1
|
Idriss S, Hallal M, El-Kurdi A, Zalzali H, El-Rassi I, Ehli EA, Davis CM, Chung PED, Gendoo DMA, Zacksenhaus E, Saab R, Khoueiry P. A temporal in vivo catalog of chromatin accessibility and expression profiles in pineoblastoma reveals a prevalent role for repressor elements. Genome Res 2023; 33:269-282. [PMID: 36650051 PMCID: PMC10069464 DOI: 10.1101/gr.277037.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Pediatric pineoblastomas (PBs) are rare and aggressive tumors of grade IV histology. Although some oncogenic drivers are characterized, including germline mutations in RB1 and DICER1, the role of epigenetic deregulation and cis-regulatory regions in PB pathogenesis and progression is largely unknown. Here, we generated genome-wide gene expression, chromatin accessibility, and H3K27ac profiles covering key time points of PB initiation and progression from pineal tissues of a mouse model of CCND1-driven PB. We identified PB-specific enhancers and super-enhancers, and found that in some cases, the accessible genome dynamics precede transcriptomic changes, a characteristic that is underexplored in tumor progression. During progression of PB, newly acquired open chromatin regions lacking H3K27ac signal become enriched for repressive state elements and harbor motifs of repressor transcription factors like HINFP, GLI2, and YY1. Copy number variant analysis identified deletion events specific to the tumorigenic stage, affecting, among others, the histone gene cluster and Gas1, the growth arrest specific gene. Gene set enrichment analysis and gene expression signatures positioned the model used here close to human PB samples, showing the potential of our findings for exploring new avenues in PB management and therapy. Overall, this study reports the first temporal and in vivo cis-regulatory, expression, and accessibility maps in PB.
Collapse
Affiliation(s)
- Salam Idriss
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdullah El-Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hasan Zalzali
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Inaam El-Rassi
- Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Philip E D Chung
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deena M A Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, United Kingdom
| | - Eldad Zacksenhaus
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; .,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
2
|
Li YP, Wang YT, Wang W, Zhang X, Shen RJ, Jin K, Jin LW, Jin ZB. Second hit impels oncogenesis of retinoblastoma in patient-induced pluripotent stem cell-derived retinal organoids: direct evidence for Knudson's theory. PNAS NEXUS 2022; 1:pgac162. [PMID: 36714839 PMCID: PMC9802398 DOI: 10.1093/pnasnexus/pgac162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Retinoblastoma (Rb) is a type of malignant tumor due to abnormal retinogenesis with biallelic mutations of the RB1 gene. Its pathogenesis has been proposed as a "two-mutation hypothesis" by Knudson since 1971; however, there remain some debates on disease onset sufficiency of the biallelic RB1 mutations. To obtain straightforward evidence for this hypothesis, we investigated whether two-hit mutations of the RB1 gene drive tumorigenesis in patient-induced pluripotent stem cell (hiPSC)-derived human retinal organoids (hROs) and whether single allelic mutation hiPSC-derived hROs exhibit molecular and cellular defects. We generated hiPSCs with a heterozygous germline mutation (RB1m1/ wt ) from a Rb patient. A second-allele RB1 gene mutation was knocked in to produce compound heterozygous mutations (RB1m1/m2 ) in the hiPSCs. These two hiPSC lines were independently developed into hROs through a stepwise differentiation. The hiPSC-RB1m1/m2 derived organoids demonstrated tumorigenesis in dishes, consistent with Rb profiles in spatiotemporal transcriptomes, in which developmentally photoreceptor fate-determining markers, CRX and OTX2, were highly expressed in hiPSC-RB1m1/m2 derived hROs. Additionally, ARR3+ maturing cone precursors were co-labeled with proliferative markers Ki67 or PCNA, in agreement with the consensus that human Rb is originated from maturing cone precursors. Finally, we demonstrated that retinal cells of hROs with monoallelic RB1 mutation were abnormal in molecular aspects due to its haploinsufficiency. In conclusion, this study provides straightforward supporting evidence in a way of reverse genetics for "two-hit hypothesis" in the Rb tumorigenesis and opens new avenues for development of early intervention and treatment of Rb.
