1
|
Huang D, Wang Y, Pei C, Zhang X, Shen Z, Jia N, Zhao S, Li G, Wang Z. Pre-treatment with notoginsenoside R1 from Panax notoginseng protects against high-altitude-induced pulmonary edema by inhibiting pyroptosis through the NLRP3/caspase-1/GSDMD pathway. Biomed Pharmacother 2024; 180:117512. [PMID: 39353320 DOI: 10.1016/j.biopha.2024.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
High-altitude pulmonary edema (HAPE) is a potentially fatal condition that occurs when exposed to high-altitude hypoxia environments. Currently, there is no effective treatment for HAPE, and available interventions focus on providing relief. Notoginsenoside R1 (NGR1), a major active constituent of Panax notoginseng (Burkill) F.H.Chen (sānqī), has demonstrated heart and lung-protective effects under hypobaric hypoxia. However, there is a lack of clarity regarding the precise mechanisms that underlie the protective effects of NGR1 against inflammation. In this study, a rat model of HAPE was developed to assess the effect of NGR1 on this pathology. High-altitude hypoxia corresponding to 6000 m altitude was simulated with a hypobaric chamber. We found that NGR1 dose-dependently alleviated pulmonary oxidative stress damage and inflammatory response, and prevented acid-base balance disruption. In addition, NGR1 restored the expression levels of hypoxia-inducible factor-1 alpha, vascular endothelial growth factor, and aquaporin protein-5, correlated with the development of pulmonary edema induced by hypobaric hypoxia. Furthermore, NGR1 pre-treatment remarkably mitigated NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-induced pyroptosis, and this effect was partially counteracted by the use of an NLRP3 agonist. Thus, NGR1 may exert a lung-protective effect against HAPE by ameliorating hypoxia-induced lung edema, oxidative damage, and inflammation through inhibition of the NLRP3/Caspase-1/ GSDMD signaling pathway.
Collapse
Affiliation(s)
- Demei Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yilan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Caixia Pei
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiu Zhang
- Qujing Hospital of Traditional Chinese Medicine, No. 80 Jiao-tong Road, Qujing 655099, China
| | - Zherui Shen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nan Jia
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Sijing Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Guang Li
- Qujing Hospital of Traditional Chinese Medicine, No. 80 Jiao-tong Road, Qujing 655099, China.
| | - Zhenxing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
2
|
Zhang H, Wang X, Liu J, Zhang Y, Ka M, Ma Y, Xu J, Zhang W. Role of neutrophil myeloperoxidase in the development and progression of high-altitude pulmonary edema. Biochem Biophys Res Commun 2024; 703:149681. [PMID: 38382360 DOI: 10.1016/j.bbrc.2024.149681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Neutrophil infiltration and hypoxic pulmonary vasoconstriction induced by hypobaric hypoxic stress are vital in high-altitude pulmonary edema (HAPE). Myeloperoxidase (MPO), an important enzyme in neutrophils, is associated with inflammation and oxidative stress and is also involved in the regulation of nitric oxide synthase (NOS), an enzyme that catalyzes the production of the vasodilatory factor nitric oxide (NO). However, the role of neutrophil MPO in HAPE's progression is still uncertain. Therefore, we hypothesize that MPO is involved in the development of HAPE via NOS. METHODS In Xining, China (altitude: 2260 m), C57BL/6 N wild-type and mpo-/- mice served as normoxic controls, while a hypobaric chamber simulated 7000 m altitude for hypoxia. L-NAME, a nitric oxide synthase (NOS) inhibitor to inhibit NO production, was the experimental drug, and D-NAME, without NOS inhibitory effects, was the control. After measuring pulmonary artery pressure (PAP), samples were collected and analyzed for blood neutrophils, oxidative stress, inflammation, vasoactive substances, pulmonary alveolar-capillary barrier permeability, and lung tissue morphology. RESULTS Wild-type mice's lung injury scores, permeability, and neutrophil counts rose at 24 and 48 h of hypoxia exposure. Under hypoxia, PAP increased from 12.89 ± 1.51 mmHg under normoxia to 20.62 ± 3.33 mmHg significantly in wild-type mice and from 13.24 ± 0.79 mmHg to 16.50 ± 2.07 mmHg in mpo-/- mice. Consistent with PAP, inducible NOS activity, lung permeability, lung injury scores, oxidative stress response, and inflammation showed more significant increases in wild-type mice than in mpo-/- mice. Additionally, endothelial NOS activity and NO levels decreased more pronouncedly in wild-type mice than in mpo-/- mice. NOS inhibition during hypoxia led to more significant increases in PAP, permeability, and lung injury scores compared to the drug control group, especially in wild-type mice. CONCLUSION MPO knockout reduces oxidative stress and inflammation to preserve alveolar-capillary barrier permeability and limits the decline in endothelial NOS activity to reduce PAP elevation during hypoxia. MPO inhibition emerges as a prospective therapeutic strategy for HAPE, offering avenues for precise interventions.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China; Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, China.
