, the mitochondrial genome (mitogenome) of C. camphora was complete assembled and annotated using PacBio HiFi sequencing. The C. camphora mitogenome is characterized by a branch structure, spans 900,894 bp, and contains 43 protein-coding genes (PCGs), 24 tRNAs, and 3 rRNAs. Most of these PCGs are under purifying selection, with only two (ccmFc and rps7) exhibiting signs of positive selection. The C. camphora mitogenome contains numerous repetitive sequences and intracellular gene transfers, with a total of 36 mitochondrial plastid DNAs, amounting to a combined length of 23,816 bp. Comparative analysis revealed that the non-coding regions of Magnoliids mitogenomes have undergone frequent rearrangements during evolution, but the coding sequences remain highly conserved (more than 98% similarity for protein-coding sequences). Furthermore, a maximum-likelihood phylogenetic tree was reconstructed based on 25 PCGs from 23 plant mitogenomes. The analysis supports the closest relationship between C. camphora and C. chekiangense, consistent with the APG IV classification system. This study elucidates the unique evolutionary features of the C. camphora mitogenome, which will provide valuable insights into the study of genetics and evolution of the family Lauraceae.
Collapse
Affiliation(s)
- Fuchuan Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Changwei Bi
- State Key Laboratory of Tree Genetics and Breeding, Co-innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yunxiao Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Ming Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Yangdong Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Yicun Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Durango-Manrique YS, López-Rubio A, Gutiérrez LA, Isaza JP, Gómez GF. Mitochondrial genome comparison and phylogenetic position of Fannia pusio among the Calyptratae flies. Heliyon 2024; 10:e27697. [PMID: 38524611 PMCID: PMC10958369 DOI: 10.1016/j.heliyon.2024.e27697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Fannia pusio, the chicken dung fly species, remains unexplored despite its forensic, sanitary, and veterinary importance in the Nearctic and Neotropical regions. In this study, we obtained the complete mitochondrial genome of Fannia pusio for the first time using next-generation sequencing. We compared it with previously published mitogenomes of the genus from the Palearctic region, and its phylogenetic position was studied based on the concatenated protein-coding genes (PCGs) dataset of Calyptratae flies. The circular mitochondrial genome of F. pusio is 16,176 bp in length, with a high A + T content (78.3%), whose gene synteny, codon usage analysis, and amino acid frequency are similar to previously reported Fannia mitogenomes. All PCGs underwent purifying selection except the nad2 gene. Interspecific K2P distances of PCGs of Fannia yielded an average of 12.4% (8.1%-21.1%). The Fannia genus is monophyletic and closely related to Muscidae based on molecular data. Further taxonomic sampling is required to deep into the phylogenetic relationships of the originally proposed species-groups and subgroups within the genus. These results provide a valuable dataset for studying the mitochondrial genome evolution and a resource for the taxonomy and systematics of Fannia.
Collapse
Affiliation(s)
- Yesica S Durango-Manrique
- Grupo de investigación Bioforense, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia, Institución Universitaria, Medellín, Colombia
| | - Andrés López-Rubio
- Grupo de investigación Bioforense, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia, Institución Universitaria, Medellín, Colombia
| | - Lina A Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de La Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Juan P Isaza
- Grupo Biología de Sistemas, Escuela de Ciencias de La Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Giovan F Gómez
- Universidad Nacional de Colombia - Sede de La Paz - Dirección Académica, Escuela de Pregrados - Km 9 vía Valledupar - La Paz, La Paz, Colombia
| |
Collapse
|
6
|
Li L, Chen S, Xue X, Chen J, Tian J, Huo L, Zhang T, Zeng X, Su S. Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes. ISME COMMUNICATIONS 2024; 4:ycae106. [PMID: 39229495 PMCID: PMC11370035 DOI: 10.1093/ismeco/ycae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher acr3 (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher aoxA (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Songcan Chen
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Ximei Xue
- Institute of Urban Environment, Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Jieyin Chen
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, P.R. China
| | - Tuo Zhang
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, P.R. China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| |
Collapse
|
7
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Devlin JM, Hartley CA. Genomic diversity and natural recombination of equid gammaherpesvirus 5 isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105517. [PMID: 37879385 DOI: 10.1016/j.meegid.2023.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Equid gammaherpesvirus 5 (EHV5) is closely related to equid gammaherpesvirus 2 (EHV2). Detection of EHV5 is frequent in horse populations worldwide, but it is often without a clear and significant clinical impact. Infection in horses can often present as subclinical disease; however, it has been associated with respiratory disease, including equine multinodular pulmonary fibrosis (EMPF). Genetic heterogeneity within small regions of the EHV5 glycoprotein B (gB) sequences have been reported and multiple genotypes of this virus have been identified within individual horses, but full genome sequence data for these viruses is limited. The primary focus of this study was to assess the genomic diversity and natural recombination among EHV5 isolates. RESULTS The genome size of EHV5 prototype strain and the five EHV5 isolates cultured for this study, including four isolates from the same horse, ranged from 181,929 to 183,428 base pairs (bp), with the sizes of terminal repeat regions varying from 0 to 10 bp. The nucleotide sequence identity between the six EHV5 genomes ranged from 95.5 to 99.1%, and the estimated average nucleotide diversity between isolates was 1%. Individual genes displayed varying levels of nucleotide diversity that ranged from 0 to 19%. The analysis of nonsynonymous substitution (Ka > 0.025) revealed high diversity in eight genes. Genome analysis using RDP4 and SplitsTree programs detected evidence of past recombination events between EHV5 isolates. CONCLUSION Genomic diversity and recombination hotspots were identified among EHV5 strains. Recombination can drive genetic diversity, particularly in viruses that have a low rate of nucleotide substitutions. Therefore, the results from this study suggest that recombination is an important contributing factor to EHV5 genomic diversity. The findings from this study provide additional insights into the genetic heterogeneity of the EHV5 genome.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles El-Hage
- Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alistair R Legione
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Hwarari D, Radani Y, Guan Y, Chen J, Liming Y. Systematic Characterization of GATA Transcription Factors in Liriodendron chinense and Functional Validation in Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2349. [PMID: 37375974 PMCID: PMC10302256 DOI: 10.3390/plants12122349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The Liriodendron chinense in the Magnoliaceae family is an endangered tree species useful for its socio-economic and ecological benefits. Abiotic stresses (cold, heat, and drought stress), among other factors, affect its growth, development, and distribution. However, GATA transcription factors (TFs) respond to various abiotic stresses and play a significant role in plant acclimatization to abiotic stresses. To determine the function of GATA TFs in L. chinense, we investigated the GATA genes in the genome of L. chinense. In this study, a total of 18 GATA genes were identified, which were randomly distributed on 12 of the total 17 chromosomes. These GATA genes clustered together in four separate groups based on their phylogenetic relationships, gene structures, and domain conservation arrangements. Detailed interspecies phylogenetic analyses of the GATA gene family demonstrated a conservation of the GATAs and a probable diversification that prompted gene diversification in plant species. In addition, the LcGATA gene family was shown to be evolutionarily closer to that of O. sativa, giving an insight into the possible LcGATA gene functions. Investigations of LcGATA gene duplication showed four gene duplicate pairs by the segmental duplication event, and these genes were a result of strong purified selection. Analysis of the cis-regulatory elements demonstrated a significant representation of the abiotic stress elements in the promoter regions of the LcGATA genes. Additional gene expressions through transcriptome and qPCR analyses revealed a significant upregulation of LcGATA17, and LcGATA18 in various stresses, including heat, cold, and drought stress in all time points analyzed. We concluded that the LcGATA genes play a pivotal role in regulating abiotic stress in L. chinense. In summary, our results provide new insights into understanding of the LcGATA gene family and their regulatory functions during abiotic stresses.