Collapse
Affiliation(s)
- Yan-Ping Li
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ya-Ting Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Li-Wen Jin
- Quanzhou Aier Eye Hospital, Quanzhou 362017, China
| | | |
Collapse
|
3
|
Wang Z, Cormier RT. Golden Syrian Hamster Models for Cancer Research. Cells 2022; 11:2395. [PMID: 35954238 PMCID: PMC9368453 DOI: 10.3390/cells11152395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The golden Syrian hamster (Mesocricetus auratus) has long been a valuable rodent model of human diseases, especially infectious and metabolic diseases. Hamsters have also been valuable models of several chemically induced cancers such as the DMBA-induced oral cheek pouch cancer model. Recently, with the application of CRISPR/Cas9 genetic engineering technology, hamsters can now be gene targeted as readily as mouse models. This review describes the phenotypes of three gene-targeted knockout (KO) hamster cancer models, TP53, KCNQ1, and IL2RG. Notably, these hamster models demonstrate cancer phenotypes not observed in mouse KOs. In some cases, the cancers that arise in the KO hamster are similar to cancers that arise in humans, in contrast with KO mice that do not develop the cancers. An example is the development of aggressive acute myelogenous leukemia (AML) in TP53 KO hamsters. The review also presents a discussion of the relative strengths and weaknesses of mouse cancer models and hamster cancer models and argues that there are no perfect rodent models of cancer and that the genetically engineered hamster cancer models can complement mouse models and expand the suite of animal cancer models available for the development of new cancer therapies.
Collapse
Affiliation(s)
- Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Robert T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|
4
|
MYCN induces cell-specific tumorigenic growth in RB1-proficient human retinal organoid and chicken retina models of retinoblastoma. Oncogenesis 2022; 11:34. [PMID: 35729105 PMCID: PMC9213451 DOI: 10.1038/s41389-022-00409-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Retinoblastoma is a rare, intraocular paediatric cancer that originates in the neural retina and is most frequently caused by bi-allelic loss of RB1 gene function. Other oncogenic mutations, such as amplification and increased expression of the MYCN gene, have been found even with proficient RB1 function. In this study, we investigated whether MYCN over-expression can drive carcinogenesis independently of RB1 loss-of-function mutations. The aim was to elucidate the events that result in carcinogenesis and identify the cancer cell-of-origin. We used the chicken retina, a well-established model for studying retinal neurogenesis, and established human embryonic stem cell-derived retinal organoids as model systems. We over-expressed MYCN by electroporation of piggyBac genome-integrating expression vectors. We found that over-expression of MYCN induced tumorigenic growth with high frequency in RB1-proficient chicken retinas and human organoids. In both systems, the tumorigenic cells expressed markers for undifferentiated cone photoreceptor/horizontal cell progenitors. The over-expression resulted in metastatic retinoblastoma within 7–9 weeks in chicken. Cells expressing MYCN could be grown in vitro and, when orthotopically injected, formed tumours that infiltrated the sclera and optic nerve and expressed markers for cone progenitors. Investigation of the tumour cell phenotype determined that the potential for neoplastic growth was embryonic stage-dependent and featured a cell-specific resistance to apoptosis in the cone/horizontal cell lineage, but not in ganglion or amacrine cells. We conclude that MYCN over-expression is sufficient to drive tumorigenesis and that a cell-specific resistance to apoptosis in the cone/horizontal cell lineage mediates the cancer phenotype. ![]()
Collapse
|
5
|
Alfonsetti M, Castelli V, d’Angelo M, Benedetti E, Allegretti M, Barboni B, Cimini A. Looking for In Vitro Models for Retinal Diseases. Int J Mol Sci 2021; 22:10334. [PMID: 34638674 PMCID: PMC8508697 DOI: 10.3390/ijms221910334] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Retina is a layered structure of the eye, composed of different cellular components working together to produce a complex visual output. Because of its important role in visual function, retinal pathologies commonly represent the main causes of visual injury and blindness in the industrialized world. It is important to develop in vitro models of retinal diseases to use them in first screenings before translating in in vivo experiments and clinics. For this reason, it is important to develop bidimensional (2D) models that are more suitable for drug screening and toxicological studies and tridimensional (3D) models, which can replicate physiological conditions, for investigating pathological mechanisms leading to visual loss. This review provides an overview of the most common retinal diseases, relating to in vivo models, with a specific focus on alternative 2D and 3D in vitro models that can replicate the different cellular and matrix components of retinal layers, as well as injury insults that induce retinal disease and loss of the visual function.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | | | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
