1
|
Chan YY, Yang CY, Lin CF, Wang SY, Lin WH, Chiou MT, Lin CN. Pathogenicity and antigenic characterization of a novel highly virulent lineage 3 porcine reproductive and respiratory syndrome virus 2. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:180-188. [PMID: 39721904 DOI: 10.1016/j.jmii.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND/PURPOSE Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen with a negative economic impact on the global swine industry. In 2019, a suspected highly pathogenic strain, NPUST-108-929/2019 (108-929), was isolated from a pig farm in Pingtung with an outbreak of high mortality and analyzed. The characteristics of PRRSV 108-929 have barely been studied. METHODS This study was to evaluate pathogenicity through animal challenge experiments using PRRSV 108-929 and antigenic characterization of this novel PRRSV. RESULTS This PRRSV strain is PRRSV 2, belonging to lineage 3 based on open reading frame 5 sequence analysis. Four putative N-linked glycosylation sites (N32, N35, N44 and N51) are located on glycoprotein 5. Experimental results revealed that high fever occurred at 3 days postinoculation (dpi) in the high-titer inoculation (HIN) group (2 × 104 TCID50/mL), 8 dpi in the high-titer contact (HC) group, 4 dpi in the low-titer inoculation (LIN) group (2 × 103 TCID50/mL) and 9 dpi in the low-titer contact (LC) group. All pigs in each PRRSV 108-929 challenge and contact group showed severe clinical signs, such as high fever (>40.5 °C) and significant weight loss. Deaths occurred only in the HIN group; the survival rate was 60 %. All the piglets except the control group piglets showed high viremia titers (6.04-8.28 log10 copies/μL). CONCLUSION The pathogenic characteristics of PRRSV 108-929 suggest that it is a highly virulent PRRSV strain at both the farm and laboratory levels.
Collapse
Affiliation(s)
- Yon-Yip Chan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Chuen-Fu Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Sheng-Yuan Wang
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Wei-Hao Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Ming-Tang Chiou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Chao-Nan Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
2
|
Chiu HJ, Chang SW, Lin H, Chuang YC, Kuo KL, Lin CH, Chiou MT, Lin CN. Lineage 7 Porcine Reproductive and Respiratory Syndrome Vaccine Demonstrates Cross-Protection Against Lineage 1 and Lineage 3 Strains. Vaccines (Basel) 2025; 13:102. [PMID: 40006649 PMCID: PMC11861173 DOI: 10.3390/vaccines13020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Porcine reproductive and respiratory syndrome virus (PRRSV) has a major impact on swine productivity. Modified-live vaccines (MLVs) are used to aid in control. We investigated the cross-protection provided by a lineage 7 PRRSV MLV against a lineage 1 isolate under laboratory conditions and a lineage 3 challenge under field conditions in Taiwan. Methods: In the first study, thirty PRRS antibody-negative conventional piglets were vaccinated via the intramuscular (IM) or the intradermal (ID) route, with the control group receiving a placebo. Four weeks after immunization, all groups were challenged with a Taiwanese lineage 1 strain. The standard protocol for detection of reversion to virulence was applied to the vaccine strain in the second study, using sixteen specific pathogen-free piglets. In the third study, on an infected pig farm in Taiwan (lineage 3 strain), three hundred piglets were randomly selected and divided into three groups, each injected with either the PrimePac® PRRS vaccine via the IM or the ID route, or a placebo. Results: In the first study, both vaccinated groups demonstrated reduced viraemia compared to the control group. The second study demonstrated that the MLV strain was stable. In the third study, piglet mortality, average daily weight gain, and pig stunting rate were significantly improved in the vaccinated groups compared to the control group. Conclusions: PrimePac® PRRS is safe to use in the field in the face of a heterologous challenge, successfully providing cross-protection against contemporary lineage 1 and lineage 3 PRRSV strains from Taiwan.
