1
|
Ezzat GM, Nassar AY, Bakr MH, Mohamed S, Nassar GA, Kamel AA. Acetylated Oligopeptide and N-acetyl cysteine Protected Against Oxidative Stress, Inflammation, Testicular-Blood Barrier Damage, and Testicular Cell Death in Iron-Overload Rat Model. Appl Biochem Biotechnol 2023; 195:5053-5071. [PMID: 36947366 DOI: 10.1007/s12010-023-04457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Multiple organs, including the testes, are damaged by iron overload. It has been shown that N-acetyl cysteine (NAC) influences oxidative stress in iron overload. The present study aimed to evaluate the roles of acetylated peptide (AOP) and NAC in the inhibition of iron-overload induced-testicular damage. At the beginning of the experiment, NAC (150 mg /kg) was given for a week to all 40 rats. Then, four groups were formed by dividing the animals (10 rats/group). Group I included healthy control rats. Group II (iron overload) was given intraperitoneal iron dextran (60 mg/kg/day) 5 days a week for 4 weeks. Group III (NAC) was given NAC orally at a dose of 150 mg/kg/day for 4 weeks in addition to iron dextran. Group IV (AOP) was given AOP orally at a dose of 150 mg/kg/day for 4 weeks besides iron dextran. When the experiment time was over, testosterone serum level, testicular B cell lymphoma-2 (BCL-2) and protein kinase B (PKB) protein levels, nuclear factor kappa-B (NF-κB), and Beclin1 mRNA expression levels, and malondialdehyde (MDA), and reduced glutathione (GSH) were determined by ELISA, quantitative reverse transcription-PCR, and chemical methods. Finally, histopathological examinations and immunohistochemical detection of claudin-1 and CD68 were performed. The iron overload group exhibited decreased testosterone, BCL-2, PKB, claudin-1, and GSH and increased MDA, NF-κB, Beclin1, and CD68, while both NAC and AOP treatments protected against the biochemical and histopathological disturbances occurring in the iron overload model. We concluded that NAC and AOP can protect against testes damage by iron overload via their antioxidant, anti-inflammatory, antiapoptotic, and ant-autophagic properties. The NAC and AOP may be used as preventative measures against iron overload-induced testicular damage.
Collapse
Affiliation(s)
- Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shimma Mohamed
- Department of Medical Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A Nassar
- Metabolic and Genetic disorders unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
3
|
Ghanavat M, Haybar H, Pezeshki SMS, Shahjahani M, Jodat H, Elyasi M, Saki N. Cardiomyopathy in Thalassemia: Quick Review from Cellular Aspects to Diagnosis and Current Treatments. Lab Med 2020; 51:143-150. [PMID: 32155272 DOI: 10.1093/labmed/lmz052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiomyopathic manifestations induced by continuous blood transfusion are the leading cause of death among patients with thalassemia major (TM). Despite introduction of chelation therapy, heart failure after cardiomyopathic manifestations is still a major threat to patients. METHODS We performed a search of relevant English-language literature, retrieving publications from the PubMed database and the Google Scholar search engine (2005-2018). We used "thalassemia major", "cardiomyopathy", "iron overload", "cardiac magnetic resonance T2" "chelation therapy", and "iron burden" as keywords. RESULTS The results of the studies we found suggest that cardiac hepcidin is a major regulator of iron homeostasis in cardiac tissue. Unlike previous assumptions, the heart appears to have a limited regeneration capability, originating from a small population of hypoxic cardiomyocytes. CONCLUSIONS Oxygen levels determine cardiomyocyte gene-expression patterns. Upregulation of cardiac hepcidin in hypoxia preserves cardiomyocytes from forming out of reactive oxygen species catalyzed by free cellular iron in cardiomyocytes. Using the limited regeneration capacity of cardiac cells and gaining further understanding of the cellular aspects of cardiomyopathic manifestations may help health care professionals to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Majid Ghanavat
- Child Growth & Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hosein Jodat
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Milad Elyasi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Child Growth & Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Vela D. Keeping heart homeostasis in check through the balance of iron metabolism. Acta Physiol (Oxf) 2020; 228:e13324. [PMID: 31162883 DOI: 10.1111/apha.13324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Highly active cardiomyocytes need iron for their metabolic activity. In physiological conditions, iron turnover is a delicate process which is dependent on global iron supply and local autonomous regulatory mechanisms. Though less is known about the autonomous regulatory mechanisms, data suggest that these mechanisms can preserve cellular iron turnover even in the presence of systemic iron disturbance. Therefore, activity of local iron protein machinery and its relationship with global iron metabolism is important to understand cardiac iron metabolism in physiological conditions and in cardiac disease. Our knowledge in this respect has helped in designing therapeutic strategies for different cardiac diseases. This review is a synthesis of our current knowledge concerning the regulation of cardiac iron metabolism. In addition, different models of cardiac iron dysmetabolism will be discussed through the examples of heart failure (cardiomyocyte iron deficiency), myocardial infarction (acute changes in cardiac iron turnover), doxorubicin-induced cardiotoxicity (cardiomyocyte iron overload in mitochondria), thalassaemia (cardiomyocyte cytosolic and mitochondrial iron overload) and Friedreich ataxia (asymmetric cytosolic/mitochondrial cardiac iron dysmetabolism). Finally, future perspectives will be discussed in order to resolve actual gaps in knowledge, which should be helpful in finding new treatment possibilities in different cardiac diseases.