Collapse
Affiliation(s)
| | | | | | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Liming
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Hu F, Ye Z, Zhang W, Fang D, Cao J. Decipher the molecular evolution and expression patterns of Cupin family genes in oilseed rape. Int J Biol Macromol 2023; 227:437-452. [PMID: 36549611 DOI: 10.1016/j.ijbiomac.2022.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cupin proteins are involved in plant growth and development as well as in response to various stresses. Here, a total of 173 Cupin genes were identified in Brassica napus, and their molecular evolution and expression patterns were analyzed. These genes were classified into ten groups. Motif and exon-intron structure indicated a high degree of conservation within each group during evolution. BnaCupins were distributed on 19 chromosomes and their expansion is mainly contributed by whole-genome duplication (WGD) and segmental duplication events. BnaCupins have undergone severe purifying selection during a long evolutionary process. Meanwhile, some positive selection sites were identified. Expression patterns and cis-element analysis indicated that BnaCupins play significant roles in plant growth and stress responses. In addition, the expression levels of some BnCupins were significantly altered when treated with different conditions (cold, salt, drought, IAA, ABA, and 6-BA). Some BnaCupin interacting proteins, such as glycosyl hydrolase5 (GHs5), carbohydrate kinase (CHKs), ATP-dependent 6-phosphofructokinase (ATP-PFK), S-adenosylmethionine synthase (S-MAT), and aldolase class II (ALD II), were identified by the protein-protein interaction network. It will contribute to enriching our knowledge of the Cupin gene family in B. napus and provide a basis for further studies of their functions.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
10
|
Xing ZP, Liang X, Wang X, Hu HY, Huang YX. Novel gene rearrangement pattern in mitochondrial genome of Ooencyrtusplautus Huang & Noyes, 1994: new gene order in Encyrtidae (Hymenoptera, Chalcidoidea). Zookeys 2022; 1124:1-21. [PMID: 36762364 PMCID: PMC9836654 DOI: 10.3897/zookeys.1124.83811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022] Open
Abstract
Studies of mitochondrial genomes have a wide range of applications in phylogeny, population genetics, and evolutionary biology. In this study, we sequenced and analyzed the mitochondrial genome of Ooencyrtusplautus Huang & Noyes, 1994 (Hymenoptera, Encyrtidae). The nearly complete mitogenome of O.plautus was 15,730 bp in size, including 13 PCGs (protein-coding genes), 22 tRNAs, 2 rRNAs, and a nearly complete control region. The nucleotide composition was significantly biased toward adenine and thymine, with an A + T content of 84.6%. We used the reference sequence of Chouioiacunea and calculated the Ka/Ks ratio for each set of PCGs. The highest value of the Ka/Ks ratio within 13 PCGs was found in nad2 with 1.1, suggesting that they were subjected to positive selection. This phenomenon was first discovered in Encyrtidae. Compared with other encyrtid mitogenomes, a translocation of trnW was found in O.plautus, which was the first of its kind to be reported in Encyrtidae. Comparing with ancestral arrangement pattern, wasps reflect extensive gene rearrangements. Although these insects have a high frequency of gene rearrangement, species from the same family and genus tend to have similar gene sequences. As the number of sequenced mitochondrial genomes in Chalcidoidea increases, we summarize some of the rules of gene rearrangement in Chalcidoidea, that is four gene clusters with frequent gene rearrangements. Ten mitogenomes were included to reconstruct the phylogenetic trees of Encyrtidae based on both 13 PCGs (nucleotides of protein coding genes) and AA matrix (amino acids of protein coding genes) using the maximum likelihood and Bayesian inference methods. The phylogenetic tree reconstructed by Bayesian inference based on AA data set showed that Aenasiusarizonensis and Metaphycuseriococci formed a clade representing Tetracneminae. The remaining six species formed a monophyletic clade representing Encyrtinae. In Encyrtinae, Encyrtus forms a monophyletic clade as a sister group to the clade formed by O.plautus and Diaphorencyrtusaligarhensis. Encyrtussasakii and Encyrtusrhodooccisiae were most closely related species in this monophyletic clade. In addition, gene rearrangements can provide a valuable information for molecular phylogenetic reconstruction. These results enhance our understanding of phylogenetic relationships among Encyrtidae.
Collapse
Affiliation(s)
- Zhi-Ping Xing
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xin Liang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xu Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Hao-Yuan Hu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yi-Xin Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
11
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Browning GF, Devlin JM, Hartley CA. Whole genome sequence analysis of equid gammaherpesvirus -2 field isolates reveals high levels of genomic diversity and recombination. BMC Genomics 2022; 23:622. [PMID: 36042397 PMCID: PMC9426266 DOI: 10.1186/s12864-022-08789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Equid gammaherpesvirus 2 (EHV2) is a gammaherpesvirus with a widespread distribution in horse populations globally. Although its pathogenic significance can be unclear in most cases of infection, EHV2 infection can cause upper respiratory tract disease in foals. Co-infection of different strains of EHV2 in an individual horse is common. Small regions of the EHV2 genome have shown considerable genetic heterogeneity. This could suggest genomic recombination between different strains of EHV2, similar to the extensive recombination networks that have been demonstrated for some alphaherpesviruses. This study examined natural recombination and genome diversity of EHV2 field isolates. Results Whole genome sequencing analysis of 18 EHV2 isolates, along with analysis of two publicly available EHV2 genomes, revealed variation in genomes sizes (from 173.7 to 184.8 kbp), guanine plus cytosine content (from 56.7 to 57.8%) and the size of the terminal repeat regions (from 17,196 to 17,551 bp). The nucleotide sequence identity between the genomes ranged from 86.2 to 99.7%. The estimated average inter-strain nucleotide diversity between the 20 EHV2 genomes was 2.9%. Individual gene sequences showed varying levels of nucleotide diversity and ranged between 0 and 38.1%. The ratio of nonsynonymous substitutions, Ka, to synonymous substitutions, Ks, (Ka/Ks) suggests that over 50% of EHV2 genes are undergoing diversifying selection. Recombination analyses of the 20 EHV2 genome sequences using the recombination detection program (RDP4) and SplitsTree revealed evidence of viral recombination. Conclusions Analysis of the 18 new EHV2 genomes alongside the 2 previously sequenced genomes revealed a high degree of genetic diversity and extensive recombination networks. Herpesvirus genome diversification and virus evolution can be driven by recombination, and our findings are consistent with recombination being a key mechanism by which EHV2 genomes may vary and evolve.
