1
|
Ling L, Li R, Xu M, Zhou J, Hu M, Zhang X, Zhang XJ. Species differences of fatty liver diseases: comparisons between human and feline. Am J Physiol Endocrinol Metab 2025; 328:E46-E61. [PMID: 39636211 DOI: 10.1152/ajpendo.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most widespread chronic liver disease that poses significant threats to public health due to changes in dietary habits and lifestyle patterns. The transition from simple steatosis to nonalcoholic steatohepatitis (NASH) markedly increases the risk of developing cirrhosis, hepatocellular carcinoma, and liver failure in patients. However, there is only one Food and Drug Administration-approved therapeutic drug in the world, and the clinical demand is huge. There is significant clinical heterogeneity among patients with NAFLD, and it is challenging to fully understand human NAFLD using only a single animal model. Interestingly, felines, like humans, are particularly prone to spontaneous fatty liver disease. This review summarized and compared the etiology, clinical features, pathological characteristics, and molecular pathogenesis between human fatty liver and feline hepatic lipidosis (FHL). We analyzed the key similarities and differences between those two species, aiming to provide theoretical foundations for developing effective strategies for the treatment of NAFLD in clinics.
Collapse
Affiliation(s)
- Like Ling
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Ruilin Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Mengqiong Xu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Junjie Zhou
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Manli Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xin Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Owczarek A, Gieczewska KB, Polanska M, Paterczyk B, Gruza A, Winiarska K. Melatonin Lowers HIF-1α Content in Human Proximal Tubular Cells (HK-2) Due to Preventing Its Deacetylation by Sirtuin 1. Front Physiol 2021; 11:572911. [PMID: 33519498 PMCID: PMC7841413 DOI: 10.3389/fphys.2020.572911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Although melatonin is widely known for its nephroprotective properties, there are no reports clearly pointing at its impact on the activity of hypoxia-inducible factor-1 (HIF-1), the main mediator of metabolic responses to hypoxia, in kidneys. The aim of the present study was to elucidate how melatonin affects the expression of the regulatory subunit HIF-1α in renal proximal tubules. HK-2 cells, immortalized human proximal tubular cells, were cultured under hypoxic conditions (1% O2). Melatonin was applied at 100 μM concentration. Protein and mRNA contents were determined by Western blot and RT-qPCR, respectively. HIF-1α acetylation level was established by means of immunoprecipitation followed by Western blot. Melatonin receptors MT1 and MT2 localization in HK-2 cells was visualized using immunofluorescence confocal analysis. It was found that melatonin in HK-2 cells (1) lowered HIF-1α protein, but not mRNA, content; (2) attenuated expression of HIF-1 target genes; (3) increased HIF-1α acetylation level; and (4) diminished sirtuin 1 expression (both protein and mRNA). Sirtuin 1 involvement in the regulation of HIF-1α level was confirmed applying cells with silenced Sirt1 gene. Moreover, the presence of membrane MT1 and MT2 receptors was identified in HK-2 cells and their ligand, ramelteon, turned out to mimic melatonin action on both HIF-1α and sirtuin 1 levels. Thus, it is concluded that the mechanism of melatonin-evoked decline in HIF-1α content in renal proximal tubular cells involves increased acetylation of this subunit which results from the attenuated expression of sirtuin 1, an enzyme reported to deacetylate HIF-1α. This observation provides a new insight to the understanding of melatonin action in kidneys.
Collapse
Affiliation(s)
- Aleksandra Owczarek
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Katarzyna B Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Marta Polanska
- Department of Animal Physiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw, Warsaw, Poland
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Gruza
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
The association between left ventricular mass index and serum sirtuin 3 level in patients with hypertension. Cardiovasc Endocrinol Metab 2020; 10:99-105. [PMID: 34113795 DOI: 10.1097/xce.0000000000000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022]
Abstract
Objectives Sirtuin 3 (SIRT3) can protect cardiomyocytes from oxidative stress-mediated cell damage and prevent cardiac hypertrophy development. The aim of this study was to evaluate whether a relationship existed between left ventricular mass index (LVMI) and serum SIRT3 levels in patients with hypertension. Patients and methods This study was conducted as a cross-sectional study of 83 patients between April 2018 and October 2018. The LVMI of all patients was calculated using the formula of the American Echocardiography Association and patients were divided into two groups according to results (increased LVMI and normal LVMI). Results Increased LVMI was determined in 37.3% of patients, whereas 62.7% had normal LVMI. There was no significant difference between serum SIRT3 levels between those with increased LVMI and normal LVMI (5.8 versus 5.4 ng/ml; P = 0.914). Serum pro-brain natriuretic peptide levels (69 versus 41 ng/ml; P = 0.019) were found to be higher in patients with increased LVMI than in those with normal LVMI. A positive correlation between SIRT3 levels and Sm (myocardial systolic) velocity was also determined (r = 0.338; P = 0.002). Conclusion The serum levels of SIRT3, a molecule which has been proposed to have protective properties against myocardial hypertrophy, were not found to be correlated with LVMI values; however, SIRT3 levels were found to be correlated with Sm velocity, which is accepted to be an indicator of myocardial early diastolic dysfunction.