Collapse
Affiliation(s)
- Driton Vela
- Faculty of Medicine, Department of Physiology University of Prishtina Prishtina Kosovo
| |
Collapse
|
5
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
New Insights into the Hepcidin-Ferroportin Axis and Iron Homeostasis in iPSC-Derived Cardiomyocytes from Friedreich's Ataxia Patient. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7623023. [PMID: 31049138 PMCID: PMC6458886 DOI: 10.1155/2019/7623023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
Iron homeostasis in the cardiac tissue as well as the involvement of the hepcidin-ferroportin (HAMP-FPN) axis in this process and in cardiac functionality are not fully understood. Imbalance of iron homeostasis occurs in several cardiac diseases, including iron-overload cardiomyopathies such as Friedreich's ataxia (FRDA, OMIM no. 229300), a hereditary neurodegenerative disorder. Exploiting the induced pluripotent stem cells (iPSCs) technology and the iPSC capacity to differentiate into specific cell types, we derived cardiomyocytes of a FRDA patient and of a healthy control subject in order to study the cardiac iron homeostasis and the HAMP-FPN axis. Both CTR and FRDA iPSCs-derived cardiomyocytes express cardiac differentiation markers; in addition, FRDA cardiomyocytes maintain the FRDA-like phenotype. We found that FRDA cardiomyocytes show an increase in the protein expression of HAMP and FPN. Moreover, immunofluorescence analysis revealed for the first time an unexpected nuclear localization of FPN in both CTR and FRDA cardiomyocytes. However, the amount of the nuclear FPN was less in FRDA cardiomyocytes than in controls. These and other data suggest that iron handling and the HAMP-FPN axis regulation in FRDA cardiac cells are hampered and that FPN may have new, still not fully understood, functions. These findings underline the complexity of the cardiac iron homeostasis.
Collapse
|
7
|
Excessive Reactive Iron Impairs Hematopoiesis by Affecting Both Immature Hematopoietic Cells and Stromal Cells. Cells 2019; 8:cells8030226. [PMID: 30857202 PMCID: PMC6468739 DOI: 10.3390/cells8030226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Iron overload is the accumulation of excess iron in the body that may occur as a result of various genetic disorders or as a consequence of repeated blood transfusions. The surplus iron is then stored in the liver, pancreas, heart and other organs, which may lead to chronic liver disease or cirrhosis, diabetes and heart disease, respectively. In addition, excessive iron may impair hematopoiesis, although the mechanisms of this deleterious effect is not entirely known. In this study, we found that ferrous ammonium sulfate (FeAS), induced growth arrest and apoptosis in immature hematopoietic cells, which was mediated via reactive oxygen species (ROS) activation of p38MAPK and JNK pathways. In in vitro hematopoiesis derived from embryonic stem cells (ES cells), FeAS enhanced the development of dysplastic erythroblasts but inhibited their terminal differentiation; in contrast, it had little effect on the development of granulocytes, megakaryocytes, and B lymphocytes. In addition to its directs effects on hematopoietic cells, iron overload altered the expression of several adhesion molecules on stromal cells and impaired the cytokine production profile of these cells. Therefore, excessive iron would affect whole hematopoiesis by inflicting vicious effects on both immature hematopoietic cells and stromal cells.