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08789-x.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrés Diaz-Méndez
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paola K Vaz
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alistair R Legione
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Glenn F Browning
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanne M Devlin
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Carol A Hartley
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
12
|
Palenchar PM. The Influence of Codon Usage, Protein Abundance, and Protein Stability on Protein Evolution Vary by Evolutionary Distance and the Type of Protein. Protein J 2022; 41:216-229. [PMID: 35147896 DOI: 10.1007/s10930-022-10045-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 12/01/2022]
Abstract
In general, the evolutionary rate of proteins is not primarily related to protein and amino acid functions, and factors such as protein abundance, codon usage, and the protein's TM are more important. To better understand the factors that affect protein evolution, E. coli MG1655 orthologs were compared to those in closely related bacteria and to more distantly related prokaryotes, eukaryotes, and archaea. Also, the evolution of different types of proteins was studied. The analyses indicate that the amino acid conservation of enzymes that do not use macromolecules (e.g. DNA, RNA, and proteins) as substrates and that carry out metabolic processes involving small molecules (i.e. small molecule enzymes) is different than other enzymes. For example, the small molecule enzymes have a lower percent identity than other enzymes when sequences from closely related bacteria are compared. Analyses indicate the lower percent identity is not a result of the amino acid or codon usage of the small molecule enzymes. The small molecule enzymes also don't have a significantly lower protein abundance indicating that is also not likely an important factor driving differences in amino acid conservation. Analyses indicate different methods to measure the TM of proteins have different relationships between amino acid conservation over different evolutionary distances. In totality, the results demonstrate that the relationship between the factors thought to affect protein evolution (protein abundance, codon usage, and proteins TMs) and protein evolution are complex and depend on the factor, the organisms, and the type of proteins being analyzed.
Collapse
Affiliation(s)
- Peter M Palenchar
- Department of Chemistry, Villanova University, 800 E. Lancaster Ave, Villanova, PA, 19805, USA.
| |
Collapse
|
13
|
Prabh N, Tautz D. Frequent lineage-specific substitution rate changes support an episodic model for protein evolution. G3-GENES GENOMES GENETICS 2021; 11:6372692. [PMID: 34542594 PMCID: PMC8664490 DOI: 10.1093/g3journal/jkab333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022]
Abstract
Since the inception of the molecular clock model for sequence evolution, the investigation of protein divergence has revolved around the question of a more or less constant change of amino acid sequences, with specific overall rates for each family. Although anomalies in clock-like divergence are well known, the assumption of a constant decay rate for a given protein family is usually taken as the null model for protein evolution. However, systematic tests of this null model at a genome-wide scale have lagged behind, despite the databases’ enormous growth. We focus here on divergence rate comparisons between very closely related lineages since this allows clear orthology assignments by synteny and reliable alignments, which are crucial for determining substitution rate changes. We generated a high-confidence dataset of syntenic orthologs from four ape species, including humans. We find that despite the appearance of an overall clock-like substitution pattern, several hundred protein families show lineage-specific acceleration and deceleration in divergence rates, or combinations of both in different lineages. Hence, our analysis uncovers a rather dynamic history of substitution rate changes, even between these closely related lineages, implying that one should expect that a large fraction of proteins will have had a history of episodic rate changes in deeper phylogenies. Furthermore, each of the lineages has a separate set of particularly fast diverging proteins. The genes with the highest percentage of branch-specific substitutions are ADCYAP1 in the human lineage (9.7%), CALU in chimpanzees (7.1%), SLC39A14 in the internal branch leading to humans and chimpanzees (4.1%), RNF128 in gorillas (9%), and S100Z in gibbons (15.2%). The mutational pattern in ADCYAP1 suggests a biased mutation process, possibly through asymmetric gene conversion effects. We conclude that a null model of constant change can be problematic for predicting the evolutionary trajectories of individual proteins.
Collapse
Affiliation(s)
- Neel Prabh
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| |
Collapse
|
14
|
Chamberlin HM, Jain IM, Corchado-Sonera M, Kelley LH, Sharanya D, Jama A, Pabla R, Dawes AT, Gupta BP. Evolution of Transcriptional Repressors Impacts Caenorhabditis Vulval Development. Mol Biol Evol 2021; 37:1350-1361. [PMID: 31960924 DOI: 10.1093/molbev/msaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Comparative genomic sequence analysis has found that the genes for many chromatin-associated proteins are poorly conserved, but the biological consequences of these sequence changes are not understood. Here, we show that four genes identified for an Inappropriate Vulval cell Proliferation (ivp) phenotype in the nematode Caenorhabditis briggsae exhibit distinct functions and genetic interactions when compared with their orthologs in C. elegans. Specifically, we show that the four C. briggsae ivp genes encode the noncanonical histone HTZ-1/H2A.z and three nematode-specific proteins predicted to function in the nucleus. The mutants exhibit ectopic vulval precursor cell proliferation (the multivulva [Muv] phenotype) due to inappropriate expression of the lin-3/EGF gene, and RNAseq analysis suggests a broad role for these ivp genes in transcriptional repression. Importantly, although the C. briggsae phenotypes have parallels with those seen in the C. elegans synMuv system, except for the highly conserved HTZ-1/H2A.z, comparable mutations in C. elegans ivp orthologs do not exhibit synMuv gene interactions or phenotypes. These results demonstrate the evolutionary changes that can underlie conserved biological outputs and argue that proteins critical to repress inappropriate expression from the genome participate in a rapidly evolving functional landscape.