6
|
Abstract
Perfectly orchestrated periodic gene expression during cell cycle progression is essential for maintaining genome integrity and ensuring that cell proliferation can be stopped by environmental signals. Genetic and proteomic studies during the past two decades revealed remarkable evolutionary conservation of the key mechanisms that control cell cycle-regulated gene expression, including multisubunit DNA-binding DREAM complexes. DREAM complexes containing a retinoblastoma family member, an E2F transcription factor and its dimerization partner, and five proteins related to products of Caenorhabditis elegans multivulva (Muv) class B genes lin-9, lin-37, lin-52, lin-53, and lin-54 (comprising the MuvB core) have been described in diverse organisms, from worms to humans. This review summarizes the current knowledge of the structure, function, and regulation of DREAM complexes in different organisms, as well as the role of DREAM in human disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hayley Walston
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA;
| | - Audra N Iness
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Larisa Litovchick
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA; .,Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.,Massey Cancer Center, Richmond, Virginia 23298, USA
| |
Collapse
|
7
|
Linn P, Kohno S, Sheng J, Kulathunga N, Yu H, Zhang Z, Voon D, Watanabe Y, Takahashi C. Targeting RB1 Loss in Cancers. Cancers (Basel) 2021; 13:cancers13153737. [PMID: 34359636 PMCID: PMC8345210 DOI: 10.3390/cancers13153737] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Irreversible defects in RB1 tumor suppressor functions often predict poor outcomes in cancer patients. However, the RB1-defecient status can be a benefit as well for them, as it generates a variety of vulnerabilities induced through the upregulation of RB1 targets, relief from functional restrictions due to RB1 binding, presence of genes whose inactivation cause synthetic lethality with RB1 loss, or collateral synthetic lethality owing to simultaneous loss of neighboring genes. Abstract Retinoblastoma protein 1 (RB1) is encoded by a tumor suppressor gene that was discovered more than 30 years ago. Almost all mitogenic signals promote cell cycle progression by braking on the function of RB1 protein through mono- and subsequent hyper-phosphorylation mediated by cyclin-CDK complexes. The loss of RB1 function drives tumorigenesis in limited types of malignancies including retinoblastoma and small cell lung cancer. In a majority of human cancers, RB1 function is suppressed during tumor progression through various mechanisms. The latter gives rise to the acquisition of various phenotypes that confer malignant progression. The RB1-targeted molecules involved in such phenotypic changes are good quarries for cancer therapy. Indeed, a variety of novel therapies have been proposed to target RB1 loss. In particular, the inhibition of a number of mitotic kinases appeared to be synthetic lethal with RB1 deficiency. A recent study focusing on a neighboring gene that is often collaterally deleted together with RB1 revealed a pharmacologically targetable vulnerability in RB1-deficient cancers. Here we summarize current understanding on possible therapeutic approaches targeting functional or genomic aberration of RB1 in cancers.
Collapse
Affiliation(s)
- Paing Linn
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Yangon General Hospital, Yangon, Myanmar
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Jindan Sheng
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Nilakshi Kulathunga
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Hai Yu
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Zhiheng Zhang
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Dominic Voon
- Institute of Frontier Sciences Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | | | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Correspondence: ; Tel.: +81-76-264-6750; Fax: +81-76-234-4521
| |
Collapse
|
8
|
Zheng C, Schneider JW, Hsieh J. Role of RB1 in human embryonic stem cell-derived retinal organoids. Dev Biol 2020; 462:197-207. [PMID: 32197890 DOI: 10.1016/j.ydbio.2020.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 01/09/2023]
Abstract
Three-dimensional (3D) organoid models derived from human pluripotent stem cells provide a platform for studying human development and understanding disease mechanisms. Most studies that examine biallelic inactivation of the cell cycle regulator Retinoblastoma 1 (RB1) and the link to retinoblastoma is in mice, however, less is known regarding the pathophysiological role of RB1 during human retinal development. To study the role of RB1 in early human retinal development and tumor formation, we generated retinal organoids from CRISPR/Cas9-derived RB1-null human embryonic stem cells (hESCs). We showed that RB is abundantly expressed in retinal progenitor cells in retinal organoids and loss of RB1 promotes S-phase entry. Furthermore, loss of RB1 resulted in widespread apoptosis and reduced the number of photoreceptor, ganglion, and bipolar cells. Interestingly, RB1 mutation in retinal organoids did not result in retinoblastoma formation in vitro or in the vitreous body of NOD/SCID immunodeficient mice. Together, our work identifies a crucial function for RB1 in human retinal development and suggests that RB1 deletion alone is not sufficient for tumor development, at least in human retinal organoids.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, GD, 510080, China
