1
|
Liu T, Li F, Xu J, La Y, Zhou J, Zheng C, Weng X. Transcriptomic analysis reveals that non-forage or forage fiber source promotes rumen development through different metabolic processes in lambs. Anim Biotechnol 2023; 34:1058-1071. [PMID: 34890306 DOI: 10.1080/10495398.2021.2011738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary fiber supplementation can stimulate rumen development in lambs during the pre-weaning period. However, it is unclear whether different sources of fiber have varying effects on rumen development. This study aimed to investigate the molecular mechanism of rumen morphological and functional development based on non-forage or forage as a starter dietary fiber source. Twenty-four male Hu lambs with similar body weights (BW, 3.67 ± 0.08 kg) were selected and divided into two groups that received diets supplemented with either alfalfa hay (AH) or soybean hull (SH). At the age of 70 days, six lambs were slaughtered from each treatment group for rumen fermentation and morphological analyses. Three samples of the rumen tissue from the ventral sac were collected for transcriptomic analysis. The results identified 633 differentially expressed genes (DEGs), of which 210 were upregulated and 423 were downregulated in the SH group compared with those in the AH group. The upregulated DEGs were most enriched in the immune function and proteolysis pathways, whereas the downregulated DEGs were mainly involved in cell proliferation, apoptosis, and differentiation pathways. These findings indicated that non-forage as a starter dietary fiber source improved immune function and enhanced nitrogen utilization, whereas forage facilitated rumen morphological development.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianfeng Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juwang Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiuxiu Weng
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Mining Candidate Genes Related to Heavy Metals in Mature Melon ( Cucumis melo L.) Peel and Pulp Using WGCNA. Genes (Basel) 2022; 13:genes13101767. [PMID: 36292652 PMCID: PMC9602089 DOI: 10.3390/genes13101767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
The content of metal ions in fruits is inseparable from plant intake of trace elements and health effects in the human body. To understand metal ion content in the fruit and pericarp of melon (Cucumis melo L.) and the candidate genes responsible for controlling this process, we analyzed the metal ion content in distinct parts of melon fruit and pericarp and performed RNA-seq. The results showed that the content of metal ions in melon fruit tissue was significantly higher than that in the pericarp. Based on transcriptome expression profiling, we found that the fruit and pericarp contained elevated levels of DEGs. GO functional annotations included cell surface receptor signaling, signal transduction, organic substance metabolism, carbohydrate derivative binding, and hormone-mediated signaling pathways. KEGG pathways included pectate lyase, pentose and glucuronate interconversions, H+-transporting ATPase, oxidative phosphorylation, plant hormone signal transduction, and MAPK signaling pathways. We also analyzed the expression patterns of genes and transcription factors involved in hormone biosynthesis and signal transduction. Using weighted gene co-expression network analysis (WGCNA), a co-expression network was constructed to identify a specific module that was significantly correlated with the content of metal ions in melon, after which the gene expression in the module was measured. Connectivity and qRT–PCR identified five candidate melon genes, LOC103501427, LOC103501539, LOC103503694, LOC103504124, and LOC107990281, associated with metal ion content. This study provides a theoretical basis for further understanding the molecular mechanism of heavy metal ion content in melon fruit and peel and provides new genetic resources for the study of heavy metal ion content in plant tissues.