Collapse
|
4
|
Guarino M, Dufour JF. Nicotinamide and NAFLD: Is There Nothing New Under the Sun? Metabolites 2019; 9:E180. [PMID: 31510030 PMCID: PMC6780119 DOI: 10.3390/metabo9090180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) has a critical role in cellular metabolism and energy homeostasis. Its importance has been established early with the discovery of NAD's therapeutic role for pellagra. This review addresses some of the recent findings on NAD physiopathology and their effects on nonalcoholic fatty liver disease (NAFLD) pathogenesis, which need to be considered in the search for a better therapeutic approach. Reduced NAD concentrations contribute to the dysmetabolic imbalance and consequently to the pathogenesis of NAFLD. In this perspective, the dietary supplementation or the pharmacological modulation of NAD levels appear to be an attractive strategy. These reviewed studies open the doors to growing interest in NAD metabolism for NAFLD diagnosis, prevention, and treatment. Future rigorous clinical studies in humans will be necessary to validate these preliminary but promising results.
Collapse
Affiliation(s)
- Maria Guarino
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland.
- Gastroenterology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy.
| | - Jean-François Dufour
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland.
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, 3008 Bern, Switzerland.
| |
Collapse
|
5
|
The Association between SIRT1 Genetic Variation and Type 2 Diabetes Mellitus Is Influenced by Dietary Intake in Elderly Chinese. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1272-1280. [PMID: 30320001 PMCID: PMC6174046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To examine whether polymorphisms of SIRT1 and dietary product intake can be implicated in type 2 diabetes mellitus (T2DM). METHODS In this community-based, case-control study, 568 subjects (284 patients and 284 controls) were enrolled in a community located in northern Guangzhou, China. The four polymorphisms of SIRT1 (rs4746720, rs10509291, rs2236319, rs10823116) were examined using TaqMan nuclease technology. The dietary data were collected by an inquiring officer through face-to-face method. RESULTS The rs4746720 CC+TT genotype had higher risk compared with CT genotype to develop T2DM [odds ratio (OR) =1.42, 95% confidence interval (CI) = 1.02-1.97]. The subjects with rs4746720 CC+TT genotype and eat sugar food over 30g per day increased the risk of T2DM to 2.22(1.21-4.06) times. The subjects with rs4746720 CC+TT genotype and smoking increased the risk of T2DM to 1.65 (1.10-2.47) times. The unhealthy eating habits such as red meat, salty food, use animal fat yielded higher risks of T2DM, the OR of risk of T2DM was 2.89 (1.38-6.01), 2.73 (1.61-4.64) and 27.91(9.24-84.32) respectively. However, the milk, soy, white meat, vegetables and low-salt diet decreased the risk of T2DM, the OR of risk of T2DM was 0.51 (0.29-0.88), 0.43 (0.26-0.74), 0.51(0.32-0.83), 0.21(0.10-0.44), 0.28(0.12-0.65), 0.35(0.21-0.51) respectively. CONCLUSION Variants in SIRT1 with rs4746720 CC+TT genotype increased the risk of T2DM, especially with the unhealthy eating habits.
Collapse
|
6
|
Yoshimura K, Matsuu A, Sasaki K, Momoi Y. Detection of Sirtuin-1 protein expression in peripheral blood leukocytes in dogs. J Vet Med Sci 2018; 80:1068-1076. [PMID: 29760313 PMCID: PMC6068298 DOI: 10.1292/jvms.17-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sirtuin-1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase with a large number of protein substrates. It has attracted a lot of attention in
association with extending lifespan. The objective of this study was to enable the evaluation of SIRT1 expression in peripheral blood mononuclear cells (PBMCs) from dogs by flow cytometry.
Three transcript variants were amplified from PBMCs by reverse transcription PCR and the nucleotide sequences were analyzed. On the basis of deduced amino acid sequence, a monoclonal
antibody against human SIRT1, 1F3, was selected to detect canine SIRT1. Canine SIRT1 in peripheral blood mononuclear cells was successfully detected by western blotting using this antibody.