| | - Jay W Schneider
- Wanek Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jenny Hsieh
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
9
|
Munier FL, Beck-Popovic M, Chantada GL, Cobrinik D, Kivelä TT, Lohmann D, Maeder P, Moll AC, Carcaboso AM, Moulin A, Schaiquevich P, Bergin C, Dyson PJ, Houghton S, Puccinelli F, Vial Y, Gaillard MC, Stathopoulos C. Conservative management of retinoblastoma: Challenging orthodoxy without compromising the state of metastatic grace. "Alive, with good vision and no comorbidity". Prog Retin Eye Res 2019; 73:100764. [PMID: 31173880 DOI: 10.1016/j.preteyeres.2019.05.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Retinoblastoma is lethal by metastasis if left untreated, so the primary goal of therapy is to preserve life, with ocular survival, visual preservation and quality of life as secondary aims. Historically, enucleation was the first successful therapeutic approach to decrease mortality, followed over 100 years ago by the first eye salvage attempts with radiotherapy. This led to the empiric delineation of a window for conservative management subject to a "state of metastatic grace" never to be violated. Over the last two decades, conservative management of retinoblastoma witnessed an impressive acceleration of improvements, culminating in two major paradigm shifts in therapeutic strategy. Firstly, the introduction of systemic chemotherapy and focal treatments in the late 1990s enabled radiotherapy to be progressively abandoned. Around 10 years later, the advent of chemotherapy in situ, with the capitalization of new routes of targeted drug delivery, namely intra-arterial, intravitreal and now intracameral injections, allowed significant increase in eye preservation rate, definitive eradication of radiotherapy and reduction of systemic chemotherapy. Here we intend to review the relevant knowledge susceptible to improve the conservative management of retinoblastoma in compliance with the "state of metastatic grace", with particular attention to (i) reviewing how new imaging modalities impact the frontiers of conservative management, (ii) dissecting retinoblastoma genesis, growth patterns, and intraocular routes of tumor propagation, (iii) assessing major therapeutic changes and trends, (iv) proposing a classification of relapsing retinoblastoma, (v) examining treatable/preventable disease-related or treatment-induced complications, and (vi) appraising new therapeutic targets and concepts, as well as liquid biopsy potentiality.
Collapse
Affiliation(s)
- Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland.
| | - Maja Beck-Popovic
- Unit of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Guillermo L Chantada
- Hemato-Oncology Service, Hospital JP Garrahan, Buenos Aires, Argentina; Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - David Cobrinik
- The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; USC Roski Eye Institute, Department of Biochemistry & Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Tero T Kivelä
- Department of Ophthalmology, Ocular Oncology and Pediatric Ophthalmology Services, Helsinki University Hospital, Helsinki, Finland
| | - Dietmar Lohmann
- Eye Oncogenetics Research Group, Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Philippe Maeder
- Unit of Neuroradiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Annette C Moll
- UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Angel Montero Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Alexandre Moulin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Paula Schaiquevich
- Unit of Clinical Pharmacokinetics, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Ciara Bergin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Susan Houghton
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Francesco Puccinelli
- Interventional Neuroradiology Unit, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yvan Vial
- Materno-Fetal Medicine Unit, Woman-Mother-Child Department, University Hospital of Lausanne, Switzerland
| | - Marie-Claire Gaillard
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Christina Stathopoulos
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Tschulakow AV, Dittmann K, Huber SM, Klumpp D, Stegen B, Schraermeyer U, Rodemann HP, Julien-Schraermeyer S. The radioprotector ortho-phospho-L-tyrosine (pTyr) attenuates the side effects of fractionated irradiation in retinoblastoma mouse models but also decreases the local tumour control. Radiother Oncol 2017; 124:462-467. [PMID: 28711224 DOI: 10.1016/j.radonc.2017.