Collapse
|
3
|
Liu T, Li F, Wang W, Wang X, Ma Z, Li C, Weng X, Zheng C. Early feeding strategies in lambs affect rumen development and growth performance, with advantages persisting for two weeks after the transition to fattening diets. Front Vet Sci 2022; 9:925649. [PMID: 35968009 PMCID: PMC9366302 DOI: 10.3389/fvets.2022.925649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
This study aimed to explore the effects of early feeding strategies on the growth and rumen development of lambs from pre-weaning to the transition to fattening diets. Ninety-six newborn, male lambs with similar body weights were randomly assigned to three treatments: fed starter at 42 days old + weaned at 56 days old (Ctrl, n = 36), fed starter at 7 days old + weaned at 56 days old (ES, n = 36), and fed starter at 7 days old + weaned at 28 days old (ES + EW, n = 24). The fattening diets of all lambs were gradually replaced from 60 to 70 days of age. Six randomly selected lambs from each treatment were slaughtered at 14, 28, 42, 56, 70, and 84 days of age. The results showed that the richness and diversity of rumen microbiota of lambs in the Ctrl group were distinct from those of lambs in the other groups at 42 days of age. Moreover, transcriptome analysis revealed 407, 219, and 1,211 unique differentially expressed genes (DEGs) in the rumen tissue of ES vs. Ctrl, ES vs. ES + EW, and ES + EW vs. Ctrl groups, respectively, at 42 days of age. Different early feeding strategies resulted in differences in ruminal anatomy, morphology, and fermentation in lambs from 42 to 84 days of age (P < 0.05). Lambs in the ES + EW group had a higher average starter diet intake than those in the other groups (P < 0.05) from 28 to 56 days of age, which affected their growth performance. After 42 days of age, the body and carcass weights of lambs in the ES and ES + EW groups were higher than those in the Ctrl group (P < 0.05). These findings demonstrate that feeding lambs with a starter diet at 7 days of age and weaning them at 28 days of age can promote rumen development and improve growth performance, and this advantage persists for up to 2 weeks after transition to the fattening diet.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyuan Ma
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiuxiu Weng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Chen Zheng
| |
Collapse
|
4
|
Del Piano A, Kecman T, Schmid M, Barbieri R, Brocchieri L, Tornaletti S, Firrito C, Minati L, Bernabo P, Signoria I, Lauria F, Gillingwater TH, Viero G, Clamer M. Phospho-RNA sequencing with circAID-p-seq. Nucleic Acids Res 2021; 50:e23. [PMID: 34850942 PMCID: PMC8887461 DOI: 10.1093/nar/gkab1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/14/2022] Open
Abstract
Most RNA footprinting approaches that require ribonuclease cleavage generate RNA fragments bearing a phosphate or cyclic phosphate group at their 3′ end. Unfortunately, current library preparation protocols rely only on a 3′ hydroxyl group for adaptor ligation or poly-A tailing. Here, we developed circAID-p-seq, a PCR-free library preparation for selective 3′ phospho-RNA sequencing. As a proof of concept, we applied circAID-p-seq to ribosome profiling, which is based on sequencing of RNA fragments protected by ribosomes after endonuclease digestion. CircAID-p-seq, combined with the dedicated computational pipeline circAidMe, facilitates accurate, fast and highly efficient sequencing of phospho-RNA fragments from eukaryotic cells and tissues. We used circAID-p-seq to portray ribosome occupancy in transcripts, providing a versatile and PCR-free strategy to possibly unravel any endogenous 3′-phospho RNA molecules.
Collapse
Affiliation(s)
- Alessia Del Piano
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tea Kecman
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | | | | | - Luciano Brocchieri
- TB-Seq, Inc., 458 Carlton Court, Ste H, South San Francisco, CA 94080, USA
| | - Silvia Tornaletti
- TB-Seq, Inc., 458 Carlton Court, Ste H, South San Francisco, CA 94080, USA
| | | | - Luca Minati
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | - Paola Bernabo
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | - Ilaria Signoria
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | - Fabio Lauria
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Gabriella Viero
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | | |
Collapse
|
5
|
Giraldez MD, Spengler RM, Etheridge A, Goicochea AJ, Tuck M, Choi SW, Galas DJ, Tewari M. Phospho-RNA-seq: a modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. EMBO J 2019; 38:e101695. [PMID: 31053596 PMCID: PMC6545557 DOI: 10.15252/embj.2019101695] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022] Open
Abstract
Extracellular RNAs (exRNAs) in biofluids have attracted great interest as potential biomarkers. Although extracellular microRNAs in blood plasma are extensively characterized, extracellular messenger RNA (mRNA) and long non-coding RNA (lncRNA) studies are limited. We report that plasma contains fragmented mRNAs and lncRNAs that are missed by standard small RNA-seq protocols due to lack of 5' phosphate or presence of 3' phosphate. These fragments were revealed using a modified protocol ("phospho-RNA-seq") incorporating RNA treatment with T4-polynucleotide kinase, which we compared with standard small RNA-seq for sequencing synthetic RNAs with varied 5' and 3' ends, as well as human plasma exRNA Analyzing phospho-RNA-seq data using a custom, high-stringency bioinformatic pipeline, we identified mRNA/lncRNA transcriptome fingerprints in plasma, including tissue-specific gene sets. In a longitudinal study of hematopoietic stem cell transplant patients, bone marrow- and liver-enriched exRNA genes were tracked with bone marrow recovery and liver injury, respectively, providing proof-of-concept validation as a biomarker approach. By enabling access to an unexplored realm of mRNA and lncRNA fragments, phospho-RNA-seq opens up new possibilities for plasma transcriptomic biomarker development.