Collapse
Affiliation(s)
| | - Ish M Jain
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Leanne H Kelley
- Department of Molecular Genetics, Ohio State University, Columbus, OH
| | - Devika Sharanya
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Abdulrahman Jama
- Department of Molecular Genetics, Ohio State University, Columbus, OH
| | - Romy Pabla
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Adriana T Dawes
- Department of Molecular Genetics, Ohio State University, Columbus, OH.,Department of Mathematics, Ohio State University, Columbus, OH
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Khayi S, Gaboun F, Pirro S, Tatusova T, El Mousadik A, Ghazal H, Mentag R. Complete Chloroplast Genome of Argania spinosa: Structural Organization and Phylogenetic Relationships in Sapotaceae. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1354. [PMID: 33066261 PMCID: PMC7602116 DOI: 10.3390/plants9101354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/02/2023]
Abstract
Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.
Collapse
Affiliation(s)
- Slimane Khayi
- CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| | - Fatima Gaboun
- CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| | - Stacy Pirro
- Iridian Genomes, Inc., Bethesda, MD 20817, USA;
| | - Tatiana Tatusova
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20817, USA;
| | - Abdelhamid El Mousadik
- Laboratory of Biotechnology and Valorization of Natural Resources (LBVRN), Faculty of Sciences, University Ibn Zohr, Agadir 80000, Morocco;
| | - Hassan Ghazal
- National Center for Scientific and Technological Research (CNRST), Rabat 10102, Morocco;
| | - Rachid Mentag
- CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| |
Collapse
|
16
|
Li H, Xie DF, Chen JP, Zhou SD, He XJ. Chloroplast genomic comparison of two sister species Allium macranthum and A. fasciculatum provides valuable insights into adaptive evolution. Genes Genomics 2020; 42:507-517. [PMID: 32146713 DOI: 10.1007/s13258-020-00920-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allium macranthum and Allium fasciculatum are two sister species and their natural populations are separated by high mountains and deep valleys with exact opposite habitat. The chloroplast genome in angiosperms has showed useful for investigating plant evolution and systematic studies. OBJECTIVE Comparative analysis of these genomes revealed potential markers and phylogenetic analysis, and discuss the influence of positive selected sites on adaptive evolution. METHODS Here, we sequenced the complete chloroplast genomes of these two species and analyzed the repeat sequences components, nucleotide diversity, selection pressure and the phylogeny relationships with related species. RESULTS A typical quadripartite structure was detected with a genome size changed from 152,148 to 152,931 bp. We identified 67 and 79 simple sequence repeats in A. macranthum and A. fasciculatum, in which the mono-nucleotide repeats A/T possess the highest percentage. Three mutational hotspots (rpl32, rps16 and matK) at the SSC and LSC regions were observed, which showed remarkably higher Pi value (> 0.03). Additionally, eight genes (rpoA, atpF, cemA, rps4, ccsA, rpoC2, rpl14 and clpP) exhibited elevated pairwise Ka/Ks ratios in alpine species. Phylogenetic analyses based on the CDS sequences and the whole complete genomes showed same topologies with high support, and A. macranthum was closely clustered with A. fasciculatum within the fourteen Amaryllidaceae species. CONCLUSION Their coding proteins of these genes often functioned in chloroplast protein synthesis, gene transcription, energy transformation and regulation and photosynthesis. These results provide valuable insights into the alpine species adaptation and evolution.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jun-Pei Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
17
|
The complete chloroplast genome of Stryphnodendron adstringens (Leguminosae - Caesalpinioideae): comparative analysis with related Mimosoid species. Sci Rep 2019; 9:14206. [PMID: 31578450 PMCID: PMC6775074 DOI: 10.1038/s41598-019-50620-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023] Open
Abstract
Stryphnodendron adstringens is a medicinal plant belonging to the Leguminosae family, and it is commonly found in the southeastern savannas, endemic to the Cerrado biome. The goal of this study was to assemble and annotate the chloroplast genome of S. adstringens and to compare it with previously known genomes of the mimosoid clade within Leguminosae. The chloroplast genome was reconstructed using de novo and referenced-based assembly of paired-end reads generated by shotgun sequencing of total genomic DNA. The size of the S. adstringens chloroplast genome was 162,169 bp. This genome included a large single-copy (LSC) region of 91,045 bp, a small single-copy (SSC) region of 19,014 bp and a pair of inverted repeats (IRa and IRb) of 26,055 bp each. The S. adstringens chloroplast genome contains a total of 111 functional genes, including 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. A total of 137 SSRs and 42 repeat structures were identified in S. adstringens chloroplast genome, with the highest proportion in the LSC region. A comparison of the S. adstringens chloroplast genome with those from other mimosoid species indicated that gene content and synteny are highly conserved in the clade. The phylogenetic reconstruction using 73 conserved coding-protein genes from 19 Leguminosae species was supported to be paraphyletic. Furthermore, the noncoding and coding regions with high nucleotide diversity may supply valuable markers for molecular evolutionary and phylogenetic studies at different taxonomic levels in this group.
Collapse
|
18
|
Mortz M, Dégletagne C, Romestaing C, Duchamp C. Comparative genomic analysis identifies small open reading frames (sORFs) with peptide-encoding features in avian 16S rDNA. Genomics 2019; 112:1120-1127. [PMID: 31247329 DOI: 10.1016/j.ygeno.2019.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
The mitochondrial genome (mt-DNA) functional repertoire has recently been enriched in mammals by the identification of functional small open reading frames (sORFs) embedded in ribosomal DNAs. Through comparative genomic analyses the presence of putatively functional sORFs was investigated in birds. Alignment of available avian mt-DNA sequences revealed highly conserved regions containing four putative sORFs that presented low insertion/deletion polymorphism rate (<0.1%) and preserved in frame start/stop codons in >80% of species. Detected sORFs included avian homologs of human Humanin and Short-Humanin-Like-Peptide 6 and two new sORFs not yet described in mammals. The amino-acid sequences of the four putative encoded peptides were strongly conserved among birds, with amino-acid p-distances (5.6 to 25.4%) similar to those calculated for typical avian mt-DNA-encoded proteins (14.8%). Conservation resulted from either drastic conservation of the nucleotide sequence or negative selection pressure. These data extend to birds the possibility that mitochondrial rDNA may encode small bioactive peptides.