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Radiotherapy (RT) is used to treat retinoblastoma (Rb), the most frequent ocular tumour in children. Besides eradicating the tumour, RT can cause severe side effects including secondary malignancies. This study aimed to define whether the radioprotector ortho-phospho-L-tyrosine (pTyr) prevents RT-induced side effects and affects local tumour control in a xenograft and a genetic orthotopic Rb mouse model. METHODS B6;129-Rb1tm3Tyj/J (Rb+/-) and Y79-Rb cell-xenografted nude mice were fractionated external beam irradiated (15 fractions of 5Gy 6MV photons during 3weeks) with or without pTyr pre-treatment (100mg/kg BW, 16h prior to each irradiation). One, three, six and nine months after RT, tumour control and RT toxicity were evaluated using in vivo imaging and histology. We also analysed pTyr dependant post irradiation cell survival and p53 activity in vitro. RESULTS In vitro pTyr pre-treatment showed no radioprotection on Y79 cells, but led to p53 stabilisation in unirradiated Y79 cells and to a facilitation of radiation-induced p21 up-regulation, confirming a modulation of p53 activity by pTyr. In both mouse models, secondary tumours were undetectable. In Rb+/- mice, pTyr significantly lowered RT-induced greying of the fur, retinal thickness reduction and photoreceptor loss. However, in the xenografted Rb model, pTyr considerably decreased RT-mediated tumour control, which was observed in 16 out of 22 control eyes but in none of the 24 pTyr treated eyes. CONCLUSIONS In Rb+/- mice pTyr significantly prevents RT-induced greying of the fur as well as retinal degeneration. However, since non-irradiated control mice were not used in our study, a formal possibility exists that the effect shown in the retina of Rb+/- mice may be due to ageing of the animals and/or actions of pTyr alone. Unfortunately, as tested in a xenograft model, pTyr treatment reduced the control of Rb tumours.
Collapse
Affiliation(s)
- Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Germany
| | - Klaus Dittmann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tuebingen, Germany
| | - Dominik Klumpp
- Department of Radiation Oncology, University of Tuebingen, Germany
| | - Benjamin Stegen
- Department of Radiation Oncology, University of Tuebingen, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Germany
| | - H Peter Rodemann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Germany.
| |
Collapse
|
11
|
Sradhanjali S, Tripathy D, Rath S, Mittal R, Reddy MM. Overexpression of pyruvate dehydrogenase kinase 1 in retinoblastoma: A potential therapeutic opportunity for targeting vitreous seeds and hypoxic regions. PLoS One 2017; 12:e0177744. [PMID: 28505181 PMCID: PMC5432179 DOI: 10.1371/journal.pone.0177744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/02/2017] [Indexed: 11/18/2022] Open
Abstract
Pyruvate dehydrogenase kinase 1 (PDK1), a key enzyme implicated in metabolic reprogramming of tumors, is induced in several tumors including glioblastoma, breast cancer and melanoma. However, the role played by PDK1 is not studied in retinoblastoma (RB). In this study, we have evaluated the expression of PDK1 in RB clinical samples, and studied its inhibition as a strategy to decrease cell growth and migration. We show that PDK1 is specifically overexpressed in RB patient samples especially in vitreous seeds and hypoxic regions and cell lines compared to control retina using immunohistochemistry and real-time PCR. Our results further demonstrate that inhibition of PDK1 using small molecule inhibitors dichloroacetic acid (DCA) and dichloroacetophenone (DAP) resulted in reduced cell growth and increased apoptosis. We also confirm that combination treatment of DCA with chemotherapeutic agent carboplatin further enhanced the therapeutic efficacy compared to single drug treatment. In addition, we observed changes in glucose uptake, lactate and reactive oxygen species (ROS) levels as well as decreased cell migration in response to PDK1 inhibition. Additionally, we show that DCA treatment led to inhibition of PI3K/Akt pathway and reduction in PDK1 protein levels. Overall, our data suggest that targeting PDK1 could be a novel therapeutic strategy for RB.
Collapse
Affiliation(s)
- Swatishree Sradhanjali
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Devjyoti Tripathy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar, India
- Ophthalmic Plastics, Orbit and Ocular Oncology Services, L V Prasad Eye Institute, Bhubaneswar, India
| | - Suryasnata Rath
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar, India
- Ophthalmic Plastics, Orbit and Ocular Oncology Services, L V Prasad Eye Institute, Bhubaneswar, India
| | - Ruchi Mittal
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar, India
- Dalmia Ophthalmic Pathology Services, LV Prasad Eye Institute, Bhubaneswar, India
| | - Mamatha M. Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
- * E-mail: ,
| |
Collapse
|
12
|
Nair RM, Vemuganti GK. Transgenic Models in Retinoblastoma Research. Ocul Oncol Pathol 2015; 1:207-13. [PMID: 27171579 DOI: 10.1159/000370157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 01/10/2023] Open
Abstract
Understanding the mechanism of retinoblastoma (Rb) tumor initiation, development, progression and metastasis in vivo mandates the use of animal models that mimic this intraocular tumor in its genetic, anatomic, histologic and ultrastructural features. An early setback for developing mouse Rb models was that Rb mutations did not cause tumorigenesis in murine retinas. Subsequently, the discovery that the p107 protein takes over the role of pRb in mice led to the development of several animal models that phenotypically and histologically resemble the human form. This paper summarizes the transgenic models that have been developed over the last three decades.