Collapse
Affiliation(s)
- Hsien-Jen Chiu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
| | - Shu-Wei Chang
- Intervet Animal Health Taiwan Ltd., Taipei 11047, Taiwan;
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore;
| | - Yi-Chun Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
| | - Kun-Lin Kuo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
| | - Chia-Hung Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
3
|
Fu H, Chen S, Zhang J, Su J, Miao Z, Huang Y, Wan C. Rapid detection of goose megrivirus using TaqMan real-time PCR technology. Poult Sci 2024; 103:103611. [PMID: 38471226 PMCID: PMC11067730 DOI: 10.1016/j.psj.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to develop an efficient and accurate platform for the detection of the newly identified goose megrivirus (GoMV). To achieve this goal, we developed a TaqMan real-time PCR technology for the rapid detection and identification of GoMV. Our data showed that the established TaqMan real-time PCR assay had high sensitivity, with the lowest detection limit of 67.3 copies/μL. No positive signal can be observed from other goose origin viruses (including AIV, GPV, GoCV, GHPyV, and GoAstV), with strong specificity. The coefficients of variation of repeated intragroup and intergroup tests were all less than 1.5%, with excellent repeatability. Clinical sample investigation data from domestic Minbei White geese firstly provided evidence that GoMV can be transmitted both horizontally and vertically. In conclusion, since the TaqMan real-time PCR method has high sensitivity, specificity, and reproducibility, it can be a useful candidate tool for GoMV epidemiological investigation.
Collapse
Affiliation(s)
- Huanru Fu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinpeng Zhang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinbo Su
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
4
|
Improved Quantitative Real-Time PCR Protocol for Detection and Quantification of Methanogenic Archaea in Stool Samples. Microorganisms 2023; 11:microorganisms11030660. [PMID: 36985233 PMCID: PMC10051802 DOI: 10.3390/microorganisms11030660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Methanogenic archaea are an important component of the human and animal intestinal microbiota, and yet their presence is rarely reported in publications describing the subject. One of the methods of quantifying the prevalence of methanogens is quantitative real-time PCR (qPCR) of the methanogen-specific mcrA gene, and one of the possible reasons for detection failure is usually a methodology bias. Here, we refined the existing protocol by changing one of the primers and improving the conditions of the qPCR reaction. As a result, at the expense of a slightly lower yet acceptable PCR efficiency, the new assay was characterized by increased specificity and sensitivity and a wider linear detection range of 7 orders of magnitude. The lowest copy number of mcrA quantified at a frequency of 100% was 21 copies per reaction. The other validation parameters tested, such as reproducibility and linearity, also gave satisfactory results. Overall, we were able to minimize the negative impacts of primer dimerization and other cross-reactions on qPCR and increase the number of not only detectable but also quantifiable stool samples—or in this case, chicken droppings.
Collapse
|
5
|
Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes (Basel) 2022; 13:genes13112007. [PMID: 36360244 PMCID: PMC9690124 DOI: 10.3390/genes13112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid rate of virus transmission and pathogen mutation and evolution highlight the necessity for innovative approaches to the diagnosis and prevention of infectious diseases. Traditional technologies for pathogen detection, mostly PCR-based, involve costly/advanced equipment and skilled personnel and are therefore not feasible in resource-limited areas. Over the years, many promising methods based on clustered regularly interspaced short palindromic repeats and the associated protein systems (CRISPR/Cas), i.e., orthologues of Cas9, Cas12, Cas13 and Cas14, have been reported for nucleic acid detection. CRISPR/Cas effectors can provide one-tube reaction systems, amplification-free strategies, simultaneous multiplex pathogen detection, visual colorimetric detection, and quantitative identification as alternatives to quantitative PCR (qPCR). This review summarizes the current development of CRISPR/Cas-mediated molecular diagnostics, as well as their design software and readout methods, highlighting technical improvements for integrating CRISPR/Cas technologies into on-site applications. It further highlights recent applications of CRISPR/Cas-based nucleic acid detection in livestock industry, including emerging infectious diseases, authenticity and composition of meat/milk products, as well as sex determination of early embryos.
