1
|
Mir RH, Mohi-Ud-Din R, Al-Keridis LA, Ahmad B, Alshammari N, Patel M, Adnan M, Masoodi MH. Phytochemical profiling, antioxidant, cytotoxic, and anti-inflammatory activities of Plectranthus rugosus extract and fractions: in vitro, in vivo, and in silico approaches. Inflammopharmacology 2024; 32:1593-1606. [PMID: 38308794 DOI: 10.1007/s10787-023-01419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Inflammation is a key biological reaction that comprises a complex network of signals that both initiate and stop the inflammation process. PURPOSE This study targets to evaluate the anti-inflammatory potential of the leaves of the Plectranthus rugosus (P. rugosus) plant involving both in vitro and in vivo measures. The current available drugs exhibit serious side effects. Traditional medicines impart an essential role in drug development. P. rugosus is a plant used in traditional medicine of Tropical Africa, China, and Australia to treat various diseases. METHODS Lipopolysaccharide (LPS), an endotoxin, kindles macrophages to discharge huge quantities of pro-inflammatory cytokines like TNF-α and IL-6. So, clampdown of macrophage stimulation may have a beneficial potential to treat various inflammatory disorders. The leaves of the P. rugosus are used for swelling purpose by local population; however, its use as an anti-inflammatory agent and associated disorders has no scientific evidence. RESULTS The extracts of the plant Plectranthus rugosus ethanolic extract (PREE), Plectranthus rugosus ethyl acetate extract (PREAF), and the compound isolated (oleanolic acid) suppress the pro-inflammatory cytokines (IL-6 and TNF-α) and nitric oxide (NO), confirming its importance in traditional medicine. CONCLUSION The pro-inflammatory cytokines are inhibited by P. rugosus extracts, as well as an isolated compound oleanolic acid without compromising cell viability.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar-190006, Hazratbal, Kashmir, India.
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Jammu and Kashmir, Srinagar, 190001, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Bilal Ahmad
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar-190006, Hazratbal, Kashmir, India.
| |
Collapse
|
2
|
Muro BB, Carnevale RF, Leal DF, Almond GW, Monteiro MS, Poor AP, Schinckel AP, Garbossa CA. The importance of optimal body condition to maximise reproductive health and perinatal outcomes in pigs. Nutr Res Rev 2023; 36:351-371. [PMID: 35748154 DOI: 10.1017/s0954422422000129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Overnutrition or undernutrition during all or part of the reproductive cycle predisposes sows to metabolic consequences and poor reproductive health which contributes to a decrease in sow longevity and an increase in perinatal mortality. This represents not only an economic problem for the pig industry but also results in poor animal welfare. To maximise profitability and increase sustainability in pig production, it is pivotal to provide researchers and practitioners with synthesised information about the repercussions of maternal obesity or malnutrition on reproductive health and perinatal outcomes, and to pinpoint currently available nutritional managements to keep sows' body condition in an optimal range. Thus, the present review summarises recent work on the consequences of maternal malnutrition and highlights new findings.
Collapse
Affiliation(s)
- Bruno Bd Muro
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| | - Rafaella F Carnevale
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| | - Diego F Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga, SP, Brazil
| | - Glen W Almond
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University (NCSU), Raleigh, North Carolina, USA
| | - Matheus S Monteiro
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus São Paulo, São Paulo, SP, Brazil
| | - André P Poor
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus São Paulo, São Paulo, SP, Brazil
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Cesar Ap Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| |
Collapse
|
3
|
Mahama A, Chama MA, Oppong Bekoe E, Asare GA, Obeng-Kyeremeh R, Amoah D, Agbemelo-Tsomafo C, Amoah LE, Erskine IJ, Kusi KA, Adjei S. Assessment of toxicity and anti-plasmodial activities of chloroform fractions of Carapa procera and Alchornea cordifolia in murine models. Front Pharmacol 2022; 13:1077380. [PMID: 36618915 PMCID: PMC9816393 DOI: 10.3389/fphar.2022.1077380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Plant as a source of medicine has gained international popularity in recent times because of its natural origin, availability in local communities, cheaper to purchase, ease of administration, and its usefulness as an alternative treatment in case of numerous side effects and drug resistance. However, the use of herbal formulations can also result in short-term and long-term organ damage or dysfunction to the host. In this study, chloroform fractions of the leaves of two medicinal plants, Alchornea cordifolia (ACL) and Carapa procera (CPL), were investigated for their toxicological and anti-malarial effects in murine models. Method: Acute (14-day) and sub-acute (28-day) studies were conducted based on the Organization for Economic Cooperation and Development (OECD) Guidelines in Institute for Cancer Research (ICR) mice and Sprague Dawley (SD) rats respectively. A dosage of 2000 mg/kg body weight was administered orally to each ICR mouse during the acute study and 100, 300, and 1000 mg/kg body weight to each SD rat during the sub-acute study. A 5-day curative anti-plasmodial activity was assessed in ICR mouse model. Results: The assessment of toxicity revealed that all three fractions did not influence mortality, clinical appearance, body weight gain, or necropsy at the various doses. Hematological and serum biochemical analysis indicated no significant elevations in liver and renal function parameters. Histopathological examinations of the liver indicated reversible liver degeneration with the chloroform fraction of the 100% ethanol extract of Carapa procera leaves (CPL100%) at 1000 mg/kg. Anti-plasmodial assessments showed CPL100% exhibiting dose-dependent anti-plasmodial activity from 16% to 26.67%. On the other hand, chloroform fraction of the 100% ethanol extract of Alchornea cordifolia leaves (ACL100%) showed declining anti-plasmodial activity from 21.1% to 15.1%. Conclusion: These preliminary findings demonstrate that chloroform fractions of the leaves of Carapa procera and Alchornea cordifolia may be safe agents for treating malaria hence further development for drug discovery must be pursued.