Collapse
Affiliation(s)
- Maria D Giraldez
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan, Ann Arbor, MI, USA
- Institute of Biomedicine of Seville (IBiS), Seville, Spain
- Unit of Digestive Diseases, Virgen del Rocio University Hospital, Seville, Spain
| | - Ryan M Spengler
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan, Ann Arbor, MI, USA
| | | | - Annika J Goicochea
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan, Ann Arbor, MI, USA
| | - Missy Tuck
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan, Ann Arbor, MI, USA
| | - Sung Won Choi
- Department of Pediatrics, Hematology/Oncology Division, University of Michigan, Ann Arbor, MI, USA
| | - David J Galas
- Pacific Northwest Research Institute, Seattle, WA, USA
| | - Muneesh Tewari
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Lama L, Cobo J, Buenaventura D, Ryan K. Small RNA-seq: The RNA 5'-end adapter ligation problem and how to circumvent it. J Biol Methods 2019; 6. [PMID: 31080843 PMCID: PMC6507418 DOI: 10.14440/jbm.2019.269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The preparation of small RNA cDNA sequencing libraries depends on the unbiased ligation of adapters to the RNA ends. Small RNA with 5' recessed ends are poor substrates for enzymatic adapter ligation, but this 5' adapter ligation problem can go undetected if the library preparation steps are not monitored. Here we illustrate the severity of the 5' RNA end ligation problem using several pre-miRNA-like hairpins that allow us to expand the definition of the problem to include 5' ends close to a hairpin stem, whether recessed or in a short extension. The ribosome profiling method can avoid a difficult 5' adapter ligation, but the enzyme typically used to circularize the cDNA has been reported to be biased, calling into question the benefit of this workaround. Using the TS2126 RNA ligase 1 (a.k.a. CircLigase) as the circularizing enzyme, we devised a bias test for the circularization of first strand cDNA. All possible dinucleotides were circle-ligated with similar efficiency. To re-linearize the first strand cDNA in the ribosome profiling approach, we introduce an improved method wherein a single ribonucleotide is placed between the sequencing primer binding sites in the reverse transcriptase primer, which later serves as the point of re-linearization by RNase A. We incorporate this step into the ribosomal profiling method and describe a complete improved library preparation method, Coligo-seq, for the sequencing of small RNA with secondary structure close to the 5' end. This method accepts a variety of 5' modified RNA, including 5' monophosphorylated RNA, as demonstrated by the construction of a HeLa cell microRNA cDNA library.
Collapse
Affiliation(s)
- Lodoe Lama
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Jose Cobo
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Diego Buenaventura
- Biology Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.,Chemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
7
|
Wang B, Wang D, Wu X, Cai J, Liu M, Huang X, Wu J, Liu J, Guan L. Effects of dietary physical or nutritional factors on morphology of rumen papillae and transcriptome changes in lactating dairy cows based on three different forage-based diets. BMC Genomics 2017; 18:353. [PMID: 28477620 PMCID: PMC5420399 DOI: 10.1186/s12864-017-3726-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/26/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Rumen epithelial tissue plays an important role in nutrient absorption and rumen health. However, whether forage quality and particle size impact the rumen epithelial morphology is unclear. The current study was conducted to elucidate the effects of forage quality and forage particle size on rumen epithelial morphology and to identify potential underlying molecular mechanisms by analyzing the transcriptome of the rumen epithelium (RE). To achieve these objectives, 18 mid-lactation dairy cows were allocated to three groups (6 cows per group), and were fed with one of three different forage-based diets, alfalfa hay (AH), corn stover (CS), and rice straw (RS) for 14 weeks, respectively. Ruminal volatile fatty acids (VFAs) and epithelial thickness were determined, and RNA-sequencing was conducted to identify the transcriptomic changes of rumen epithelial under different forage-based diets. RESULTS The RS diet exhibited greater particle size but low quality, the AH diet was high nutritional value but small particle size, and CS diet was low quality and small particle size. The ruminal total VFA concentration was greater in AH compared with those in CS or RS. The width of the rumen papillae was greater in RS-fed cows than in cows fed AH or CS. In total, 31, 40, and 28 differentially expressed (DE, fold change > 2, FDR < 0.05) genes were identified via pair-wise comparisons including AH vs. CS, AH vs. RS, and RS vs. CS, respectively. Functional classification analysis of DE genes revealed dynamic changes in ion binding (such as DSG1) between AH and CS, proliferation and apoptotic processes (such as BAG3, HLA-DQA1, and UGT2B17) and complement activation (such as C7) between AH