Collapse
|
6
|
Correlation of Neutralizing Antibodies (NAbs) between Sows and Piglets and Evaluation of Protectability Associated with Maternally Derived NAbs in Pigs against Circulating Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) under Field Conditions. Vaccines (Basel) 2021; 9:vaccines9050414. [PMID: 33919161 PMCID: PMC8143086 DOI: 10.3390/vaccines9050414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which is caused by a highly transmissible pathogen called porcine reproductive and respiratory syndrome virus (PRRSV), has caused severe problems, including reproductive disorders in sows and respiratory symptoms in nursery pigs worldwide, since the early 1990s. However, currently available PRRSV vaccines do not supply complete immunity to confront the viral infection. Elicitation of PRRSV-specific neutralizing antibodies (NAbs) during the preinfectious period has been deemed to be a feasible strategy to modulate this virus, especially in farms where nursery pigs are seized with PRRSVs. A total of 180 piglets in a farrow-to-finish farm that had a natural outbreak of PRRS were distributed into three groups based on the different PRRSV NAbs levels in their dams. In the present study, piglets that received superior maternal-transferred NAbs showed delayed and relatively slight viral loads in serum and, on the whole, higher survival rates against wild PRRSV infections. A positive correlation of maternal NAbs between sows and their piglets was identified; moreover, high NAbs titers in piglets can last for at least 4 weeks. These results provide updated information to develop an appropriate immune strategy for breeding and for future PRRSV control under field conditions.
Collapse
|
7
|
Lin CN, Ke NJ, Chiou MT. Cross-Sectional Study on the Sero- and Viral Dynamics of Porcine Circovirus Type 2 in the Field. Vaccines (Basel) 2020; 8:vaccines8020339. [PMID: 32604831 PMCID: PMC7350207 DOI: 10.3390/vaccines8020339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Porcine circovirus-associated diseases (PCVADs) cause considerable economic losses in industrial pork production in the field. To minimize the economic losses due to PCVAD, porcine circovirus type 2 (PCV2) vaccines have been developed, and there is widespread vaccination worldwide today. However, limited information is available concerning the current status of PCV2 infection in the field on the Asian continent. The present study aimed to assess sero- and viral dynamics of PCV2 from 12 PCV2-contaminated pig herds with vaccination against PCV2 in Southern and Central Taiwan. In particular, the level of PCV2 load during the window period for seroconversion using real-time polymerase chain reaction and a commercial enzyme-linked immunosorbent assay (ELISA) kit. Our results revealed that pig herds showed slight or no seroconversion after three to four weeks post-PCV2 immunization. The presence of PCV2 was observed during the window period for seroconversion in all herds. In conclusion, natural exposure of PCV2 occurs in the growing to fattening period, and viremia can last until slaughter. Additionally, our findings indicate that using ELISA showed the level of antibodies and aided in the understanding and surveillance of the current PCV2 status in the field.
Collapse
Affiliation(s)
- Chao-Nan Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (C.-N.L.); (M.-T.C.); Tel.: +886-8-7703202-5047 (C.-N.L.); +886-8-7703202-5057 (M.-T.C.)
| | - Ni-Jyun Ke
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Ming-Tang Chiou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (C.-N.L.); (M.-T.C.); Tel.: +886-8-7703202-5047 (C.-N.L.); +886-8-7703202-5057 (M.-T.C.)