Collapse
Affiliation(s)
- Ayisha Mahama
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Mary Anti Chama
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Emelia Oppong Bekoe
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - George Awuku Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Richard Obeng-Kyeremeh
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Daniel Amoah
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Constance Agbemelo-Tsomafo
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana,Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana,*Correspondence: Samuel Adjei,
| |
Collapse
|
4
|
Folguieri MS, Franco ATB, Vieira AS, Gontijo JAR, Boer PA. Transcriptome and morphological analysis on the heart in gestational protein-restricted aging male rat offspring. Front Cell Dev Biol 2022; 10:892322. [PMID: 36353510 PMCID: PMC9638007 DOI: 10.3389/fcell.2022.892322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Background: Adverse factors that influence embryo/fetal development are correlated with increased risk of cardiovascular disease (CVD), type-2 diabetes, arterial hypertension, obesity, insulin resistance, impaired kidney development, psychiatric disorders, and enhanced susceptibility to oxidative stress and inflammatory processes in adulthood. Human and experimental studies have demonstrated a reciprocal relationship between birthweight and cardiovascular diseases, implying intrauterine adverse events in the onset of these abnormalities. In this way, it is plausible that confirmed functional and morphological heart changes caused by gestational protein restriction could be related to epigenetic effects anticipating cardiovascular disorders and reducing the survival time of these animals. Methods: Wistar rats were divided into two groups according to the protein diet content offered during the pregnancy: a normal protein diet (NP, 17%) or a Low-protein diet (LP, 6%). The arterial pressure was measured, and the cardiac mass, cardiomyocytes area, gene expression, collagen content, and immunostaining of proteins were performed in the cardiac tissue of male 62-weeks old NP compared to LP offspring. Results: In the current study, we showed a low birthweight followed by catch-up growth phenomena associated with high blood pressure development, increased heart collagen content, and cardiomyocyte area in 62-week-old LP offspring. mRNA sequencing analysis identified changes in the expression level of 137 genes, considering genes with a p-value < 0.05. No gene was. Significantly changed according to the adj-p-value. After gene-to-gene biological evaluation and relevance, the study demonstrated significant differences in genes linked to inflammatory activity, oxidative stress, apoptosis process, autophagy, hypertrophy, and fibrosis pathways resulting in heart function disorders. Conclusion: The present study suggests that gestational protein restriction leads to early cardiac diseases in the LP progeny. It is hypothesized that heart dysfunction is associated with fibrosis, myocyte hypertrophy, and multiple abnormal gene expression. Considering the above findings, it may suppose a close link between maternal protein restriction, specific gene expression, and progressive heart failure.
Collapse
Affiliation(s)
- Marina S. Folguieri
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Ana Teresa Barufi Franco
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, Brazil
| | - José Antonio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Patricia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| |
Collapse
|
5
|
Gimsa U, Brückmann R, Tuchscherer A, Tuchscherer M, Kanitz E. Early-life maternal deprivation affects the mother-offspring relationship in domestic pigs, as well as the neuroendocrine development and coping behavior of piglets. Front Behav Neurosci 2022; 16:980350. [PMID: 36275850 PMCID: PMC9582528 DOI: 10.3389/fnbeh.2022.980350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Early-life adversity may have programming effects on the psychological and physiological development of offspring. Domestic pigs (Sus scrofa) are an excellent model species for studying these effects because of their many physiological similarities to humans. Piglets from 10 sows were subjected to daily 2-h maternal deprivation on postnatal days (PND) 2–15 alone (DA) or in a group of littermates (DG). Control piglets (C) from 10 sows stayed with their mothers. Mother-offspring interaction, milk oxytocin, and cortisol were analyzed. An open-field/novel-object (OF/NO) test was performed with piglets on PNDs 16 and 40. Plasma cortisol and immune parameters were determined on PND 5 and 16. Two piglets from each group and sow were sacrificed on PND 20 and stress-related gene expression in the limbic system and prefrontal cortex (PFC), as well as splenic lymphocyte proliferative abilities, were examined. The milk cortisol of sows increased during the first separation of mother and offspring on the second day of lactation, whereas milk oxytocin did not change. The increase in cortisol by the OF/NO test on PND 16 was greater in C piglets than in DA and DG ones. DA piglets showed less agitated behavior than DG and C piglets in the OF/NO test at PND 16, but appeared more fearful. On PND 40, DA piglets showed more arousal than DG and C piglets in the OF/NO test. Neither plasma IgA nor N/L ratios in blood nor mitogen-induced proliferation of spleen lymphocytes were affected by deprivation. We found a higher mRNA expression of CRHR1 in the hypothalamus and a higher expression of MR in the hippocampus in DA piglets than in DG ones. The expression of GR, MR, and CRHR1 genes in the PFC was reduced by maternal deprivation, however, the expression of arginine vasopressin and oxytocin receptors was not affected. Repeated maternal deprivation induces sustained effects on stress reactivity and behavior of domestic piglets. Some of these effects were buffered by the presence of littermates. In addition, we found sex-specific differences in behavior and gene expression.