Collapse
|
8
|
Negi PC, Dev M, Paul P, Pal Singh D, Rathoure S, Kumar R, Dhiman A, Kandoria A, Ganju N, Sharma R, Bhardwaj R, Merwaha R, Asotra S, Mahajan K, Sondhi S, Rao S. Prevalence, risk factors, and significance of iron deficiency and anemia in nonischemic heart failure patients with reduced ejection fraction from a Himachal Pradesh heart failure registry. Indian Heart J 2018; 70 Suppl 3:S182-S188. [PMID: 30595254 PMCID: PMC6310070 DOI: 10.1016/j.ihj.2018.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The study aimed to estimate the prevalence, risk determinants, and its clinical significance of iron deficiency and anemia in patients of nonischemic heart failure with reduced ejection fraction (HFrEF). METHODS Serum ferritin, transferrin saturation, and the hemoglobin (Hb) levels were measured in 226 consecutive patients with HFrEF diagnosed based on the left ventricular ejection fraction ≤ 45% and absence of coronary artery luminal narrowing of more than 50%, in a prospective tertiary care hospital-based heart failure registry. Patients with the New York Heart Association functional class III/IV were classified as patients with advanced heart failure. Multivariable logistic regression modeling was performed to assess the risk determinants of iron deficiency and anemia and their clinical significance as the risk factors for advanced heart failure. Odds ratio with 95% confidence interval (CI) was reported as the estimates of the strength of association between exposure and outcome variables. RESULTS Iron deficiency and anemia were prevalent in 58.8% (52.2%-65.1%) and 35.8% (29.8%-42.3%) of patients, respectively. Female gender [OR 3.5 (95% CI 1.9-6.5)], history of bleeding [OR 11.7 (95% CI 1.4-101.2)], and vegetarian diet [OR 2.5 (95% CI 1.4-4.6)] were significantly associated with iron deficiency, while diabetes [OR 3.0 (95% CI 1.40-6.5)], estimated glomerular filtration rate [OR 0.98 (95% CI 0.97-0.99)], history of bleeding [OR 13.0 (95% CI 2.3-70.9)], and female gender [OR 2.9 (95% CI 1.5-5.7)] had significant association with anemia. The Hb level (OR 0.82 (95% CI 0.70-0.96) and transferrin saturation (OR 0.98 (95% CI 0.96-0.99)] had a significant inverse association with symptoms of advanced heart failure. CONCLUSION Iron deficiency and anemia are common comorbidities associated with HFrEF. Low Hb and transferrin saturation are significantly associated with advanced heart failure. The findings have important implications in the management of heart failure.
Collapse
|
9
|
Zhang H, Zhabyeyev P, Wang S, Oudit GY. Role of iron metabolism in heart failure: From iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1925-1937. [PMID: 31109456 DOI: 10.1016/j.bbadis.2018.08.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute, Canada; Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada.
| |
Collapse
|
10
|
van Swelm RPL, Vos M, Verhoeven F, Thévenod F, Swinkels DW. Endogenous hepcidin synthesis protects the distal nephron against hemin and hemoglobin mediated necroptosis. Cell Death Dis 2018; 9:550. [PMID: 29749404 PMCID: PMC5945780 DOI: 10.1038/s41419-018-0568-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
Hemoglobinuria is associated with kidney injury in various hemolytic pathologies. Currently, there is no treatment available and its pathophysiology is not completely understood. Here we studied the potential detrimental effects of hemoglobin (Hb) exposure to the distal nephron (DN). Involvement of the DN in Hb kidney injury was suggested by the induction of renal hepcidin synthesis (p < 0.001) in mice repeatedly injected with intravenous Hb. Moreover, the hepcidin induction was associated with a decline in urinary kidney injury markers 24p3/NGAL and KIM1, suggesting a role for hepcidin in protection against Hb kidney injury. We demonstrated that uptake of Hb in the mouse cortical collecting duct cells (mCCDcl1) is mediated by multi-protein ligand receptor 24p3R, as indicated by a significant 90% reduction in Hb uptake (p < 0.001) after 24p3R silencing. Moreover, incubation of mCCDcl1 cells with Hb or hemin for 4 or 24 h resulted in hepcidin synthesis and increased mRNA expression of markers for oxidative, inflammatory and ER stress, but no cell death as indicated by apoptosis staining. A protective role for cellular hepcidin against Hb-induced injury was demonstrated by aggravation of oxidative, inflammatory and ER stress after 4 h Hb or hemin incubation in hepcidin silenced mCCDcl1 cells. Hepcidin silencing potentiated hemin-mediated cell death that could be diminished by co-incubation of Nec-1, suggesting that endogenous hepcidin prevents necroptosis. Combined, these results demonstrate that renal hepcidin synthesis protects the DN against hemin and hemoglobin-mediated injury.