| | - Xiaojun Wang
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
| | - Jie Liu
- Department of Pathology, Xi'an Chest Hospital, Xian, Shaanxi, 710000, China.
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
| | - Maojia Ka
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| | - Yi Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| | - Jiaolong Xu
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China; Linyi Central Hospital, Linyi, Shandong, 276400, China.
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| |
Collapse
|
3
|
Chen M, Yi F, Qi Y, Zhao B, Zhang Z, He X, Yuan D, Jin T. Whole-exome sequencing in searching for novel variants associated with the development of high altitude pulmonary edema. Gene 2023; 870:147384. [PMID: 37001572 DOI: 10.1016/j.gene.2023.147384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND High altitude pulmonary edema (HAPE) is a high-altitude idiopathic disease with serious consequences due to hypoxia at high altitude, and there is individual genetic susceptibility. Whole-exome sequencing (WES) is an effective tool for studying the genetic etiology of HAPE and can identify potentially novel mutations that may cause protein instability and may contribute to the development of HAPE. MATERIALS AND METHODS A total of 50 unrelated HAPE patients were examined using WES, and the available bioinformatics tools were used to perform an analysis of exonic regions. Using the Phenolyzer program, disease candidate gene analysis was carried out. SIFT, PolyPhen-2, Mutation Taster, CADD, DANN, and I-Mutant software were used to assess the effects of genetic variations on protein function. RESULTS The results showed that rs368502694 (p. R1022Q) located in NOS3, rs1595850639 (p. G61S) located in MYBPC3, and rs1367895529 (p. R333H) located in ITGAV were correlated with a high risk of HAPE, and thus could be regarded as potential genetic variations associated with HAPE. CONCLUSION WES was used in this study for the first time to directly screen genetic variations related to HAPE. Notably, our study offers fresh information for the subsequent investigation into the etiology of HAPE.
Collapse
Affiliation(s)
- Mingyue Chen
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Faling Yi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yijin Qi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Beibei Zhao
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Zhanhao Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Xue He
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China.