Collapse
Affiliation(s)
- Mathieu Mortz
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, Villeurbanne Cedex, France
| | - Cyril Dégletagne
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, Villeurbanne Cedex, France
| | - Caroline Romestaing
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, Villeurbanne Cedex, France
| | - Claude Duchamp
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, Villeurbanne Cedex, France.
| |
Collapse
|
19
|
Abstract
An attractive and long-standing hypothesis regarding the evolution of genes after duplication posits that the duplication event creates new evolutionary possibilities by releasing a copy of the gene from constraint. Apparent support was found in numerous analyses, particularly, the observation of higher rates of evolution in duplicated as compared with singleton genes. Could it, instead, be that more duplicable genes (owing to mutation, fixation, or retention biases) are intrinsically faster evolving? To uncouple the measurement of rates of evolution from the determination of duplicate or singleton status, we measure the rates of evolution in singleton genes in outgroup primate lineages but classify these genes as to whether they have duplicated or not in a crown group of great apes. We find that rates of evolution are higher in duplicable genes prior to the duplication event. In part this is owing to a negative correlation between coding sequence length and rate of evolution, coupled with a bias toward smaller genes being more duplicable. The effect is masked by difference in expression rate between duplicable genes and singletons. Additionally, in contradiction to the classical assumption, we find no convincing evidence for an increase in dN/dS after duplication, nor for rate asymmetry between duplicates. We conclude that high rates of evolution of duplicated genes are not solely a consequence of the duplication event, but are rather a predictor of duplicability. These results are consistent with a model in which successful gene duplication events in mammals are skewed toward events of minimal phenotypic impact.
Collapse
Affiliation(s)
- Áine N O'Toole
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom
| | - Aoife McLysaght
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Abstract
Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation.
Collapse
|
21
|
Li ZZ, Saina JK, Gichira AW, Kyalo CM, Wang QF, Chen JM. Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis. Int J Mol Sci 2018; 19:E319. [PMID: 29360746 PMCID: PMC5796262 DOI: 10.3390/ijms19010319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. A total of 115 unique genes were identified in both genomes, of which 80 are protein-coding genes, 31 are distinct transfer RNA (tRNA) and four distinct ribosomal RNA (rRNA). Thirty codons, of which 29 had A/T ending codons, revealed relative synonymous codon usage values of >1, whereas those with G/C ending codons displayed values of <1. The simple sequence repeats comprise mostly the mononucleotide repeats A/T in all examined cp genomes. Phylogenetic analysis based on 51 common protein-coding genes indicated that the Balsaminaceae family formed a lineage with Ebenaceae together with all the other Ericales.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Josphat K Saina
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Cornelius M Kyalo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Qing-Feng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Jin-Ming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
22
|
Zhang QL, Xu B, Wang XQ, Yuan ML, Chen JY. Genome-wide comparison of the protein-coding repertoire reveals fast evolution of immune-related genes in cephalochordates and Osteichthyes superclass. Oncotarget 2017; 9:83-95. [PMID: 29416598 PMCID: PMC5787515 DOI: 10.18632/oncotarget.22749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 11/25/2022] Open
Abstract
Amphioxus is used to investigate the origin and evolution of vertebrates. To better understand the characteristics of genome evolution from cephalochordates to Osteichthyes, we conducted a genome-wide pairwise comparison of protein-coding genes within amphioxus (a comparable group) and parallel analyses within Osteichthyes (two comparable groups). A batch of fast-evolving genes in each comparable group was identified. Of these genes, the most fast-evolving genes (top 20) were scrutinized, most of which were involved in immune system. An analysis of the fast-evolving genes showed that they were enriched into gene ontology (GO) terms and pathways primarily involved in immune-related functions. Similarly, this phenomenon was detected within Osteichthyes, and more well-known and abundant GO terms and pathways involving innate immunity were found in Osteichthyes than in cephalochordates. Next, we measured the expression responses of four genes belonging to metabolism or energy production-related pathways to lipopolysaccharide challenge in the muscle, intestine or skin of B. belcheri; three of these genes (HMGCL, CYBS and MDH2) showed innate immune responses. Additionally, some genes involved in adaptive immunity showed fast evolution in Osteichthyes, such as those involving "intestinal immune network for IgA production" or "T-cell receptor signaling pathway". In this study, the fast evolution of immune-related genes in amphioxus and Osteichthyes was determined, providing insights into the evolution of immune-related genes in chordates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Bin Xu
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Xiu-Qiang Wang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jun-Yuan Chen
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
23
|
The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses. Genetica 2017; 146:101-113. [DOI: 10.1007/s10709-017-0003-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
|
24
|
Begum T, Ghosh TC, Basak S. Systematic Analyses and Prediction of Human Drug Side Effect Associated Proteins from the Perspective of Protein Evolution. Genome Biol Evol 2017; 9:337-350. [PMID: 28391292 PMCID: PMC5499873 DOI: 10.1093/gbe/evw301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2017] [Indexed: 12/20/2022] Open
Abstract
Identification of various factors involved in adverse drug reactions in target proteins to develop therapeutic drugs with minimal/no side effect is very important. In this context, we have performed a comparative evolutionary rate analyses between the genes exhibiting drug side-effect(s) (SET) and genes showing no side effect (NSET) with an aim to increase the prediction accuracy of SET/NSET proteins using evolutionary rate determinants. We found that SET proteins are more conserved than the NSET proteins. The rates of evolution between SET and NSET protein primarily depend upon their noncomplex (protein complex association number = 0) forming nature, phylogenetic age, multifunctionality, membrane localization, and transmembrane helix content irrespective of their essentiality, total druggability (total number of drugs/target), m-RNA expression level, and tissue expression breadth. We also introduced two novel terms—killer druggability (number of drugs with killing side effect(s)/target), essential druggability (number of drugs targeting essential proteins/target) to explain the evolutionary rate variation between SET and NSET proteins. Interestingly, we noticed that SET proteins are younger than NSET proteins and multifunctional younger SET proteins are candidates of acquiring killing side effects. We provide evidence that higher killer druggability, multifunctionality, and transmembrane helices support the conservation of SET proteins over NSET proteins in spite of their recent origin. By employing all these entities, our Support Vector Machine model predicts human SET/NSET proteins to a high degree of accuracy (∼86%).