Collapse
Affiliation(s)
- Ulrike Gimsa
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Ulrike Gimsa,
| | - Roberto Brückmann
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Armin Tuchscherer
- Service Group Statistical Consulting, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Margret Tuchscherer
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ellen Kanitz
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
6
|
Tsai MS, Newman C, Macdonald DW, Buesching CD. Adverse weather during in utero development is linked to higher rates of later-life herpesvirus reactivation in adult European badgers, Meles meles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211749. [PMID: 35582658 PMCID: PMC9091846 DOI: 10.1098/rsos.211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/12/2022] [Indexed: 05/03/2023]
Abstract
Maternal immune and/or metabolic conditions relating to stress or nutritional status can affect in utero development among offspring with subsequent implications for later-life responses to infections. We used free-ranging European badgers as a host-pathogen model to investigate how prenatal weather conditions affect later-life herpesvirus genital tract reactivation. We applied a sliding window analysis of weather conditions to 164 samples collected in 2018 from 95 individuals born between 2005-2016. We test if the monthly mean and variation in rainfall and temperature experienced by their mother during the 12 months of delayed implantation and gestation prior to parturition subsequently affected individual herpes reactivation rates among these offspring. We identified four influential prenatal seasonal weather windows that corresponded with previously identified critical climatic conditions affecting badger survival, fecundity and body condition. These all occurred during the pre-implantation rather than the post-implantation period. We conclude that environmental cues during the in utero period of delayed implantation may result in changes that affect an individual's developmental programming against infection or viral reactivation later in life. This illustrates how prenatal adversity caused by environmental factors, such as climate change, can impact wildlife health and population dynamics-an interaction largely overlooked in wildlife management and conservation programmes.
Collapse
Affiliation(s)
- Ming-shan Tsai
- Department of Zoology, Wildlife Conservation Research Unit, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
| | - Chris Newman
- Department of Zoology, Wildlife Conservation Research Unit, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
- Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada
| | - David W. Macdonald
- Department of Zoology, Wildlife Conservation Research Unit, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK
| | - Christina D. Buesching
- Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada
- Department of Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
7
|
Bayesian analysis reveals the influence of maternal effect on pre-weaning body weights in Landlly piglets. ZYGOTE 2022; 30:625-632. [PMID: 35478068 DOI: 10.1017/s0967199422000065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study was undertaken to estimate the (co)variance components and genetic parameters of body weights recorded in Landlly piglets from birth to weaning at weekly intervals (w0 to w6). The data pertained to body weights of 2462 piglets, born to 91 sires and 159 dams across different generations during a 7-year period from 2014 to 2020. Five animal models (I-V), differentiated by inclusion or exclusion of maternal effects with or without covariance between maternal and direct genetic effects, were fitted on the data using the Bayesian algorithm. The analyses were implemented by Gibbs sampling in the BLUPF90 program and Markov chain Monte Carlo (MCMC) methodology was used to draw samples of posterior distribution pertaining to (co)variance components. Based on deviance information criteria (DIC), model V with inclusion of direct additive genetic, direct maternal genetic and permanent environmental effect of dam as random factors along with covariance between direct additive and maternal effects best fitted the data on pre-weaning traits (w0 to w5). Whereas, model I incorporating only the direct additive genetic effect best fitted the weaning weight (w6) data in Landlly piglets. The posterior mean estimates of direct heritability under the best models for W0 to W6 were 0.13, 0.19, 0.29, 0.13, 0.26, 0.32 and 0.46, respectively. Inclusion of the maternal component helped in better partitioning of variance for different body weights in Landlly piglets. The maternal heritability ranged from 0.06 to 0.14, while the litter heritability ranged from 0.11 to 0.15 for pre-weaning weights (W0 to W5) under the best-fit models. The influence of maternal environment was greater than maternal genetic effect from birth to 4th week of age. The results implied that variations in body weight of Landlly pigs were genetically controlled to moderate levels (especially w2 and w4) with contributions from direct additive and maternal genotype that can be exploited by designing efficient breeding programmes.
Collapse
|
8
|
Li Q, Yang S, Zhang X, Liu X, Wu Z, Qi Y, Guan W, Ren M, Zhang S. Maternal Nutrition During Late Gestation and Lactation: Association With Immunity and the Inflammatory Response in the Offspring. Front Immunol 2022; 12:758525. [PMID: 35126349 PMCID: PMC8814630 DOI: 10.3389/fimmu.2021.758525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
The immature immune system at birth and environmental stress increase the risk of infection in nursing pigs. Severe infection subsequently induces intestinal and respiratory diseases and even cause death of pigs. The nutritional and physiological conditions of sows directly affect the growth, development and disease resistance of the fetus and newborn. Many studies have shown that providing sows with nutrients such as functional oligosaccharides, oils, antioxidants, and trace elements could regulate immunity and the inflammatory response of piglets. Here, we reviewed the positive effects of certain nutrients on milk quality, immunoglobulin inflammatory response, oxidative stress, and intestinal microflora of sows, and further discuss the effects of these nutrients on immunity and the inflammatory response in the offspring.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| |
Collapse
|
9
|
Comparison of Multi-Methods for Identifying Maize Phenology Using PhenoCams. REMOTE SENSING 2022. [DOI: 10.3390/rs14020244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Accurately identifying the phenology of summer maize is crucial for both cultivar breeding and fertilizer controlling in precision agriculture. In this study, daily RGB images covering the entire growth of summer maize were collected using phenocams at sites in Shangqiu (2018, 2019 and 2020) and Nanpi (2020) in China. Four phenological dates, including six leaves, booting, heading and maturity of summer maize, were pre-defined and extracted from the phenocam-based images. The spectral indices, textural indices and integrated spectral and textural indices were calculated using the improved adaptive feature-weighting method. The double logistic function, harmonic analysis of time series, Savitzky–Golay and spline interpolation were applied to filter these indices and pre-defined phenology was identified and compared with the ground observations. The results show that the DLF achieved the highest accuracy, with the coefficient of determination (R2) and the root-mean-square error (RMSE) being 0.86 and 9.32 days, respectively. The new index performed better than the single usage of spectral and textural indices, of which the R2 and RMSE were 0.92 and 9.38 days, respectively. The phenological extraction using the new index and double logistic function based on the PhenoCam data was effective and convenient, obtaining high accuracy. Therefore, it is recommended the adoption of the new index by integrating the spectral and textural indices for extracting maize phenology using PhenoCam data.