| |
Collapse
|
8
|
Li YC, Chiou MT, Lin CN. Serodynamic Analysis of the Piglets Born from Sows Vaccinated with Modified Live Vaccine or E2 Subunit Vaccine for Classical Swine Fever. Pathogens 2020; 9:pathogens9060427. [PMID: 32485982 PMCID: PMC7350299 DOI: 10.3390/pathogens9060427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/03/2023] Open
Abstract
Classical swine fever (CSF) caused by the CSF virus (CSFV) is one of the most important swine diseases, resulting in huge economic losses to the pig industry worldwide. Systematic vaccination is one of the most effective strategies for the prevention and control of this disease. Two main CSFV vaccines, the modified live vaccine (MLV) and the subunit E2 vaccine, are recommended. In Taiwan, CSF cases have not been reported since 2006, although systemic vaccination has been practiced for 70 years. Here, we examined the sero-dynamics of the piglets born from sows that received either the CSFV MLV or the E2 vaccine and investigated in the field the correlation between the porcine reproductive and respiratory syndrome virus (PRRSV) loads and levels of CSFV antibody. A total of 1398 serum samples from 42 PRRSV-positive farms were evaluated to determine the PRRSV loads by real-time PCR and to detect CSFV antibody levels by commercial ELISA. Upon comparing the two sow vaccination protocols (CSFV MLV vaccination at 4 weeks post-farrowing versus E2 vaccination at 4-5 weeks pre-farrowing), the lowest levels of CSFV antibody were found in piglets at 5-8 and 9-12 weeks of age for the MLV and E2 groups, respectively. Meanwhile, the appropriate time window for CSFV vaccination of offspring was at 5-8 and 9-12 weeks of age in the MLV and E2 groups, respectively. There was a very highly significant negative correlation between the PRRSV load and the level of CSFV antibody in the CSFV MLV vaccination group (P < 0.0001). The PRRSV detection rate in the pigs from the MLV group (27.78%) was significantly higher than that in pigs from the E2 group (21.32%) (P = 0.011). In addition, there was a significant difference (P = 0.019) in the PRRSV detection rate at 5-8 weeks of age between the MLV (42.15%) and E2 groups (29.79%). Our findings indicate that the vaccination of CSFV MLV in piglets during the PRRSV susceptibility period at 5-8 weeks of age may be overloading the piglet's immune system and should be a critical concern for industrial pork production in the field.
Collapse
Affiliation(s)
- Yi-Chia Li
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Tang Chiou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (M.-T.C.); (C.-N.L.); Tel.: +886-8-7703202-5057 (M.-T.C.); +886-8-7703202-5047 (C.-N.L.)
| | - Chao-Nan Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (M.-T.C.); (C.-N.L.); Tel.: +886-8-7703202-5057 (M.-T.C.); +886-8-7703202-5047 (C.-N.L.)
| |
Collapse
|
9
|
Outbreak of Porcine Reproductive and Respiratory Syndrome Virus 1 in Taiwan. Viruses 2020; 12:v12030316. [PMID: 32188123 PMCID: PMC7150920 DOI: 10.3390/v12030316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses in the swine industry worldwide. The PRRS virus (PRRSV) can be divided into two species, PRRSV 1 (European) and PRRSV 2 (North American). In Taiwan, PRRSV 2 isolates are dominant and cause respiratory symptoms in nursing pigs. From October to November 2018, in a pig herd in central Taiwan, pregnant sows had abortions and stillbirths, and piglets suffered from respiratory disorders. Laboratory tests identified the presence of PRRSV 1 in serum from sows and suckling piglets in this scenario. The complete genome of the identified PRRSV 1 strain was genetically closely related to that of a European PRRSV vaccine strain (98.2%). This local European isolate is designated as PRRSV/NPUST-2789-3W-2/TW/2018 (NPUST2789). This report is the first to indicate an outbreak in Taiwan of a PRRSV 1 strain that shares a common evolutionary ancestor with the European PRRSV vaccine strain.
Collapse
|
10
|
Chang Y, Deng Y, Li T, Wang J, Wang T, Tan F, Li X, Tian K. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a. Transbound Emerg Dis 2019; 67:564-571. [PMID: 31541593 DOI: 10.1111/tbed.13368] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/26/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has varied constantly and circulated in the pig industry worldwide. The prevention and control of porcine reproductive and respiratory syndrome (PRRS) is complicated. A visual, sensitive and specific diagnostic method is advantageous to the control of PRRS. The collateral cleavage activity of LwCas13a is activated to degrade non-targeted RNA, when crRNA of LwCas13a bond to target RNA. The enhanced Cas13a detection is the combination of collateral cleavage activity of LwCas13a and recombinase polymerase amplification (RPA). In this study, the enhanced Cas13a detection for PRRSV was established. The novel method was an isothermal detection at 37°C, and the detection can be used for real-time analysis or visual readout. The detection limit of the enhanced Cas13a detection was 172 copies/μl, and there were no cross-reactions with porcine circovirus 2, porcine parvovirus, classical swine fever virus and pseudorabies virus. The enhanced Cas13a detection can work well in clinical samples. In summary, a visual, sensitive and specific nucleic acid detection method based on CRISPR-Cas13a was developed for PRRSV.