| | - Tianbo Jin
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
4
|
Genetics of High-Altitude Pulmonary Edema. Heart Fail Clin 2023; 19:89-96. [DOI: 10.1016/j.hfc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Liu Y, Wang Y, Song X, Dong L, Wang W, Wu H. P38 mitogen-activated protein kinase inhibition attenuates mechanical stress induced lung injury via up-regulating AQP5 expression in rats. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Xiumei Song
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Ling Dong
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Wei Wang
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Hongchao Wu
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
6
|
Li Y, Zhang Y, Zhang Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir Med 2018; 145:145-152. [DOI: 10.1016/j.rmed.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
|
7
|
Wang C, Yan M, Jiang H, Wang Q, He S, Chen J, Wang C. Mechanism of aquaporin 4 (AQP 4) up-regulation in rat cerebral edema under hypobaric hypoxia and the preventative effect of puerarin. Life Sci 2017; 193:270-281. [PMID: 29054452 DOI: 10.1016/j.lfs.2017.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 01/05/2023]
Abstract
AIM We aim to investigate the mechanism of aquaporin 4 (AQP 4) up-regulation during high-altitude cerebral edema (HACE) in rats under hypobaric hypoxia and preventative effect of puerarin. METHODS Rats were exposed to a hypobaric chamber with or without the preventative treatment of puerarin or dexamethasone. Morriz water maze was used to evaluate the spatial memory injury. HE staining and W/D ratio were used to evaluate edema injury. Rat astrocytes and microglia were co-cultured under the condition of hypoxia with the administration of p38 inhibitor, NF-κB inhibitor or puerarin. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF α) of cortex and culture supernatant were measured with ELISA. AQP4, phosphorylation of MAPKs, NF-κB pathway of cortex and astrocytes were measured by Western blot. KEY FINDINGS Weakened spatial memory and cerebral edema were observed after hypobaric hypoxia exposure. AQP4, phosphorylation of NF-κB and MAPK signal pathway of cortex increased after hypoxia exposure and decreased with preventative treatment of puerarin. Hypoxia increased TNF-α and IL-6 levels in cortex and microglia and puerarin could prevent the increase of them. AQP4 of astrocytes increased after co-cultured with microglia when both were exposed to hypoxia. AQP4 showed a decrease after administered with p38 inhibitor, NF-κB inhibitor or puerarin. SIGNIFICANCE Hypoxia triggers inflammatory response, during which AQP4 of astrocytes can be up regulated through the release of TNF-α and IL-6 from microglia. Puerarin can exert a preventative effect on the increase of AQP4 through inhibiting the release of TNF-α and phosphorylation of NF-κB, MAPK pathway.
Collapse
Affiliation(s)
- Chi Wang
- Department of Clinical Laboratory, PLA General Hospital, 100853 Beijing, China
| | - Muyang Yan
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, China
| | - Hui Jiang
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, China
| | - Qi Wang
- Outpatient Department of Chinese People's Liberation Army Aviation School, 101023 Beijing, China
| | - Shang He
- Department of Clinical Laboratory, PLA General Hospital, 100853 Beijing, China
| | - Jingwen Chen
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, China
| | - Chengbin Wang
- Department of Clinical Laboratory, PLA General Hospital, 100853 Beijing, China.
| |
Collapse
|
8
|
Schuoler C, Haider TJ, Leuenberger C, Vogel J, Ostergaard L, Kwapiszewska G, Kohler M, Gassmann M, Huber LC, Brock M. Aquaporin 1 controls the functional phenotype of pulmonary smooth muscle cells in hypoxia-induced pulmonary hypertension. Basic Res Cardiol 2017; 112:30. [PMID: 28409279 DOI: 10.1007/s00395-017-0620-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Vascular remodelling in hypoxia-induced pulmonary hypertension (PH) is driven by excessive proliferation and migration of endothelial and smooth muscle cells. The expression of aquaporin 1 (AQP1), an integral membrane water channel protein involved in the control of these processes, is tightly regulated by oxygen levels. The role of AQP1 in the pathogenesis of PH, however, has not been directly addressed so far. This study was designed to characterize expression and function of AQP1 in pulmonary vascular cells from human arteries and in the mouse model of hypoxia-induced PH. Exposure of human pulmonary vascular cells to hypoxia significantly induced the expression of AQP1. Similarly, levels of AQP1 were found to be upregulated in lungs of mice with hypoxia-induced PH. The functional role of AQP1 was further tested in human pulmonary artery smooth muscle cells demonstrating that depletion of AQP1 reduced proliferation, the migratory potential, and, conversely, increased apoptosis of these cells. This effect was associated with higher expression of the tumour suppressor gene p53. Using the mouse model of hypoxia-induced PH, application of GapmeR inhibitors targeting AQP1 abated the hypoxia-induced upregulation of AQP1 and, of note, reversed PH by decreasing both right ventricular pressure and hypertrophy back to the levels of control mice. Our data suggest an important functional role of AQP1 in the pathobiology of hypoxia-induced PH. These results offer novel insights in our pathogenetic understanding of the disease and propose AQP1 as potential therapeutic in vivo target.