or RS and CS. The expression of HLA-DQA1 was down-regulated in RS compared with AH and CS, and the expression of UGT2B17 was down-regulated in RS compared with CS, with positive (R = 0.94) and negative (R = -0.96) correlation with the width of rumen epithelial papillae (P < 0.05), respectively. CONCLUSION Our results suggest that both nutrients (VFAs) and particle sizes can alter expression of genes involved in cell proliferation/apoptosis process and complement complex. Our results suggest that particle size may be more important in regulating rumen epithelial morphology when animals are fed with low-quality forage diets and the identified DE genes may affect the RE nutrient absorption or morphology of RE. Our findings provide insights into the effects of the dietary particle size in the future management of dairy cow feeding, that when cows were fed with low-quality forage (such as rice straw), smaller particle size may be beneficial for nutrients absorption and milk production.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.,Current address: Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Diming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Xuehui Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jie Cai
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Mei Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Xinbei Huang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jiusheng Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China. .,MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
8
|
Digital gene expression analysis with sample multiplexing and PCR duplicate detection: A straightforward protocol. Biotechniques 2016; 61:26-32. [PMID: 27401671 DOI: 10.2144/000114434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/12/2016] [Indexed: 11/23/2022] Open
Abstract
Tag-Seq is a high-throughput approach used for discovering SNPs and characterizing gene expression. In comparison to RNA-Seq, Tag-Seq eases data processing and allows detection of rare mRNA species using only one tag per transcript molecule. However, reduced library complexity raises the issue of PCR duplicates, which distort gene expression levels. Here we present a novel Tag-Seq protocol that uses the least biased methods for RNA library preparation combined with a novel approach for joint PCR template and sample labeling. In our protocol, input RNA is fragmented by hydrolysis, and poly(A)-bearing RNAs are selected and directly ligated to mixed DNA-RNA P5 adapters. The P5 adapters contain i5 barcodes composed of sample-specific (moderately) degenerate base regions (mDBRs), which later allow detection of PCR duplicates. The P7 adapter is attached via reverse transcription with individual i7 barcodes added during the amplification step. The resulting libraries can be sequenced on an Illumina sequencer. After sample demultiplexing and PCR duplicate removal with a free software tool we designed, the data are ready for downstream analysis. Our protocol was tested on RNA samples from predator-induced and control Daphnia microcrustaceans.
Collapse
|
9
|
Yuan Y, Xu H, Leung RKK. An optimized protocol for generation and analysis of Ion Proton sequencing reads for RNA-Seq. BMC Genomics 2016; 17:403. [PMID: 27229683 PMCID: PMC4880854 DOI: 10.1186/s12864-016-2745-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/14/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Previous studies compared running cost, time and other performance measures of popular sequencing platforms. However, comprehensive assessment of library construction and analysis protocols for Proton sequencing platform remains unexplored. Unlike Illumina sequencing platforms, Proton reads are heterogeneous in length and quality. When sequencing data from different platforms are combined, this can result in reads with various read length. Whether the performance of the commonly used software for handling such kind of data is satisfactory is unknown. RESULTS By using universal human reference RNA as the initial material, RNaseIII and chemical fragmentation methods in library construction showed similar result in gene and junction discovery number and expression level estimated accuracy. In contrast, sequencing quality, read length and the choice of software affected mapping rate to a much larger extent. Unspliced aligner TMAP attained the highest mapping rate (97.27 % to genome, 86.46 % to transcriptome), though 47.83 % of mapped reads were clipped. Long reads could paradoxically reduce mapping in junctions. With reference annotation guide, the mapping rate of TopHat2 significantly increased from 75.79 to 92.09 %, especially for long (>150 bp) reads. Sailfish, a k-mer based gene expression quantifier attained highly consistent results with that of TaqMan array and highest sensitivity. CONCLUSION We provided for the first time, the reference statistics of library preparation methods, gene detection and quantification and junction discovery for RNA-Seq by the Ion Proton platform. Chemical fragmentation performed equally well with the enzyme-based one. The optimal Ion Proton sequencing options and analysis software have been evaluated.