Collapse
Affiliation(s)
- Rohini M Nair
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
13
|
Tarang S, Doi SMSR, Gurumurthy CB, Harms D, Quadros R, Rocha-Sanchez SM. Generation of a Retinoblastoma (Rb)1-inducible dominant-negative (DN) mouse model. Front Cell Neurosci 2015; 9:52. [PMID: 25755634 PMCID: PMC4337335 DOI: 10.3389/fncel.2015.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/03/2015] [Indexed: 11/13/2022] Open
Abstract
Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1's biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic application.
Collapse
Affiliation(s)
- Shikha Tarang
- Department of Oral Biology, Creighton University School of Dentistry Omaha, NE,USA
| | - Songila M S R Doi
- Department of Oral Biology, Creighton University School of Dentistry Omaha, NE,USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | - Donald Harms
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | - Rolen Quadros
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
14
|
Sikkema WKA, Strikwerda A, Sharma M, Assi K, Salh B, Cox ME, Mills J. Regulation of mitotic cytoskeleton dynamics and cytokinesis by integrin-linked kinase in retinoblastoma cells. PLoS One 2014; 9:e98838. [PMID: 24911651 PMCID: PMC4049663 DOI: 10.1371/journal.pone.0098838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
During cell division integrin-linked kinase (ILK) has been shown to regulate microtubule dynamics and centrosome clustering, processes involved in cell cycle progression, and malignant transformation. In this study, we examine the effects of downregulating ILK on mitotic function in human retinoblastoma cell lines. These retinal cancer cells, caused by the loss of function of two gene alleles (Rb1) that encode the retinoblastoma tumour suppressor, have elevated expression of ILK. Here we show that inhibition of ILK activity results in a concentration-dependent increase in nuclear area and multinucleated cells. Moreover, inhibition of ILK activity and expression increased the accumulation of multinucleated cells over time. In these cells, aberrant cytokinesis and karyokinesis correlate with altered mitotic spindle organization, decreased levels of cortical F-actin and centrosome de-clustering. Centrosome de-clustering, induced by ILK siRNA, was rescued in FLAG-ILK expressing Y79 cells as compared to those expressing FLAG-tag alone. Inhibition of ILK increased the proportion of cells exhibiting mitotic spindles and caused a significant G2/M arrest as early as 24 hours after exposure to QLT-0267. Live cell analysis indicate ILK downregulation causes an increase in multipolar anaphases and failed cytokinesis (bipolar and multipolar) of viable cells. These studies extend those indicating a critical function for ILK in mitotic cytoskeletal organization and describe a novel role for ILK in cytokinesis of Rb deficient cells.
Collapse
Affiliation(s)
- William K. A. Sikkema
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Arend Strikwerda
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Manju Sharma
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Kiran Assi
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Baljinder Salh
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E. Cox
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
- Adjunct, Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- External Associate Member, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Dommering CJ, Mol BM, Moll AC, Burton M, Cloos J, Dorsman JC, Meijers-Heijboer H, van der Hout AH. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J Med Genet 2014; 51:366-74. [PMID: 24688104 DOI: 10.1136/jmedgenet-2014-102264] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Retinoblastoma (Rb) is a childhood cancer of the retina, commonly initiated by biallelic inactivation of the RB1 gene. Knowledge of the presence of a heritable RB1 mutation can help in risk management and reproductive decision making. We report here on RB1 mutation scanning in a unique nationwide cohort of Rb patients from the Netherlands. METHODS From the 1173 Rb patients registered in the Dutch National Retinoblastoma Register until January 2013, 529 patients from 433 unrelated families could be included. RB1 mutation scanning was performed with different detection methods, depending on the time period. RESULTS Our mutation detection methods revealed RB1 mutations in 92% of bilateral and/or familial Rb patients and in 10% of non-familial unilateral cases. Overall an RB1 germline mutation was detected in 187 (43%) of 433 Rb families, including 33 novel mutations. The distribution of the type of mutation was 37% nonsense, 20% frameshift, 21% splice, 9% large indel, 5% missense, 7% chromosomal deletions and 1% promoter. Ten per cent of patients were mosaic for the RB1 mutation. Six three-generation families with incomplete penetrance RB1 mutations were found. We found evidence that two variants, previously described as pathogenic RB1 mutations, are likely to be neutral variants. CONCLUSIONS The frequency of the type of mutations in the RB1 gene in our unbiased national cohort is the same as the mutation spectrum described worldwide. Furthermore, our RB1 mutation detection regimen achieves a high scanning sensitivity.