Intracellular canine SIRT1 was also detected in permeabilized 293T cells transfected with a canine SIRT1 expression plasmid by flow cytometry using this antibody. SIRT1 was detected in all
leukocyte subsets including lymphocytes, granulocytes and monocytes. The expression level was markedly different among individual dogs. These results indicated that the method applied in
this study is useful for evaluating canine SIRT1 levels in PBMCs from dogs.
Collapse
Affiliation(s)
- Kuniko Yoshimura
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kai Sasaki
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yasuyuki Momoi
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
7
|
Wei L, Yao M, Zhao Z, Jiang H, Ge S. High-fat diet aggravates postoperative cognitive dysfunction in aged mice. BMC Anesthesiol 2018; 18:20. [PMID: 29439655 PMCID: PMC5812108 DOI: 10.1186/s12871-018-0482-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background Silent Information Regulator 1 (Sirt1) and apoptosis play key roles in postoperative cognitive dysfunction (POCD). Consuming a high-fat diet (HFD), a prevalent type of diet in modern society, has been increasingly recognized as contributing to neurodegenerative diseases. Although Sirt1 and apoptosis are significant responders to HFD in the brain, little is known regarding the functional correlations between HFD and POCD. Methods Thirty-two aged C57BL/6 male mice were randomly divided into 2 groups: an ad libitum (AL) group (fed a regular diet) and high-fat diet (HF) group (fed a high-fat diet). After 8 weeks, the animals were divided into four sub-groups: an ad libitum control (ALC) group, ad libitum surgery (ALS) group, high-fat diet control (HFC) group, and high-fat diet surgery (HFS) group. The ALS and HFS groups were exposed to 3% sevoflurane in 33% oxygen for 3 h and were subsequently subjected to exploratory surgery to establish the POCD model. The ALC and HFC groups were treated with 33% oxygen for 3 h without surgery. After 48 h, the learning and memory abilities of mice in each group were tested using the Morris water maze (MWM). The expression levels of Sirt1, Bcl-2, Bax and caspase-3 cleaved were detected by western blot. Results The MWM and western blotting results showed that the learning and memory abilities were decreased in the HFC group compared with the ALC group. The learning and memory abilities and the expression of Sirt1 in the hippocampus in the HFS group were significantly decreased compared with the other groups. A significant decrease in Sirt1 expression was also observed in the HFC group compared with the ALS group. The level of Bcl-2 was lower in the HFS group than in the HFC and ALC groups. The expression levels of caspase-3 cleaved and Bax increased in the HFS group compared with the HFC group. Moreover, the expression of caspase-3 cleaved was higher in the HFC group than in the ALS group. Conclusion HFD can aggravate POCD in aged C57BL/6 mice, an effect that may be related to the inhibition expression of Sirt1 and the promotion of neuronal apoptosis.
Collapse
Affiliation(s)
- Lan Wei
- Department of Anesthesia, Zhongshan Hospital Qingpu Branch affiliated to Fudan University, Shanghai, China
| | - Minmin Yao
- Department of Anesthesia, Zhongshan Hospital affiliated to Fudan University, Shanghai, China
| | - Zhimeng Zhao
- Department of Anesthesia, Zhongshan Hospital affiliated to Fudan University, Shanghai, China
| | - Hui Jiang
- Department of Anesthesia, Zhongshan Hospital Qingpu Branch affiliated to Fudan University, Shanghai, China.
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Drew JE, Farquharson AJ, Horgan GW, Williams LM. Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding. J Nutr Biochem 2016; 37:20-29. [PMID: 27592202 DOI: 10.1016/j.jnutbio.2016.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/16/2016] [Accepted: 07/15/2016] [Indexed: 01/21/2023]
Abstract
The sirtuin (SIRT)/nicotinamide adenine dinucleotide (NAD) system is implicated in development of type 2 diabetes (T2D) and diet-induced obesity, a major risk factor for T2D. Mechanistic links have not yet been defined. SIRT/NAD system gene expression and NAD/NADH levels were measured in liver, white adipose tissue (WAT) and skeletal muscle from mice fed either a low-fat diet or high-fat diet (HFD) for 3 days up to 16 weeks. An in-house custom-designed multiplex gene expression assay assessed all 7 mouse SIRTs (SIRT1-7) and 16 enzymes involved in conversion of tryptophan, niacin, nicotinamide riboside and metabolic precursors to NAD. Significantly altered transcription was correlated with body weight, fat mass, plasma lipids and hormones. Regulation of the SIRT/NAD system was associated with early (SIRT4, SIRT7, NAPRT1 and NMNAT2) and late phases (NMNAT3, NMRK2, ABCA1 and CD38) of glucose intolerance. TDO2 and NNMT were identified as markers of HFD consumption. Altered regulation of the SIRT/NAD system in response to HFD was prominent in liver compared with WAT or muscle. Multiple components of the SIRTs and NAD biosynthetic enzymes network respond to consumption of dietary fat. Novel molecular targets identified above could direct strategies for dietary/therapeutic interventions to limit metabolic dysfunction and development of T2D.