Collapse
Affiliation(s)
- Yongxian Yuan
- BGI-tech, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Huaiqian Xu
- BGI-tech, BGI-Wuhan, Wuhan, 430075, Hubei, China
| | - Ross Ka-Kit Leung
- BGI-tech, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Nottingham RM, Wu DC, Qin Y, Yao J, Hunicke-Smith S, Lambowitz AM. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA (NEW YORK, N.Y.) 2016; 22:597-613. [PMID: 26826130 PMCID: PMC4793214 DOI: 10.1261/rna.055558.115] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/30/2015] [Indexed: 05/20/2023]
Abstract
Next-generation RNA sequencing (RNA-seq) has revolutionized our ability to analyze transcriptomes. Current RNA-seq methods are highly reproducible, but each has biases resulting from different modes of RNA sample preparation, reverse transcription, and adapter addition, leading to variability between methods. Moreover, the transcriptome cannot be profiled comprehensively because highly structured RNAs, such as tRNAs and snoRNAs, are refractory to conventional RNA-seq methods. Recently, we developed a new method for strand-specific RNA-seq using thermostable group II intron reverse transcriptases (TGIRTs). TGIRT enzymes have higher processivity and fidelity than conventional retroviral reverse transcriptases plus a novel template-switching activity that enables RNA-seq adapter addition during cDNA synthesis without using RNA ligase. Here, we obtained TGIRT-seq data sets for well-characterized human RNA reference samples and compared them to previous data sets obtained for these RNAs by the Illumina TruSeq v2 and v3 methods. We find that TGIRT-seq recapitulates the relative abundance of human transcripts and RNA spike-ins in ribo-depleted, fragmented RNA samples comparably to non-strand-specific TruSeq v2 and better than strand-specific TruSeq v3. Moreover, TGIRT-seq is more strand specific than TruSeq v3 and eliminates sampling biases from random hexamer priming, which are inherent to TruSeq. The TGIRT-seq data sets also show more uniform 5' to 3' gene coverage and identify more splice junctions, particularly near the 5' ends of mRNAs, than do the TruSeq data sets. Finally, TGIRT-seq enables the simultaneous profiling of mRNAs and lncRNAs in the same RNA-seq experiment as structured small ncRNAs, including tRNAs, which are essentially absent with TruSeq.
Collapse
Affiliation(s)
- Ryan M Nottingham
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Scott Hunicke-Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
11
|
Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Majem B, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 2015; 4:26533. [PMID: 26320937 PMCID: PMC4553263 DOI: 10.3402/jev.v4.26533] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/17/2015] [Accepted: 05/03/2015] [Indexed: 01/14/2023] Open
Abstract
Extracellular RNAs (exRNAs) have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.
Collapse
Affiliation(s)
- Louise C Laurent
- Division of Maternal Fetal Medicine, Department of Reproductive Medicine, University of California San Diego, San Diego, CA, USA.,Sanford Consortium for Regenerative Medicine, San Diego, CA, USA;
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University, School of Medicine, New Orleans, LA, USA
| | | | | | - Leonora Balaj
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra Breakefield
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Carlson
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Bob S Carter
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Blanca Majem
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Clark C Chen
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Emanuele Cocucci
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kirsty Danielson
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amanda Courtright
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Jane Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Roopali Gandhi
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Yong Kim
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Madhu Lal-Nag
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Clara D Laurent
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Trevor Leonardo
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Ivana Malenica
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parham Nejad
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic Florida, Jacksonville, FL, USA.,Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Robert L Raffai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Veteran's Affairs, San Francisco, CA, USA
| | - Renee Rubio
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jie Sun
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kahraman Tanriverdi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kasey Vickers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoyu Wang
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Wong
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Irene K Yan
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Ashish Yeri
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Stephen Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Lee C, Mayfield RD, Harris RA. Altered gamma-aminobutyric acid type B receptor subunit 1 splicing in alcoholics. Biol Psychiatry 2014; 75:765-73. [PMID: 24209778 PMCID: PMC3999301 DOI: 10.1016/j.biopsych.2013.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chronic alcohol exposure can change splice variant expression. The gamma-aminobutyric acid type B (GABAB) receptor undergoes splicing and is an alcoholism treatment target, but there is little information about splicing changes in this receptor in alcoholics. We studied GABAB receptor subunit 1 (GABAB1) splicing in alcoholic postmortem brains. METHODS To maximize GABAB1 splice junction identification, we combined gene specific libraries with RNA-seq. Splice junctions and mapped reads were also found from intronic and intergenic regions. We compared GABAB1 splice junctions in prefrontal cortices from 14 alcoholic and 15 control subjects and introduced new strategies, reads per kilobase of splice junction model per million mapped reads and reads per kilobase of gene model per million mapped reads, for quantitating splice junction and gene expression. RESULTS Novel splice junction detection indicated that the GABAB1 gene is at least two times longer than the previously reported gene length. GABAB1 exon and intron expression data showed low expression at the 5' end exons and exon grouping. This indicated that there are short splicing variants in addition to GABAB receptor subunit GABAB1a, the longest known major transcript. We found that chronic alcohol altered exon/intron expression and splice junction levels. Decreased expression of the gamma-aminobutyric acid binding site, a transmembrane domain and a microRNA binding site may decrease normal GABAB1 transcript population and thereby decrease normal signal transduction in alcoholics. CONCLUSIONS We discovered novel, complex splicing of GABAB1 in human brain and showed that chronic alcohol produces additional splicing complexity.
Collapse
Affiliation(s)
- Changhoon Lee
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|