Collapse
Affiliation(s)
- Yafei Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yue Deng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tianyu Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Juan Wang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Tongyan Wang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Feifei Tan
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Xiangdong Li
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,National Research Center for Veterinary Medicine, Luoyang, China.,OIE Reference Laboratory for PRRS in China, Beijing, China
| |
Collapse
|
11
|
Lin WH, Shih HC, Wang SY, Lin CF, Yang CY, Chiou MT, Lin CN. Emergence of a virulent porcine reproductive and respiratory syndrome virus in Taiwan in 2018. Transbound Emerg Dis 2019; 66:1138-1141. [PMID: 30884148 PMCID: PMC6850005 DOI: 10.1111/tbed.13173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/14/2023]
Abstract
In March 2018, an abortion storm caused by porcine reproductive and respiratory syndrome virus was confirmed in a farrow‐to‐finish pig herd in Taiwan. Open reading frame 5 and non‐structural protein 2 of the virus confirmed that the virus is closely related to the virulent strains circulating in the United States.
Collapse
Affiliation(s)
- Wei-Hao Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsing-Chun Shih
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sheng-Yuan Wang
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
12
|
Lin WH, Shih HC, Lin CF, Yang CY, Chang YF, Lin CN, Chiou MT. Molecular serotyping of Haemophilus parasuis isolated from diseased pigs and the relationship between serovars and pathological patterns in Taiwan. PeerJ 2018; 6:e6017. [PMID: 30519512 PMCID: PMC6275120 DOI: 10.7717/peerj.6017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022] Open
Abstract
Background Haemophilus parasuis is the etiological agent of Glässer’s disease, and causes severe economic losses in the swine industry. Serovar classification is intended as an indicator of virulence and pathotype and is also crucial for vaccination programs and vaccine development. According to a polysaccharide biosynthesis locus analysis, H. parasuis isolates could be classified by a molecular serotyping assay except serovars 5 and 12 detected by the same primer pair. The aim of this study was to identify H. parasuis isolates from diseased pigs in Taiwan by using a molecular serotyping assay and to analyze the relationship between serovars and pathological patterns. Methods From August 2013 to February 2017, a total of 133 isolates from 277 lesions on 155 diseased animals from 124 infected herds serotyped by multiplex PCR and analyzed with pathological data. Results The dominant serovars of H. parasuis in Taiwan were serovars 5/12 (37.6%), 4 (27.8%) and 13 (15%) followed by molecular serotyping non-typable (MSNT) isolates (13.5%). Nevertheless, the serovar-specific amplicons were not precisely the same sizes as previously indicated in the original publication, and MSNT isolates appeared with unexpected amplicons or lacked serovar-specific amplicons. Most H. parasuis isolates were isolated from nursery pigs infected with porcine reproductive and respiratory syndrome virus. The percentage of lung lesions (30.4%) showing H. parasuis infection was significantly higher than that of serosal lesions. Discussion Collectively, the distribution of serovars in Taiwan is similar to that found in other countries, but MSNT isolates remain due to genetic variations. Furthermore, pulmonary lesions may be optimum sites for H. parasuis isolation, the diagnosis of Glässer’s disease, and may also serve as points of origin for systemic H. parasuis infections in hosts.