Collapse
|
10
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
11
|
Nassar AM, Salim YM, Eid KS, Shaheen HM, Saati AA, Hetta HF, Elmistekawy A, Batiha GES. Ameliorative Effects of Honey, Propolis, Pollen, and Royal Jelly Mixture against Chronic Toxicity of Sumithion Insecticide in White Albino Rats. Molecules 2020; 25:molecules25112633. [PMID: 32517066 PMCID: PMC7321238 DOI: 10.3390/molecules25112633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Sumithion (Fenitrothion) (SUM) is an organophosphorus insecticide used to combat a wide variety of plant pests. Exposure to SUM causes significant toxicity to the brain, liver, kidney, and reproductive organs through, for example, binding to DNA, and it induces DNA damage, which ends with oxidative stress. Therefore, the present study aimed to examine the protective role of bee products: a mixture of honey, propolis, palm pollen, and royal jelly (HPPJ) against SUM-induced toxicity. Twenty-four male albino rats (Rattus norvegicus) were classified into four groups, each containing six rats: control (corn oil), SUM (85 mg/kg; 1/20 LD50), HPPJ, and SUM + HPPJ once daily for 28 consecutive days. Blood samples were gently collected in sterilized ethylenediaminetetraacetic acid (EDTA) tubes for blood picture analyses and tubes without anticoagulant for serum isolation. Serum was used for assays of enzymatic and biochemical characteristics. The results revealed that SUM increased the weights of the liver, kidney, and brain as well as the enzymatic activity of glutathione peroxidase (GP), serum superoxide dismutase (SOD), and glutathione-S-transferase (GST). Additionally, SUM significantly increased the activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and γ-glutamyltransferase (γ-GT) and glucose, uric acid, and creatinine contents, while decreasing the acetylcholine esterase (AChE) activity and total lipids and total protein content. Furthermore, because of the inclusion of phenolic, flavonoids, terpenoids, and sugars, the HPPJ mixture counteracted the hematological, renal, and hepatic toxicity of SUM exposure.
Collapse
Affiliation(s)
- Atef M.K. Nassar
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
- Correspondence: (A.M.K.N.); (G.E.-S.B.)
| | - Yehia M.M. Salim
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
| | - Khalid S.A. Eid
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Departmentof Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Amr Elmistekawy
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
- Correspondence: (A.M.K.N.); (G.E.-S.B.)
| |
Collapse
|
12
|
Forgie AJ, Drall KM, Bourque SL, Field CJ, Kozyrskyj AL, Willing BP. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. BMC Med 2020; 18:135. [PMID: 32393275 PMCID: PMC7216331 DOI: 10.1186/s12916-020-01584-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Early-life malnutrition may have long-lasting effects on microbe-host interactions that affect health and disease susceptibility later in life. Diet quality and quantity in conjunction with toxin and pathogen exposure are key contributors to microbe-host physiology and malnutrition. Consequently, it is important to consider both diet- and microbe-induced pathologies as well as their interactions underlying malnutrition. MAIN BODY Gastrointestinal immunity and digestive function are vital to maintain a symbiotic relationship between the host and microbiota. Childhood malnutrition can be impacted by numerous factors including gestational malnutrition, early life antibiotic use, psychological stress, food allergy, hygiene, and exposure to other chemicals and pollutants. These factors can contribute to reoccurring environmental enteropathy, a condition characterized by the expansion of commensal pathobionts and environmental pathogens. Reoccurring intestinal dysfunction, particularly during the critical window of development, may be a consequence of diet-microbe interactions and may lead to life-long immune and metabolic programming and increased disease risk. We provide an overview of the some key factors implicated in the progression of malnutrition (protein, fat, carbohydrate, iron, vitamin D, and vitamin B12) and discuss the microbiota during early life that may contribute health risk later in life. CONCLUSION Identifying key microbe-host interactions, particularly those associated with diet and malnutrition requires well-controlled dietary studies. Furthering our understanding of diet-microbe-host interactions will help to provide better strategies during gestation and early life to promote health later in life.