Collapse
Affiliation(s)
- Claudio Schuoler
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas J Haider
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Caroline Leuenberger
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Johannes Vogel
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Louise Ostergaard
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | - Malcolm Kohler
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Lars C Huber
- Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Brock
- Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Xu C, Jiang L, Zou Y, Xing J, Sun H, Zhu B, Zhang H, Wang J, Zhang J. Involvement of water channel Aquaporin 5 in H 2S-induced pulmonary edema. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:202-211. [PMID: 28088675 DOI: 10.1016/j.etap.2016.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Acute exposure to hydrogen sulfide (H2S) poses a significant threat to life, and the lung is one of the primary target organs of H2S. However, the mechanisms involved in H2S-induced acute pulmonary edema are poorly understood. This study aims to investigate the effects of H2S on the expression of water channel aquaporin 5 (AQP5) and to elucidate the signaling pathways involved in AQP5 regulation. In an in vivo study, C57BL6 mice were exposed to sub-lethal concentrations of inhaled H2S, and histological injury of the lungs and ultrastructure injury of the epithelial cells were evaluated. With real-time PCR and western blot assays, we found that H2S exposure contributed to a significant decrease in AQP5 expression both in murine lung tissue and the A549 cell line, and the ERK1/2 and p38 MAPK signaling pathways were demonstrated to be implicated in AQP5 regulation. Therefore, adjusting AQP5 protein levels could be considered a therapeutic strategy for the treatment of APE induced by H2S and other hazardous gases.
Collapse
Affiliation(s)
- Chunyang Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yuxia Zou
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Jingjing Xing
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Hao Sun
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Baoli Zhu
- Department of Occupational Disease Prophylactic-Therapeutic Institution, Jiangsu Provincial Center for Disease Prevention and Control, 122 Heban Cun, Nanjing, Jiangsu, 210028, China
| | - Hengdong Zhang
- Department of Occupational Disease Prophylactic-Therapeutic Institution, Jiangsu Provincial Center for Disease Prevention and Control, 122 Heban Cun, Nanjing, Jiangsu, 210028, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| | - Jinsong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
10
|
Villar IC, Bubb KJ, Moyes AJ, Steiness E, Gulbrandsen T, Levy FO, Hobbs AJ. Functional pharmacological characterization of SER100 in cardiovascular health and disease. Br J Pharmacol 2016; 173:3386-3401. [PMID: 27667485 DOI: 10.1111/bph.13634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE SER100 is a selective nociceptin (NOP) receptor agonist with sodium-potassium-sparing aquaretic and anti-natriuretic activity. This study was designed to characterize the functional cardiovascular pharmacology of SER100 in vitro and in vivo, including experimental models of cardiovascular disease. EXPERIMENTAL APPROACH Haemodynamic, ECG parameters and heart rate variability (HRV) were determined using radiotelemetry in healthy, conscious mice. The haemodynamic and vascular effects of SER100 were also evaluated in two models of cardiovascular disease, spontaneously hypertensive rats (SHR) and murine hypoxia-induced pulmonary hypertension (PH). To elucidate mechanisms underlying the pharmacology of SER100, acute blood pressure recordings were performed in anaesthetized mice, and the reactivity of rodent aorta and mesenteric arteries in response to electrical- and agonist-stimulation assessed. KEY RESULTS SER100 caused NOP receptor-dependent reductions in mean arterial blood pressure and heart rate that were independent of NO. The hypotensive and vasorelaxant actions of SER100 were potentiated in SHR compared with Wistar Kyoto. Moreover, SER100 reduced several indices of disease severity in experimental PH. Analysis of HRV indicated that SER100 decreased the low/high frequency ratio, an indicator of sympatho-vagal balance, and in electrically stimulated mouse mesenteric arteries SER100 inhibited sympathetic-induced contractions. CONCLUSIONS AND IMPLICATIONS SER100 exerts a chronic hypotensive and bradycardic effects in rodents, including models of systemic and pulmonary hypertension. SER100 produces its cardiovascular effects, at least in part, by inhibition of cardiac and vascular sympathetic activity. SER100 may represent a novel therapeutic candidate in systemic and pulmonary hypertension.