Collapse
Affiliation(s)
- Tina Begum
- Bioinformatics Centre, Tripura University, Suryamaninagar, Tripura, India
| | | | - Surajit Basak
- Bioinformatics Centre, Tripura University, Suryamaninagar, Tripura, India.,Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura, India
| |
Collapse
|
25
|
Kim K, Nguyen VB, Dong J, Wang Y, Park JY, Lee SC, Yang TJ. Evolution of the Araliaceae family inferred from complete chloroplast genomes and 45S nrDNAs of 10 Panax-related species. Sci Rep 2017; 7:4917. [PMID: 28687778 PMCID: PMC5501832 DOI: 10.1038/s41598-017-05218-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
We produced complete sequences and conducted comparative analysis of the maternally inherited chloroplast (cp) genomes and bi-parentally inherited 45S nuclear ribosomal RNA genes (nrDNA) from ten Araliaceae species to elucidate the genetic diversity and evolution in that family. The cp genomes ranged from 155,993 bp to 156,730 bp with 97.1-99.6% similarity. Complete 45S nrDNA units were about 11 kb including a 5.8-kb 45S cistron. Among 79 cp protein-coding genes, 74 showed nucleotide variations among ten species, of which infA, rpl22, rps19 and ndhE genes showed the highest Ks values and atpF, atpE, ycf2 and rps15 genes showed the highest Ka/Ks values. Four genes, petN, psaJ, psbF, and psbN, related to photosynthesis and one gene, rpl23, related to the ribosomal large subunit remain conserved in all 10 Araliaceae species. Phylogenetic analysis revealed that the ten species could be resolved into two monophyletic lineages, the Panax-Aralia and the Eleutherococcus-Dendropanax groups, which diverged approximately 8.81-10.59 million years ago (MYA). The Panax genus divided into two groups, with diploid species including P. notoginseng, P. vietnamensis, and P. japonicus surviving in Southern Asia and a tetraploid group including P. ginseng and P. quinquefolius Northern Asia and North America 2.89-3.20 MYA.
Collapse
Affiliation(s)
- Kyunghee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Van Binh Nguyen
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jingzhou Dong
- School of Forestry and Horticulture, Hubei University for Nationalities, Enshi, 445000, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong Province, 510650, China
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea.
| |
Collapse
|
26
|
Phylogenomic relationship of feijoa (Acca sellowiana (O.Berg) Burret) with other Myrtaceae based on complete chloroplast genome sequences. Genetica 2017; 145:163-174. [DOI: 10.1007/s10709-017-9954-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
27
|
Levasseur A, Andreani J, Delerce J, Bou Khalil J, Robert C, La Scola B, Raoult D. Comparison of a Modern and Fossil Pithovirus Reveals Its Genetic Conservation and Evolution. Genome Biol Evol 2016; 8:2333-9. [PMID: 27389688 PMCID: PMC5010891 DOI: 10.1093/gbe/evw153] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Most theories on viral evolution are speculative and lack fossil comparison. Here, we isolated a modern Pithovirus-like virus from sewage samples. This giant virus, named Pithovirus massiliensis, was compared with its prehistoric counterpart, Pithovirus sibericum, found in Siberian permafrost. Our analysis revealed near-complete gene repertoire conservation, including horizontal gene transfer and ORFans. Furthermore, all orthologous genes evolved under strong purifying selection with a non-synonymous and synonymous ratio in the same range as the ratio found in the prokaryotic world. The comparison between fossil and modern Pithovirus species provided an estimation of the cadence of the molecular clock, reaching up to 3 × 10−6 mutations/site/year. In addition, the strict conservation of HGTs and ORFans in P. massiliensis revealed the stable genetic mosaicism in giant viruses and excludes the concept of a bag of genes. The genetic stability for 30,000 years of P. massiliensis demonstrates that giant viruses evolve similarly to prokaryotes by classical mechanisms of evolution, including selection and fixation of genes, followed by selective constraints.
Collapse
Affiliation(s)
- Anthony Levasseur
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Julien Andreani
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Jeremy Delerce
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Jacques Bou Khalil
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Catherine Robert
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Bernard La Scola
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
28
|
Qureshi O, Cho H, Choudhary M, Seeling JM. A Nonsynonymous/Synonymous Substitution Analysis of the B56 Gene Family Aids in Understanding B56 Isoform Diversity. PLoS One 2015; 10:e0145529. [PMID: 26692027 PMCID: PMC4687035 DOI: 10.1371/journal.pone.0145529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Gene duplication leads to the formation of gene families, wherein purifying or neutral selection maintains the original gene function, while diversifying selection confers new functions onto duplicated genes. The B56 gene family is highly conserved; it is encoded by one gene in protists and fungi, and five genes in vertebrates. B56 regulates protein phosphatase 2A (PP2A), an abundant heterotrimeric serine/threonine phosphatase that functions as a tumor suppressor and consists of a scaffolding “A” and catalytic “C” subunit heterodimer bound to a regulatory “B” subunit. Individual regulatory B56 subunits confer disparate functions onto PP2A in various cell-cell signaling pathways. B56 proteins share a conserved central core domain, but have divergent N- and C-termini which play a role in isoform specificity. We carried out a nonsynonymous/synonymous substitution analysis to better understand the divergence of vertebrate B56 genes. When five B56 paralogs from ten vertebrate species were analyzed, the gene family displayed purifying selection; stronger purifying selection was revealed when individual B56 isoforms were analyzed separately. The B56 core experienced stronger purifying selection than the N- and C-termini, which correlates with the presence of several contacts between the core and the AC heterodimer. Indeed, the majority of the contact points that we analyzed between B56 and the AC heterodimer experienced strong purifying selection. B56 subfamilies showed distinct patterns of selection in their N- and C-termini. The C-terminus of the B56-1 subfamily and the N-terminus of the B56-2 subfamily exhibited strong purifying selection, suggesting that these termini carry out subfamily-specific functions, while the opposite termini exhibited diversifying selection and likely carry out isoform-specific functions. We also found reduced synonymous substitutions at the N- and C-termini when grouping B56 genes by species but not by isoform, suggesting species-specific codon bias may have a role in regulating B56 gene expression.
Collapse
Affiliation(s)
- Osama Qureshi
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States of America
| | - Hyuk Cho
- Department of Computer Science, Sam Houston State University, Huntsville, TX, United States of America
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States of America
| | - Joni M Seeling
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States of America
| |
Collapse
|
29
|
Cvjetkovic N, Maili L, Weymouth KS, Hashmi SS, Mulliken JB, Topczewski J, Letra A, Yuan Q, Blanton SH, Swindell EC, Hecht JT. Regulatory variant in FZD6 gene contributes to nonsyndromic cleft lip and palate in an African-American family. Mol Genet Genomic Med 2015; 3:440-51. [PMID: 26436110 PMCID: PMC4585452 DOI: 10.1002/mgg3.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 12/30/2022] Open
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect affecting 135,000 newborns worldwide each year. While a multifactorial etiology has been suggested as the cause, despite decades of research, the genetic underpinnings of NSCLP remain largely unexplained. In our previous genome-wide linkage study of a large NSCLP African-American family, we identified a candidate locus at 8q21.3-24.12 (LOD = 2.98). This region contained four genes, Frizzled-6 (FZD6), Matrilin-2 (MATN2), Odd-skipped related 2 (OSR2) and Solute Carrier Family 25, Member 32 (SLC25A32). FZD6 was located under the maximum linkage peak. In this study, we sequenced the coding and noncoding regions of these genes in two affected family members, and identified a rare variant in intron 1 of FZD6 (rs138557689; c.-153 + 432A>C). The variant C allele segregated with NSCLP in this family, through affected and unaffected individuals, and was found in one other NSCLP African-American family. Functional assays showed that this allele creates an allele-specific protein-binding site and decreases promoter activity. We also observed that loss and gain of fzd6 in zebrafish contributes to craniofacial anomalies. FZD6 regulates the WNT signaling pathway, which is involved in craniofacial development, including midfacial formation and upper labial fusion. We hypothesize, therefore, that alteration in FZD6 expression contributes to NSCLP in this family by perturbing the WNT signaling pathway.