Collapse
Affiliation(s)
- Andrew J. Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Kelsea M. Drall
- Department of Pediatrics, University of Alberta, Edmonton, Alberta Canada
| | - Stephane L. Bourque
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Anita L. Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| |
Collapse
|
13
|
Kanitz E, Tuchscherer M, Otten W, Tuchscherer A, Zebunke M, Puppe B. Coping Style of Pigs Is Associated With Different Behavioral, Neurobiological and Immune Responses to Stressful Challenges. Front Behav Neurosci 2019; 13:173. [PMID: 31417378 PMCID: PMC6686684 DOI: 10.3389/fnbeh.2019.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Based on the animal’s reaction to environmental challenges, consistent but different coping styles can be identified, which in turn may have consequences for health and welfare. Therefore, profound knowledge of the complex interrelationships between individual behavioral response patterns, underlying neurobiological mechanisms and immunological effects is required. The aim of this study was to examine whether pigs with different coping styles exhibit distinct behavioral, neurobiological and immune responses to stressful situations. Therefore, pigs (n = 40) were classified as proactive, reactive or intermediate animals according to a repeatedly-performed backtest, and behavioral, neuroendocrine and immune alterations were analyzed without any stress before weaning on day 28 and after a stress treatment on day 32. Our results show that the behavioral responses in an open-field/novel-object test characterized proactive pigs as more active. There were no significant differences in adrenocorticotropic hormone and cortisol concentrations between pigs with different coping characteristics. However, we found that proactive pigs displayed significantly increased plasma noradrenaline levels in response to stress, which may reflect a higher sympathetic reactivity of these animals. Furthermore, the present study revealed coping style differences in mRNA expression of mineralocorticoid, glucocorticoid, oxytocin and arginine vasopressin receptors and the immediate early gene c-fos in stress-related brain regions. While proactive pigs responded to stress with higher mRNA expression of arginine vasopressin, mineralocorticoid and glucocorticoid receptors, reactive pigs displayed higher oxytocin receptor and c-fos mRNA expression, indicating different neurobiological mechanisms of distinct coping styles in response to stressful challenges. Moreover, we also found humoral immune differences between proactive, intermediate and reactive animals. Proactive pigs had a higher total serum IgA concentration before and after stress treatment, with a significant increase in response to stress compared to reactive and intermediate pigs. In contrast, stress-induced IgM concentrations only increased in reactive and intermediate animals, suggesting that the effects of coping style on humoral immunity may differ depending on the specific function of the immunoglobulin classes. In conclusion, this multidisciplinary study expands the concept of coping style in farm animals, particularly in terms of individual stress reactivity and disease susceptibility, and thus contributes to the understanding of the biology of animal welfare.
Collapse
Affiliation(s)
- Ellen Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Margret Tuchscherer
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Manuela Zebunke
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
Li F, Shan MX, Gao X, Yang Y, Yang X, Zhang YY, Hu JW, Shan AS, Cheng BJ. Effects of nutrition restriction of fat- and lean-line broiler breeder hens during the laying period on offspring performance, blood biochemical parameters, and hormone levels. Domest Anim Endocrinol 2019; 68:73-82. [PMID: 30875642 DOI: 10.1016/j.domaniend.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022]
Abstract
To evaluate the effects of maternal undernutrition on the performance, blood biochemical indexes, and hormone levels of broiler chicks, two broiler breeder lines (a fat line and lean line) were given either 100% or 75% of the daily feed intake recommended by the Chinese Ministry of Agriculture from 27 to 54 wk. All hens were fed the same basal corn-soybean diet. Fertile eggs were collected and hatched. All chicks were fed the same basal diet for 56 d. Then, chick performance, blood biochemical indexes, and hormone levels were measured. The results showed that there were interactions between maternal nutrition and line for some parameters, such as the kidney index, glucose, triglyceride, insulin, glucagon, leptin, and triiodothyronine (P < 0.05). Chicks of the fat line had a lower level of serum glucose, triglyceride, albumin, glutamic-pyruvic transaminase, insulin, and thyroxin than those of the lean line (P < 0.05), but the opposite trend was seen for birth weight, heart index, leptin, and triiodothyronine (P < 0.05). Maternal undernutrition decreased the birth weight and thymus index (day 28) of offspring (P < 0.05), but these effects disappeared by day 56. Maternal undernutrition decreased glucose (day 28), urea nitrogen (day 56), creatinine (day 56), glutamic-pyruvic transaminase (day 56), creatinine kinase (day 56), and leptin (day 56) levels in the offspring's serum (P < 0.05) but increased creatinine (day 28), total protein (day 28), glutamic-pyruvic transaminase (day 28), and glucagon (day 28) levels (P < 0.05). In conclusion, different lines have different metabolic processes. Maternal nutrition restriction during the laying period did have effects on the offspring, and the compensation by offspring reduced the effect of maternal nutrition restriction.
Collapse
Affiliation(s)
- F Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - M X Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - X Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Y Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - X Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Y Y Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - J W Hu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - A S Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.
| | - B J Cheng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Offspring of Mice Exposed to a Low-Protein Diet in Utero Demonstrate Changes in mTOR Signaling in Pancreatic Islets of Langerhans, Associated with Altered Glucagon and Insulin Expression and a Lower β-Cell Mass. Nutrients 2019; 11:nu11030605. [PMID: 30871106 PMCID: PMC6471519 DOI: 10.3390/nu11030605] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Low birth weight is a risk factor for gestational and type 2 diabetes (T2D). Since mammalian target of rapamycin (mTOR) controls pancreatic β-cell mass and hormone release, we hypothesized that nutritional insult in utero might permanently alter mTOR signaling. Mice were fed a low-protein (LP, 8%) or control (C, 20%) diet throughout pregnancy, and offspring examined until 130 days age. Mice receiving LP were born 12% smaller and β-cell mass was significantly reduced throughout life. Islet mTOR levels were lower in LP-exposed mice and localized predominantly to α-rather than β-cells. Incubation of isolated mouse islets with rapamycin significantly reduced cell proliferation while increasing apoptosis. mRNA levels for mTORC complex genes mTOR, Rictor and Raptor were elevated at 7 days in LP mice, as were the mTOR and Raptor proteins. Proglucagon gene expression was similarly increased, but not insulin or the immune/metabolic defense protein STING. In human and mouse pancreas STING was strongly associated with islet β-cells. Results support long-term changes in islet mTOR signaling in response to nutritional insult in utero, with altered expression of glucagon and insulin and a reduced β-cell mass. This may contribute to an increased risk of gestational or type 2 diabetes.