Collapse
Affiliation(s)
- Charlotte J Dommering
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Berber M Mol
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Margaret Burton
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemarie H van der Hout
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Abstract
Advances in animal models of retinoblastoma have accelerated research in this field, aiding in understanding tumor progression and assessing therapeutic modalities. The distinct pattern of mutations and specific location of this unique intraocular tumor have paved the way for two types of models- those based on genetic mutations, and xenograft models. Retinoblastoma gene knockouts with an additional loss of p107, p130, p53 and using promoters of Nestin, Chx10, and Pax6 genes show histological phenotypic changes close to the human form of retinoblastoma. Conditional knockout in specific layers of the developing retina has thrown light on the origin of this tumor. The use of xenograft models has overcome the obstacle of time delay in the presentation of symptoms, which remains a crucial drawback of genetic models. With the advances in molecular and imaging technologies, the current research aims to develop models that mimic all the features of retinoblastoma inclusive of its initiation, progression and metastasis. The combination of genetic and xenograft models in retinoblastoma research has and will help to pave way for better understanding of retinoblastoma tumor biology and also in designing and testing effective diagnostic and treatment modalities.
Collapse
Affiliation(s)
- Rohini M Nair
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | | | | |
Collapse
|
17
|
Di Fiore R, D'Anneo A, Tesoriere G, Vento R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol 2013; 228:1676-87. [PMID: 23359405 DOI: 10.1002/jcp.24329] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/15/2013] [Indexed: 12/14/2022]
Abstract
Loss of RB1 gene is considered either a causal or an accelerating event in retinoblastoma. A variety of mechanisms inactivates RB1 gene, including intragenic mutations, loss of expression by methylation and chromosomal deletions, with effects which are species-and cell type-specific. RB1 deletion can even lead to aneuploidy thus greatly increasing cancer risk. The RB1gene is part of a larger gene family that includes RBL1 and RBL2, each of the three encoding structurally related proteins indicated as pRb, p107, and p130, respectively. The great interest in these genes and proteins springs from their ability to slow down neoplastic growth. pRb can associate with various proteins by which it can regulate a great number of cellular activities. In particular, its association with the E2F transcription factor family allows the control of the main pRb functions, while the loss of these interactions greatly enhances cancer development. As RB1 gene, also pRb can be functionally inactivated through disparate mechanisms which are often tissue specific and dependent on the scenario of the involved tumor suppressors and oncogenes. The critical role of the context is complicated by the different functions played by the RB proteins and the E2F family members. In this review, we want to emphasize the importance of the mechanisms of RB1/pRb inactivation in inducing cancer cell development. The review is divided in three chapters describing in succession the mechanisms of RB1 inactivation in cancer cells, the alterations of pRb pathway in tumorigenesis and the RB protein and E2F family in cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Polyclinic, University of Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Caroline J. Zeiss
- Section of Comparative Medicine; Yale University School of Medicine; 375 Congress Ave New Haven CT 06520 USA
| |
Collapse
|
19
|
The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury. ENVIRONMENTAL EPIGENOMICS IN HEALTH AND DISEASE 2013. [DOI: 10.1007/978-3-642-23380-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
The tumor suppressor gene retinoblastoma-1 is required for retinotectal development and visual function in zebrafish. PLoS Genet 2012; 8:e1003106. [PMID: 23209449 PMCID: PMC3510048 DOI: 10.1371/journal.pgen.1003106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
Mutations in the retinoblastoma tumor suppressor gene (rb1) cause both sporadic and familial forms of childhood retinoblastoma. Despite its clinical relevance, the roles of rb1 during normal retinotectal development and function are not well understood. We have identified mutations in the zebrafish space cadet locus that lead to a premature truncation of the rb1 gene, identical to known mutations in sporadic and familial forms of retinoblastoma. In wild-type embryos, axons of early born retinal ganglion cells (RGC) pioneer the retinotectal tract to guide later born RGC axons. In rb1 deficient embryos, these early born RGCs show a delay in cell cycle exit, causing a transient deficit of differentiated RGCs. As a result, later born mutant RGC axons initially fail to exit the retina, resulting in optic nerve hypoplasia. A significant fraction of mutant RGC axons eventually exit the retina, but then frequently project to the incorrect optic tectum. Although rb1 mutants eventually establish basic retinotectal connectivity, behavioral analysis reveals that mutants exhibit deficits in distinct, visually guided behaviors. Thus, our analysis of zebrafish rb1 mutants reveals a previously unknown yet critical role for rb1 during retinotectal tract development and visual function.