Collapse
Affiliation(s)
- Inmaculada C Villar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kristen J Bubb
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | - Finn Olav Levy
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Wang C, Yan M, Jiang H, Wang Q, Guan X, Chen J, Wang C. Protective effects of puerarin on acute lung and cerebrum injury induced by hypobaric hypoxia via the regulation of aquaporin (AQP) via NF-κB signaling pathway. Int Immunopharmacol 2016; 40:300-309. [PMID: 27643664 DOI: 10.1016/j.intimp.2016.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Hypobaric hypoxia, frequently encountered at high altitude, may lead to lung and cerebrum injury. Our study aimed to investigate whether puerarin could exert ameliorative effects on rats exposed to hypobaric hypoxia via regulation of aquaporin (AQP) and NF-κB signaling pathway in lung and cerebrum. MATERIALS AND METHODS 40 Sprague Dawley rats were divided into four groups (normal control group, hypobaric hypoxia group, puerarin group and dexamethasone group). Wet/dry ratio, blood gas, pathological changes of lung and cerebrum and spatial memory were observed in each group. Inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were determined with ELISA and expression of AQP1, AQP4, NF-κB signaling pathway in lung and cerebrum with western blot RESULTS: Puerarin showed significant preventative effects on tissue injury and behavioral changes, as evidenced by histopathological findings and Morris water maze. In addition, levels of inflammatory cytokines in BALF decreased in the two preventative groups compared with those of hypobaric hypoxia group. AQP in lung and cerebrum increased under the condition of hypobaric hypoxia while was down regulated in both two preventative groups. NF-κB and IκB was also inhibited by puerarin. CONCLUSION Our study suggested that lung and cerebrum injury, increased inflammatory cytokines in BALF and increased AQP1, AQP4 and NF-κB signaling pathway occurred under the condition of hypobaric hypoxia. Moreover, puerarin could prevent lung and cerebrum injury of rats exposed to hypobaric hypoxia via down-regulation of inflammatory cytokines, AQP1 and AQP4 expression and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chi Wang
- Department of Clinical Laboratory, PLA General Hospital, 100853 Beijing, People's Republic of China
| | - Muyang Yan
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, People's Republic of China
| | - Hui Jiang
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, People's Republic of China
| | - Qi Wang
- Outpatient Department of Chinese People's Liberation Army Aviation School, 101023 Beijing, People's Republic of China
| | - Xu Guan
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, People's Republic of China
| | - Jingwen Chen
- Department of Hyperbaric Chamber, PLA General Hospital, 100853 Beijing, People's Republic of China
| | - Chengbin Wang
- Department of Clinical Laboratory, PLA General Hospital, 100853 Beijing, People's Republic of China.
| |
Collapse
|
12
|
Xiong LL, Tan Y, Ma HY, Dai P, Qin YX, Yang RA, Xu YY, Deng Z, Zhao W, Xia QJ, Wang TH, Zhang YH. Administration of SB239063, a potent p38 MAPK inhibitor, alleviates acute lung injury induced by intestinal ischemia reperfusion in rats associated with AQP4 downregulation. Int Immunopharmacol 2016; 38:54-60. [DOI: 10.1016/j.intimp.2016.03.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/09/2016] [Accepted: 03/29/2016] [Indexed: 02/01/2023]
|
13
|
Chabot A, Hertig V, Boscher E, Nguyen QT, Boivin B, Chebli J, Bissonnette E, Villeneuve L, Brochiero E, Dupuis J, Calderone A. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression. J Cell Physiol 2015; 231:1601-10. [DOI: 10.1002/jcp.25257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Andréanne Chabot
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Quebéc Canada
| | - Vanessa Hertig
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Quebéc Canada
| | - Elena Boscher
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Quang Trinh Nguyen
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Benoît Boivin
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Biochimie et; Montréal Québec Canada
- Médecine; Université de Montréal; Montréal Québec Canada
| | | | - Elyse Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec; Département de Médicine; Université Laval; Québec Canada
| | - Louis Villeneuve
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | | | - Jocelyn Dupuis
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Médecine; Université de Montréal; Montréal Québec Canada
| | - Angelino Calderone
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Quebéc Canada
| |
Collapse
|