Collapse
Affiliation(s)
- Janice E Drew
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, Scotland.
| | - Andrew J Farquharson
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, Scotland
| | - Graham W Horgan
- Biomathematics and Statistics Scotland, Aberdeen AB21 9SB, Scotland
| | - Lynda M Williams
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, Scotland
| |
Collapse
|
9
|
Favero G, Franceschetti L, Rodella LF, Rezzani R. Sirtuins, aging, and cardiovascular risks. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9804. [PMID: 26099749 PMCID: PMC4476976 DOI: 10.1007/s11357-015-9804-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/12/2015] [Indexed: 05/17/2023]
Abstract
The sirtuins comprise a highly conserved family proteins present in virtually all species from bacteria to mammals. Sirtuins are members of the highly conserved class III histone deacetylases, and seven sirtuin genes (sirtuins 1-7) have been identified and characterized in mammals. Sirtuin activity is linked to metabolic control, apoptosis, cell survival, development, inflammation, and healthy aging. In this review, we summarize and discuss the potential mutual relations between each sirtuin and cardiovascular health and the impact of sirtuins on oxidative stress and so age-related cardiovascular disorders, underlining the possibility that sirtuins will be novel targets to contrast cardiovascular risks induced by aging.
Collapse
Affiliation(s)
- Gaia Favero
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- />Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, Brescia, Italy
| | - Rita Rezzani
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- />Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, Brescia, Italy
| |
Collapse
|
10
|
Ishikawa S, Takemitsu H, Habara M, Mori N, Yamamoto I, Arai T. Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory cytokine expression in cat fibroblast cells. J Vet Med Sci 2015; 77:1681-4. [PMID: 26165138 PMCID: PMC4710730 DOI: 10.1292/jvms.15-0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor κB (NF-κB) is a key factor in the development of chronic inflammation and
is deeply involved in age-related and metabolic diseases development. These diseases have
become a serious problem in cats. Sirtuin 1 (SIRT1) is associated with aging and
metabolism through maintaining inflammation via NF-κB. In addition, fibroblasts are
considered an important factor in the development of chronic inflammation. Therefore, we
aimed to examine the effect of cat SIRT1 (cSIRT1) on NF-κB in cat fibroblast cells. The
up-regulation of NF-κB transcriptional activity and pro-inflammatory cytokine mRNA
expression by p65 subunit of NF-κB and lipopolysaccharide was suppressed by cSIRT1 in cat
fibroblast cells. Our findings show that cSIRT1 is involved in the suppression of
inflammation in cat fibroblast cells.
Collapse
Affiliation(s)
- Shingo Ishikawa
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Shao D, Fry JL, Han J, Hou X, Pimentel DR, Matsui R, Cohen RA, Bachschmid MM. A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress. J Biol Chem 2014; 289:7293-306. [PMID: 24451382 DOI: 10.1074/jbc.m113.520403] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sirtuin-1 (SirT1), a member of the NAD(+)-dependent class III histone deacetylase family, is inactivated in vitro by oxidation of critical cysteine thiols. In a model of metabolic syndrome, SirT1 activation attenuated apoptosis of hepatocytes and improved liver function including lipid metabolism. We show in SirT1-overexpressing HepG2 cells that oxidants (nitrosocysteine and hydrogen peroxide) or metabolic stress (high palmitate and high glucose) inactivated SirT1 by reversible oxidative post-translational modifications (OPTMs) on three cysteines. Mutating these oxidation-sensitive cysteines to serine preserved SirT1 activity and abolished reversible OPTMs. Overexpressed mutant SirT1 maintained deacetylase activity and attenuated proapoptotic signaling, whereas overexpressed wild type SirT1 was less protective in metabolically or oxidant-stressed cells. To prove that OPTMs of SirT1 are glutathione (GSH) adducts, glutaredoxin-1 was overexpressed to remove this modification. Glutaredoxin-1 overexpression maintained endogenous SirT1 activity and prevented proapoptotic signaling in metabolically stressed HepG2 cells. The in vivo significance of oxidative inactivation of SirT1 was investigated in livers of high fat diet-fed C57/B6J mice. SirT1 deacetylase activity was decreased in the absence of changes in SirT1 expression and associated with a marked increase in OPTMs. These results indicate that glutathione adducts on specific SirT1 thiols may be responsible for dysfunctional SirT1 associated with liver disease in metabolic syndrome.
Collapse
Affiliation(s)
- Di Shao
- From the Vascular Biology Section and
| | | | | | | | | | | | | | | |
Collapse
|