Collapse
Affiliation(s)
- Rachel P L van Swelm
- Department of Laboratory Medicine, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Madelon Vos
- Department of Laboratory Medicine, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frank Verhoeven
- Department of Laboratory Medicine, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research, University of Witten/Herdecke, Witten, Germany
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Vela D. Balance of cardiac and systemic hepcidin and its role in heart physiology and pathology. J Transl Med 2018; 98:315-326. [PMID: 29058707 DOI: 10.1038/labinvest.2017.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Hepcidin is the main regulator of iron metabolism in tissues. Its serum levels are mostly correlated with the levels of hepcidin expression from the liver, but local hepcidin can be important for the physiology of other organs as well. There is an increasing evidence that this is the case with cardiac hepcidin. This has been confirmed by studies with models of ischemic heart disease and other heart pathologies. In this review the discussion dissects the role of cardiac hepcidin in cellular homeostasis. This review is complemented with examination of the role of systemic hepcidin in heart disease and its use as a biochemical marker. The relationship between systemic vs local hepcidin in the heart is important because it can help us understand how the fine balance between the actions of two hepcidins affects heart function. Manipulating the axis systemic/cardiac hepcidin could serve as a new therapeutic strategy in heart diseases.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosova
| |
Collapse
|
12
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
13
|
Abstract
OBJECTIVES The aim of this review was to highlight recent advances in our understanding of the pathogenesis of malignant transformation of endometriosis. METHODS This study reviewed the English-language literature concerning basic science studies of the potential promotion of carcinogenesis. RESULTS Repeated episodes of hemorrhage occur in endometriosis at the onset of menstruation. Extracellular hemoglobin, heme, and iron derivatives in endometriosis cause DNA damage and mutations, which create increased cellular susceptibility to oxidant-mediated cell killing. Excess DNA damage and mutations are linked to cell death, but not carcinogenesis. In response to an oxidative and inflammatory microenvironment, endometriotic cells and macrophages secrete antioxidants that control excess oxidative stress in the surrounding environment. Exposure of endometriotic cells to a sublethal level of oxidative stress may lead to carcinogenesis. Macrophages also secrete immunosuppressive factors that lead to promotion of malignant transformation. DISCUSSION At least two potential scenarios could result in ovarian cancer arising from endometriosis. The first step: extracellular hemoglobin, heme, and iron cause cellular oxidative damage by promoting reactive oxygen species formation, which results in DNA damage and mutations (ovarian cancer initiation from endometriosis). The second step: cancer progression may be associated with persistent antioxidant production favoring a protumoral microenvironment.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- a Department of Obstetrics and Gynecology , Nara Medical University , Japan
| |
Collapse
|
14
|
Chandrasekera PC, Pippin JJ. The human subject: an integrative animal model for 21(st) century heart failure research. Am J Transl Res 2015; 7:1636-47. [PMID: 26550463 PMCID: PMC4626425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Heart failure remains a leading cause of death and it is a major cause of morbidity and mortality affecting tens of millions of people worldwide. Despite decades of extensive research conducted at enormous expense, only a handful of interventions have significantly impacted survival in heart failure. Even the most widely prescribed treatments act primarily to slow disease progression, do not provide sustained survival advantage, and have adverse side effects. Since mortality remains about 50% within five years of diagnosis, the need to increase our understanding of heart failure disease mechanisms and development of preventive and reparative therapies remains critical. Currently, the vast majority of basic science heart failure research is conducted using animal models ranging from fruit flies to primates; however, insights gleaned from decades of animal-based research efforts have not been proportional to research success in terms of deciphering human heart failure and developing effective therapeutics for human patients. Here we discuss the reasons for this translational discrepancy which can be equally attributed to the use of erroneous animal models and the lack of widespread use of human-based research methodologies and address why and how we must position our own species at center stage as the quintessential animal model for 21(st) century heart failure research. If the ultimate goal of the scientific community is to tackle the epidemic status of heart failure, the best way to achieve that goal is through prioritizing human-based, human-relevant research.
Collapse
Affiliation(s)
| | - John J Pippin
- Physicians Committee for Responsible Medicine Washington, D. C., USA
| |
Collapse
|
15
|
Fitzsimons S, Doughty RN. Iron deficiency in patients with heart failure. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 1:58-64. [DOI: 10.1093/ehjcvp/pvu016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023]
|