Collapse
|
16
|
Effects of 1-Methyltryptophan on Immune Responses and the Kynurenine Pathway after Lipopolysaccharide Challenge in Pigs. Int J Mol Sci 2018; 19:ijms19103009. [PMID: 30279361 PMCID: PMC6213023 DOI: 10.3390/ijms19103009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
An enhanced indoleamine 2,3-dioxygenase 1 (IDO1) activity is associated with an increased mortality risk in sepsis patients. Thus, the preventive inhibition of IDO1 activity may be a promising strategy to attenuate the severity of septic shock. 1-methyltryptophan (1-MT) is currently in the interest of research due to its potential inhibitory effects on IDO1 and immunomodulatory properties. The present study aims to investigate the protective and immunomodulatory effects of 1-methyltryptophan against endotoxin-induced shock in a porcine in vivo model. Effects of 1-MT were determined on lipopolysaccharide (LPS)-induced tryptophan (TRP) degradation, immune response and sickness behaviour. 1-MT increased TRP and its metabolite kynurenic acid (KYNA) in plasma and tissues, suppressed the LPS-induced maturation of neutrophils and increased inactivity of the animals. 1-MT did not inhibit the LPS-induced degradation of TRP to kynurenine (KYN)-a marker for IDO1 activity-although the increase in KYNA indicates that degradation to one branch of the KYN pathway is facilitated. In conclusion, our findings provide no evidence for IDO1 inhibition but reveal the side effects of 1-MT that may result from the proven interference of KYNA and 1-MT with aryl hydrocarbon receptor signalling. These effects should be considered for therapeutic applications of 1-MT.
Collapse
|
17
|
Dannenberger D, Tuchscherer M, Nürnberg G, Schmicke M, Kanitz E. Sea Buckthorn Pomace Supplementation in the Diet of Growing Pigs-Effects on Fatty Acid Metabolism, HPA Activity and Immune Status. Int J Mol Sci 2018; 19:ijms19020596. [PMID: 29466282 PMCID: PMC5855818 DOI: 10.3390/ijms19020596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
There is evidence that sea buckthorn, as a source of n-3 polyunsaturated fatty acids (n-3 PUFA), possesses health-enhancing properties and may modulate neuroendocrine and immune functions. In the present study, we investigated the effect of sea buckthorn pomace (SBP) supplementation in the diet of growing German Landrace pigs on fatty acids in the blood and hypothalamus, peripheral immune parameters and mRNA expression of corticotropin-releasing hormone (CRH), mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hypothalamus and spleen. Pigs were fed diets supplemented with 12% of dried SBP or 0% SBP (control group) over an intervention period of eight weeks. The fatty acid profiles in blood plasma were significantly affected by SBP supplementation only for C18:2n-6 and n-6/n-3 PUFA ratio compared with the control group. SBP supplementation did not significantly affect the fatty acid concentrations in the hypothalamus. Furthermore, there were no significant differences in mRNA expression of CRH, MR and GR in the hypothalamus or of GR mRNA expression in the spleen. Concerning the immune status, the plasma IgG levels tended to be higher in SBP pigs, whereas the leukocyte distribution, mitogen-stimulated lymphocyte proliferation, and serum IgM levels remained unchanged. In conclusion, the SBP supplementation of the diet only caused moderate effects on fatty acid metabolism, but no significant effects on hypothalamic–pituitary–adrenal (HPA) activity and immunity in growing pigs. It seems that a beneficial effect of dietary n-3 PUFA on health and welfare is more likely to be expected during stressful situations.
Collapse
Affiliation(s)
- Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology, Institutes of Muscle Biology and Growth, Behavioural Physiology, and Genetics and Biometry, 18196 Dummerstorf, Wilhelm-Stahl-Allee 2, Germany.
| | - Margret Tuchscherer
- Leibniz Institute for Farm Animal Biology, Institutes of Muscle Biology and Growth, Behavioural Physiology, and Genetics and Biometry, 18196 Dummerstorf, Wilhelm-Stahl-Allee 2, Germany.
| | - Gerd Nürnberg
- Leibniz Institute for Farm Animal Biology, Institutes of Muscle Biology and Growth, Behavioural Physiology, and Genetics and Biometry, 18196 Dummerstorf, Wilhelm-Stahl-Allee 2, Germany.
| | - Marion Schmicke
- University of Veterinary Medicine Hannover, Clinic for Cattle Endocrinology Laboratory, 30173 Hannover, Bischofsholer Damm 15, Germany.
| | - Ellen Kanitz
- Leibniz Institute for Farm Animal Biology, Institutes of Muscle Biology and Growth, Behavioural Physiology, and Genetics and Biometry, 18196 Dummerstorf, Wilhelm-Stahl-Allee 2, Germany.
| |
Collapse
|
18
|
Grueber CE, Gray LJ, Morris KM, Simpson SJ, Senior AM. Intergenerational effects of nutrition on immunity: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2017; 93:1108-1124. [DOI: 10.1111/brv.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Catherine E. Grueber
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- San Diego Zoo Global; PO Box 120551, San Diego CA 92112 U.S.A
| | - Lindsey J. Gray
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
| | - Katrina M. Morris
- The Roslin Institute; The University of Edinburgh; Easter Bush Campus, Midlothian EH25 9RG U.K
| | - Stephen J. Simpson
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
| | - Alistair M. Senior
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
- The University of Sydney, Faculty of Science; School of Mathematics and Statistics; NSW 2006 Australia
| |
Collapse
|
19
|
Xie L, Zhang K, Rasmussen D, Wang J, Wu D, Roemmich JN, Bundy A, Johnson WT, Claycombe K. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring. PLoS One 2017; 12:e0169581. [PMID: 28141871 PMCID: PMC5283658 DOI: 10.1371/journal.pone.0169581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. The study aims to answer whether maternal undernutrition by protein restriction affects the ATM M1 or M2 phenotype under postnatal high fat diet in F1 offspring. Using a rat model of prenatal low protein (LP, 8% protein) diet followed by a postnatal high fat energy diet (HE, 45% fat) or low fat normal energy diet (NE, 10% fat) for 12 weeks, we investigated the effects of these diets on adiposity, programming of the offspring ATM phenotype, and the associated inflammatory response in adipose tissue. Fat mass in newborn and 12-week old LP fed offspring was lower than that of normal protein (20%; NP) fed offspring; however, the adipose tissue growth rate was higher compared to the NP fed offspring. While LP did not affect the number of CD68+ or CD206+ cells in adipose tissue of NE offspring, it attenuated the number of these cells in offspring fed HE. In offspring fed HE, LP offspring had a lower percentage of CD11c+CD206+ ATMs, whose abundancy was correlated with the size of the adipocytes. Noteworthy, similar to HE treatment, LP increased gene expression of IL-6 within ATMs. Two-way ANOVA showed an interaction of prenatal LP and postnatal HE on IL-6 and IL-1β transcription. Overall, both LP and HE diets impact ATM phenotype by affecting the ratio of CD11c+CD206+ ATMs and the expression of IL-6.