Collapse
Affiliation(s)
- Wei-Hao Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsing-Chun Shih
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, NY, USA
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
13
|
Faisal F, Widayanti R, Haryanto A, Tabu CR. Molecular identification and genetic diversity of open reading frame 7 field isolated porcine reproductive and respiratory syndrome in North Sumatera, Indonesia, in the period of 2008-2014. Vet World 2016; 8:875-80. [PMID: 27047168 PMCID: PMC4774680 DOI: 10.14202/vetworld.2015.875-880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/13/2015] [Accepted: 06/22/2015] [Indexed: 11/16/2022] Open
Abstract
AIM Molecular identification and genetic diversity of open reading frame 7 (ORF7) of field isolated porcine reproductive and respiratory syndrome virus (PRRSV) in North Sumatera, Indonesia, in the period of 2008-2014. MATERIALS AND METHODS A total of 47 PRRSV samples were collected from the death case of pigs. The samples were collected from different districts in the period of 2008-2014 from North Sumatera province. Two pairs of primer were designed to amplify ORF7 of Type 1 and 2 PRRSV based on the sequence of reference viruses VR2332 and Lelystad. Viral RNAs were extracted from samples using PureLink™ micro-to-Midi total RNA purification system (Invitrogen). To amplify the ORF7 of PRRSV, the synthesis cDNA and DNA amplification were performed by reverse transcription polymerase chain reaction (RT-PCR) and nested PCR method. Then the DNA sequencing of PCR products and phylogenetic analysis were accomplished by molecular evolutionary genetics analysis version 6.0 software program. RESULTS RT-: PCR and nested PCR used in this study had successfully detected of 18 samples positive PRRS virus with the amplification products at 703bp and 508bp, respectively. Sequencing of the ORF7 shows that 18 PRRS viruses isolated from North Sumatera belonged to North American (NA). JXA1 Like and classic NA type viruses. Several mutations were detected, particularly in the area of nuclear localization signal (NLS1) and in NLS2. In the local viruses, which were related closed to JXA1 virus; there are two differences in amino acids in position 12 and 43 of ORF7. Our tested viruses showed that the amino acid positions 12 and 43 are Asparagine and Arginine, while the reference virus (VR2332, Lelystad, and JXA1) occupied both by Lysine. Based on differences in two amino acids at position 12 and 43 showed that viruses from North Sumatera has its own uniqueness and related closed to highly pathogenic PRRS (HP-PRRS) virus (JXA1). CONCLUSION The results demonstrated that North Sumatera type PRRS virus has caused PRRS outbreaks in pig in North Sumatera between 2008 and 2014. The JAX1 like viruses had unique amino acid residue in position 12 and 43 of asparagine and lysine, and these were genetic determinants of North Sumatera viruses compared to other PRRS viruses.
Collapse
Affiliation(s)
- Faisal Faisal
- Department of Veterinary Science, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia; Department of Molecular Biology, Animal Disease Investigation Centre of Medan, North Sumatera, Indonesia
| | - Rini Widayanti
- Department of Biochemistry, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Aris Haryanto
- Department of Biochemistry, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Charles Rangga Tabu
- Department of Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Polyamine-oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics. Future Med Chem 2015; 7:1733-49. [PMID: 26424049 DOI: 10.4155/fmc.15.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemical modification and/or the conjugation of small functional molecules to oligonucleotides have significantly improved their biological and biophysical properties, addressing issues such as poor cell penetration, stability to nucleases and low affinity for their targets. Here, the authors review the literature reporting on the biophysical, biochemical and biological properties of one particular class of modification - polyamine-oligonucleotide conjugates. Naturally derived and synthetic polyamines have been grafted onto a variety of oligonucleotide formats, including antisense oligonucleotides and siRNAs. In many cases this has had beneficial effects on their properties such as target hybridization, nuclease resistance, cellular uptake and activity. Polyamine-oligonucleotide conjugation, therefore, represents a promising direction for the further development of oligonucleotide-based therapeutics and tools.
Collapse
|
15
|
Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta 2014; 439:231-50. [PMID: 25451956 DOI: 10.1016/j.cca.2014.10.017] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/28/2022]
Abstract
Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review.
Collapse
Affiliation(s)
- E Navarro
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - G Serrano-Heras
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - M J Castaño
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - J Solera
- Internal Medicine Department, General University Hospital, Hermanos Falcó 37, 02006 Albacete, Spain.
| |
Collapse
|