Collapse
Affiliation(s)
- Nevena Cvjetkovic
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, Texas
| | - Lorena Maili
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
| | - Katelyn S Weymouth
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, Texas
| | - S Shahrukh Hashmi
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
| | | | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago Research CenterChicago, Illinois
| | - Ariadne Letra
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, Texas
- University of Texas School of Dentistry at HoustonHouston, Texas
| | - Qiuping Yuan
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
| | - Susan H Blanton
- Dr. John T. Macdonald Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiami, Florida
| | - Eric C Swindell
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, Texas
- University of Texas School of Dentistry at HoustonHouston, Texas
| |
Collapse
|
30
|
Price DC, Fonseca DM. Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics. PeerJ 2015; 3:e807. [PMID: 25755934 PMCID: PMC4349049 DOI: 10.7717/peerj.807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/09/2015] [Indexed: 11/25/2022] Open
Abstract
Culex pipiens, an invasive mosquito and vector of West Nile virus in the US, has two morphologically indistinguishable forms that differ dramatically in behavior and physiology. Cx. pipiens form pipiens is primarily a bird-feeding temperate mosquito, while the sub-tropical Cx. pipiens form molestus thrives in sewers and feeds on mammals. Because the feral form can diapause during the cold winters but the domestic form cannot, the two Cx. pipiens forms are allopatric in northern Europe and, although viable, hybrids are rare. Cx. pipiens form molestus has spread across all inhabited continents and hybrids of the two forms are common in the US. Here we elucidate the genes and gene families with the greatest divergence rates between these phenotypically diverged mosquito populations, and discuss them in light of their potential biological and ecological effects. After generating and assembling novel transcriptome data for each population, we performed pairwise tests for nonsynonymous divergence (Ka) of homologous coding sequences and examined gene ontology terms that were statistically over-represented in those sequences with the greatest divergence rates. We identified genes involved in digestion (serine endopeptidases), innate immunity (fibrinogens and α-macroglobulins), hemostasis (D7 salivary proteins), olfaction (odorant binding proteins) and chitin binding (peritrophic matrix proteins). By examining molecular divergence between closely related yet phenotypically divergent forms of the same species, our results provide insights into the identity of rapidly-evolving genes between incipient species. Additionally, we found that families of signal transducers, ATP synthases and transcription regulators remained identical at the amino acid level, thus constituting conserved components of the Cx. pipiens proteome. We provide a reference with which to gauge the divergence reported in this analysis by performing a comparison of transcriptome sequences from conspecific (yet allopatric) populations of another member of the Cx. pipiens complex, Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Dana C Price
- Department of Entomology, Rutgers University , New Brunswick, NJ , USA
| | - Dina M Fonseca
- Department of Entomology, Rutgers University , New Brunswick, NJ , USA
| |
Collapse
|
31
|
Costa IR, Thompson JD, Ortega JM, Prosdocimi F. Metazoan remaining genes for essential amino acid biosynthesis: sequence conservation and evolutionary analyses. Nutrients 2014; 7:1-16. [PMID: 25545100 PMCID: PMC4303824 DOI: 10.3390/nu7010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/25/2014] [Indexed: 11/16/2022] Open
Abstract
Essential amino acids (EAA) consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS) and betaine-homocysteine S-methyltransferase (BHMT) diverged from the expected Tree of Life (ToL) relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.
Collapse
Affiliation(s)
- Igor R Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.
| | - Julie D Thompson
- Department of Computer Science Research, ICube Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie, CNRS/Université de Strasbourg, 11 rue Humann, Strasbourg F-67000, France.
| | - José Miguel Ortega
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Francisco Prosdocimi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
32
|
Liu F, Zhu Y, Yi Y, Lu N, Zhu B, Hu Y. Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics 2014; 15:1163. [PMID: 25534766 PMCID: PMC4367897 DOI: 10.1186/1471-2164-15-1163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 01/19/2023] Open
Abstract
Background Acinetobacter baumannii is an important nosocomial pathogen that poses a serious health threat to immune-compromised patients. Due to its rapid ability to develop multidrug resistance (MDR), A. baumannii has increasingly become a focus of attention worldwide. To better understand the genetic variation and antibiotic resistance mechanisms of this bacterium at the genomic level, we reported high-quality draft genome sequences of 8 clinical isolates with various sequence types and drug susceptibility profiles. Results We sequenced 7 MDR and 1 drug-sensitive clinical A. baumannii isolates and performed comparative genomic analysis of these draft genomes with 16 A. baumannii complete genomes from GenBank. We found a high degree of variation in A. baumannii, including single nucleotide polymorphisms (SNPs) and large DNA fragment variations in the AbaR-like resistance island (RI) regions, the prophage and the type VI secretion system (T6SS). In addition, we found several new AbaR-like RI regions with highly variable structures in our MDR strains. Interestingly, we found a novel genomic island (designated as GIBJ4) in the drug-sensitive strain BJ4 carrying metal resistance genes instead of antibiotic resistance genes inserted into the position where AbaR-like RIs commonly reside in other A. baumannii strains. Furthermore, we showed that diverse antibiotic resistance determinants are present outside the RIs in A. baumannii, including antibiotic resistance-gene bearing integrons, the blaOXA-23-containing transposon Tn2009, and chromosomal intrinsic antibiotic resistance genes. Conclusions Our comparative genomic analysis revealed that extensive genomic variation exists in the A. baumannii genome. Transposons, genomic islands and point mutations are the main contributors to the plasticity of the A. baumannii genome and play critical roles in facilitating the development of antibiotic resistance in the clinical isolates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1163) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Baoli Zhu
- CAS key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
33
|
Yue JX, Yu JK, Putnam NH, Holland LZ. The transcriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution. Genome Biol Evol 2014; 6:2681-96. [PMID: 25240057 PMCID: PMC4224339 DOI: 10.1093/gbe/evu212] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cephalochordates, the sister group of tunicates plus vertebrates, have been called “living fossils” due to their resemblance to fossil chordates from Cambrian strata. The genome of the cephalochordate Branchiostoma floridae shares remarkable synteny with vertebrates and is free from whole-genome duplication. We performed RNA sequencing from larvae and adults of Asymmetron lucayanum, a cephalochordate distantly related to B. floridae. Comparisons of about 430 orthologous gene groups among both cephalochordates and 10 vertebrates using an echinoderm, a hemichordate, and a mollusk as outgroups showed that cephalochordates are evolving more slowly than the slowest evolving vertebrate known (the elephant shark), with A. lucayanum evolving even more slowly than B. floridae. Against this background of slow evolution, some genes, notably several involved in innate immunity, stand out as evolving relatively quickly. This may be due to the lack of an adaptive immune system and the relatively high levels of bacteria in the inshore waters cephalochordates inhabit. Molecular dating analysis including several time constraints revealed a divergence time of ∼120 Ma for A. lucayanum and B. floridae. The divisions between cephalochordates and vertebrates, and that between chordates and the hemichordate plus echinoderm clade likely occurred before the Cambrian.