Collapse
Affiliation(s)
- Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail: (LX); (KJC)
| | - Ke Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Dane Rasmussen
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Junpeng Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - James N. Roemmich
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - Amy Bundy
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - W. Thomas Johnson
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - Kate Claycombe
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
- * E-mail: (LX); (KJC)
| |
Collapse
|
20
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
21
|
Abstract
Little is known about the effects of undernutrition on the specific muscles and neuronal circuits involved in mastication. The aim of this study was to document the effects of neonatal low-protein diet on masticatory efficiency. Newborn rats whose mothers were fed 17% (nourished (N), n 60) or 8% (undernourished (U), n 56) protein were compared. Their weight was monitored and their masticatory jaw movements were video-recorded. Whole-cell patch-clamp recordings were performed in brainstem slice preparations to investigate the intrinsic membrane properties and N-methyl-d-aspartate-induced bursting characteristics of the rhythmogenic neurons (N, n 43; U, n 39) within the trigeminal main sensory nucleus (NVsnpr). Morphometric analysis (N, n 4; U, n 5) were conducted on masseteric muscles serial cross-sections. Our results showed that undernourished animals had lower numbers of masticatory sequences (P=0·049) and cycles (P=0·045) and slower chewing frequencies (P=0·004) (N, n 32; U, n 28). Undernutrition reduced body weight but had little effect on many basic NVsnpr neuronal electrophysiological parameters. It did, however, affect sag potentials (P<0·001) and rebound firing (P=0·005) that influence firing pattern. Undernutrition delayed the appearance of bursting and reduced the propensity to burst (P=0·002), as well as the bursting frequency (P=0·032). Undernourished animals showed increased and reduced proportions of fibre type IIA (P<0·0001) and IIB (P<0·0001), respectively. In addition, their fibre areas (IIA, P<0·001; IIB, P<0·001) and perimeters (IIA, P<0·001; IIB, P<0·001) were smaller. The changes observed at the behavioural, neuronal and muscular levels suggest that undernutrition reduces chewing efficiency by slowing, weakening and delaying maturation of the masticatory muscles and the associated neuronal circuitry.
Collapse
|
22
|
Jahan-Mihan A, Rodriguez J, Christie C, Sadeghi M, Zerbe T. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring. Nutrients 2015; 7:9185-217. [PMID: 26561832 PMCID: PMC4663588 DOI: 10.3390/nu7115460] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of metabolic syndrome and obesity has been increasing. Pre-natal environment has been suggested as a factor influencing the risk of metabolic syndrome in adulthood. Both observational and experimental studies showed that maternal diet is a major modifier of the development of regulatory systems in the offspring in utero and post-natally. Both protein content and source in maternal diet influence pre- and early post-natal development. High and low protein dams’ diets have detrimental effect on body weight, blood pressure191 and metabolic and intake regulatory systems in the offspring. Moreover, the role of the source of protein in a nutritionally adequate maternal diet in programming of food intake regulatory system, body weight, glucose metabolism and blood pressure in offspring is studied. However, underlying mechanisms are still elusive. The purpose of this review is to examine the current literature related to the role of proteins in maternal diets in development of characteristics of the metabolic syndrome in offspring.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Judith Rodriguez
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Catherine Christie
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Marjan Sadeghi
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Tara Zerbe
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| |
Collapse
|
23
|
Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring. Eur J Nutr 2015; 55:917-30. [PMID: 25903260 DOI: 10.1007/s00394-015-0906-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/09/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE Indirect effects of a high-protein maternal diet are not well understood. In this study, we analyzed short-term and sustainable effects of a prenatal versus early postnatal maternal high-protein diet on growth and hepatic gene expression in mouse offspring. METHODS Dams were exposed to an isoenergetic high-protein (HP, 40 % w/w) diet during pregnancy or lactation. Growth and hepatic expression profiles of male offspring were evaluated directly after weaning and 150 days after birth. Offspring from two dietary groups, high-protein diet during pregnancy and control diet during lactation (HPC), and control diet during pregnancy and high-protein diet during lactation (CHP), were compared with offspring (CC) from control-fed dams. RESULTS Maternal CHP treatment was associated with sustained offspring growth retardation, but decreased numbers of affected hepatic genes in adults compared to weanlings. In contrast, offspring of the HPC group did not show persistent effects on growth parameters, but the number of affected hepatic genes was even increased at adult age. In both dietary groups, however, only a small subset of genes was affected in weanlings as well as in adults. CONCLUSIONS We conclude that (1) prenatal and early postnatal maternal HP diet caused persistent, but (2) different effects and partially complementary trends on growth characteristics and on the hepatic transcriptome and associated pathways and that (3) only a small number of genes and associated upstream regulators might be involved in passing early diet-induced imprints to adulthood.
Collapse
|
24
|
Sedaghat K, Zahediasl S, Ghasemi A. Intrauterine programming. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:212-20. [PMID: 25945232 PMCID: PMC4414985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/07/2014] [Indexed: 11/04/2022]
Abstract
In mammals, the intrauterine condition has an important role in the development of fetal physiological systems in later life. Suboptimal maternal environment can alter the regulatory pathways that determine the normal development of the fetus in utero, which in post-natal life may render the individual more susceptible to cardiovascular or metabolic adult-life diseases. Changes in the intrauterine availability of nutrients, oxygen and hormones can change the fetal tissue developmental regulatory planning, which occurs genomically and non-genomically and can cause permanent structural and functional changes in the systems, leading to diseases in early years of life and those that particularly become overt in adulthood. In this review we take a brief look at the main elements which program the fetal system development and consequently induce a crucial impact on the cardiovascular, nervous and hormonal systems in adulthood.
Collapse
Affiliation(s)
- Katayoun Sedaghat
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Saleh Zahediasl
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,*Corresponding author: Asghar Ghasemi. Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-22432467; Fax: +98-21-22402463;
| |
Collapse
|
25
|
The influence of vitamin B12 supplementation on the level of white blood cells and lymphocytes phenotype in rats fed a low-protein diet. Cent Eur J Immunol 2014; 39:419-25. [PMID: 26155157 PMCID: PMC4439950 DOI: 10.5114/ceji.2014.47723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/13/2014] [Indexed: 12/14/2022] Open
Abstract
Protein malnutrition has a negative effect on body composition and some blood parameters, especially in the young growing organism. One of nutritional factors which could protect against negative consequences of protein deficiency may be B group vitamins. The aim of the study was to investigate the effect of vitamin B12 supplementation on the immune system in rats fed a standard and a low-protein diet. Rats were fed a control (20% of energy from protein) or a protein-deficient diet (4.5% of energy from protein). Half of animals in each group were additionally supplemented with vitamin B12 (300% of the daily intake). The white blood cells analysis and lymphocytes immunophenotyping (number and percentage) were performed. Low-protein diets caused disturbances in WBC and lymphocyte subpopulations in both short- (30-day) as well as long-term periods (90-day). Vitamin B12 supplementation significantly reduced the negative impact of protein malnutrition after 30 days, however had no effect on long-term malnutrition. Furthermore, vitamin B12 addition in rats fed a control diet did not affect the studied parameters. This observation opens the promise of use of vitamin B12 supplementation to improve immune system parameters in protein malnourished organisms.
Collapse
|
26
|
He ZX, Sun ZH, Yang WZ, Beauchemin KA, Tang SX, Zhou CS, Han XF, Wang M, Kang JH, Tan ZL. Effects of maternal protein or energy restriction during late gestation on immune status and responses to lipopolysaccharide challenge in postnatal young goats. J Anim Sci 2014; 92:4856-64. [PMID: 25253814 DOI: 10.2527/jas.2014-7904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Knowledge of maternal malnutrition of ruminants and effects on development of the immune system of their offspring is lacking. A study was conducted to investigate the effects of maternal protein or energy restriction during late gestation on immune status of their offspring at different ages. Sixty-three pregnant goats (local breed, Liuyang black goat, 22.2 ± 1.5 kg at d 90 of gestation) were fed control (CON, ME = 9.34 MJ/kg and CP = 12.5%, DM basis), 40% protein restricted (PR), or 40% energy restricted (ER) diets from d 91 of gestation to parturition, after which all animals received an adequate diet for nutritional recovery. Plasma concentrations of complement components (C3, C4), C-reactive protein (CRP) and immunoglobulins (IgG and IgM), jejunum cytokines (IL-2, IL-6, and IL-10) expression levels and morphology in the offspring were measured. Additionally, plasma concentration of complement and IL-6, and cytokines expression levels in gastrointestinal tract obtained at 6 wk from young goats were assessed under saline or lipopolysaccharide (LPS) challenging conditions. Maternal PR or ER decreased (P < 0.05) plasma C3, C4, IgG, and IgM concentrations, and IL-2 and IL-6 mRNA expression in the jejunum from neonatal kids, but did not alter (P > 0.05) plasma CRP concentration. The IL-10 mRNA expression of jejunum from PR kids was also less (P < 0.01) than that from CON kids. Moreover, jejunum villous height (P < 0.10 in PR, P < 0.05 in ER) and crypt depth (P < 0.05 both in PR and ER) were reduced in neonatal kids from malnourished mothers. At 6 wk of age, there were no differences (P > 0.05) in any plasma or tissue immune parameters among the 3 treatments. However, when given a LPS challenge, ER and PR kids had greater (P = 0.02) IL-6 concentration compared with CON kids. Our results suggest that both PR and ER during late gestation induced short-term as well as long-lasting alterations on immune responses in their offspring, which may make the animals more susceptible to a bacterial pathogen challenge. The present findings expand the existing knowledge in immunological mechanisms responsible for the development of disease in later life.
Collapse
Affiliation(s)
- Z X He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Z H Sun
- College of Animal Sciences and Technology, Southwest University, Chongqing 400715, China
| | - W Z Yang
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - K A Beauchemin
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - S X Tang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - C S Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - X F Han
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - M Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - J H Kang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Z L Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
27
|
Fowden AL, Jellyman JK, Valenzuela OA, Forhead AJ. Nutritional Programming of Intrauterine Development: A Concept Applicable to the Horse? J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2013.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|