Collapse
Affiliation(s)
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego
| |
Collapse
|
34
|
Carnahan-Craig SJ, Jensen-Seaman MI. Rates of Evolution of Hominoid Seminal Proteins are Correlated with Function and Expression, Rather than Mating System. J Mol Evol 2013; 78:87-99. [DOI: 10.1007/s00239-013-9602-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
|
35
|
Wang D, Xia Y, Li X, Hou L, Yu J. The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology. Nucleic Acids Res 2012. [PMID: 23193278 PMCID: PMC3531066 DOI: 10.1093/nar/gks1225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Over the past 10 years, genomes of cultivated rice cultivars and their wild counterparts have been sequenced although most efforts are focused on genome assembly and annotation of two major cultivated rice (Oryza sativa L.) subspecies, 93-11 (indica) and Nipponbare (japonica). To integrate information from genome assemblies and annotations for better analysis and application, we now introduce a comparative rice genome database, the Rice Genome Knowledgebase (RGKbase, http://rgkbase.big.ac.cn/RGKbase/). RGKbase is built to have three major components: (i) integrated data curation for rice genomics and molecular biology, which includes genome sequence assemblies, transcriptomic and epigenomic data, genetic variations, quantitative trait loci (QTLs) and the relevant literature; (ii) User-friendly viewers, such as Gbrowse, GeneBrowse and Circos, for genome annotations and evolutionary dynamics and (iii) Bioinformatic tools for compositional and synteny analyses, gene family classifications, gene ontology terms and pathways and gene co-expression networks. RGKbase current includes data from five rice cultivars and species: Nipponbare (japonica), 93-11 (indica), PA64s (indica), the African rice (Oryza glaberrima) and a wild rice species (Oryza brachyantha). We are also constantly introducing new datasets from variety of public efforts, such as two recent releases—sequence data from ∼1000 rice varieties, which are mapped into the reference genome, yielding ample high-quality single-nucleotide polymorphisms and insertions–deletions.
Collapse
Affiliation(s)
- Dapeng Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, PR China
| | | | | | | | | |
Collapse
|
36
|
Wang D, Su Y, Wang X, Lei H, Yu J. Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in Mammalian intron size expansion. Evol Bioinform Online 2012; 8:301-19. [PMID: 22807622 PMCID: PMC3396637 DOI: 10.4137/ebo.s9758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Repetitive sequences (RSs) are redundant, complex at times, and often lineage-specific, representing significant “building” materials for genes and genomes. According to their origins, sequence characteristics, and ways of propagation, repetitive sequences are divided into transposable elements (TEs) and satellite sequences (SSs) as well as related subfamilies and subgroups hierarchically. The combined changes attributable to the repetitive sequences alter gene and genome architectures, such as the expansion of exonic, intronic, and intergenic sequences, and most of them propagate in a seemingly random fashion and contribute very significantly to the entire mutation spectrum of mammalian genomes. Principal findings Our analysis is focused on evolutional features of TEs and SSs in the intronic sequence of twelve selected mammalian genomes. We divided them into four groups—primates, large mammals, rodents, and primary mammals—and used four non-mammalian vertebrate species as the out-group. After classifying intron size variation in an intron-centric way based on RS-dominance (TE-dominant or SS-dominant intron expansions), we observed several distinct profiles in intron length and positioning in different vertebrate lineages, such as retrotransposon-dominance in mammals and DNA transposon-dominance in the lower vertebrates, amphibians and fishes. The RS patterns of mouse and rat genes are most striking, which are not only distinct from those of other mammals but also different from that of the third rodent species analyzed in this study—guinea pig. Looking into the biological functions of relevant genes, we observed a two-dimensional divergence; in particular, genes that possess SS-dominant and/or RS-free introns are enriched in tissue-specific development and transcription regulation in all mammalian lineages. In addition, we found that the tendency of transposons in increasing intron size is much stronger than that of satellites, and the combined effect of both RSs is greater than either one of them alone in a simple arithmetic sum among the mammals and the opposite is found among the four non-mammalian vertebrates. Conclusions TE- and SS-derived RSs represent major mutational forces shaping the size and composition of vertebrate genes and genomes, and through natural selection they either fine-tune or facilitate changes in size expansion, position variation, and duplication, and thus in functions and evolutionary paths for better survival and fitness. When analyzed globally, not only are such changes significantly diversified but also comprehensible in lineages and biological implications.
Collapse
Affiliation(s)
- Dapeng Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, P.R. China
| | | | | | | | | |
Collapse
|
37
|
Dasgupta A, Banerjee R, Das S, Basak S. Evolutionary perspective on the origin of Haitian cholera outbreak strain. J Biomol Struct Dyn 2012; 30:338-46. [PMID: 22693991 DOI: 10.1080/07391102.2012.680033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cholera epidemic has not been reported in Haiti for at least 100 years, although cholera has been present in Latin America since 1991. Surprisingly, the recent cholera epidemic in Haiti (October 2010) recorded more than 250,000 cases and 4000 deaths in the first 6 months and became one of the most explosive and deadly cholera outbreak in recent history. In the present study, we conducted genomic analyses of pathogenicity islands of three Haitian Vibrio cholerae strains and compared them with nine different V. cholerae O1 El Tor genomes. Although CIRS101 is evolutionarily most similar to the Haitian strains, our study also provides some important differences in the genetic organization of pathogenicity islands of Haitian strains with CIRS101. Evolutionary analysis suggests that unusual functional constraints have been imposed on the Haitian strains and we hypothesize that amino acid substitution is more deleterious in Haitian strains than in nonHaitian strains.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
| | | | | | | |
Collapse
|