Collapse
|
21
|
Martin J, Bryar P, Mets M, Weinstein J, Jones A, Martin A, Vanin EF, Scholtens D, Costa FF, Soares MB, Laurie NA. Differentially expressed miRNAs in retinoblastoma. Gene 2012; 512:294-9. [PMID: 23103829 DOI: 10.1016/j.gene.2012.09.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/16/2012] [Accepted: 09/27/2012] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA transcripts that have the ability to regulate the expression of target genes, and have been shown to influence the development of various tumors. The purpose of our study is to identify aberrantly expressed miRNAs in retinoblastoma for the discovery of potential therapeutic targets for this disease, and to gain a greater understanding of the mechanisms driving retinoblastoma progression. We report 41 differentially expressed miRNAs (p<0.05) in 12 retinoblastomas as compared to three normal human retinae. Of these miRNAs, many are newly identified as being differentially expressed in retinoblastoma. Further, we report the validations of five of the most downregulated miRNAs in primary human retinoblastomas (p<0.05), human retinoblastoma cell lines, and mouse retinoblastoma cell lines. This serves as the largest and most comprehensive retinoblastoma miRNA analysis to date with corresponding clinical and pathological characteristics. This is an essential step in the discovery of miRNAs associated with retinoblastoma progression, and in the identification of potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua Martin
- Cancer Biology and Epigenomics Program, Children's Hospital of Chicago Research Center, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Larina IV, Syed SH, Sudheendran N, Overbeek PA, Dickinson ME, Larin KV. Optical coherence tomography for live phenotypic analysis of embryonic ocular structures in mouse models. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081410-1. [PMID: 23224171 PMCID: PMC3397804 DOI: 10.1117/1.jbo.17.8.081410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 05/18/2023]
Abstract
Mouse models of ocular diseases provide a powerful resource for exploration of molecular regulation of eye development and pre-clinical studies. Availability of a live high-resolution imaging method for mouse embryonic eyes would significantly enhance longitudinal analyses and high-throughput morphological screening. We demonstrate that optical coherence tomography (OCT) can be used for live embryonic ocular imaging throughout gestation. At all studied stages, the whole eye is within the imaging distance of the system and there is a good optical contrast between the structures. We also performed OCT eye imaging in the embryonic retinoblastoma mouse model Pax6-SV40 T-antigen, which spontaneously forms lens and retinal lesions, and demonstrate that OCT allows us to clearly differentiate between the mutant and wild type phenotypes. These results demonstrate that OCTin utero imaging is a potentially useful tool to study embryonic ocular diseases in mouse models.
Collapse
Affiliation(s)
- Irina V Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Conkrite K, Sundby M, Mu D, Mukai S, MacPherson D. Cooperation between Rb and Arf in suppressing mouse retinoblastoma. J Clin Invest 2012; 122:1726-33. [PMID: 22484813 DOI: 10.1172/jci61403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/22/2012] [Indexed: 12/18/2022] Open
Abstract
Retinoblastoma is a pediatric cancer that has served as a paradigm for tumor suppressor gene function. Retinoblastoma is initiated by RB gene mutations, but the subsequent cooperating mutational events leading to tumorigenesis are poorly characterized. We investigated what these additional genomic alterations might be using human retinoblastoma samples and mouse models. Array-based comparative genomic hybridization studies revealed deletions in the CDKN2A locus that include ARF and P16INK4A, both of which encode tumor suppressor proteins, in both human and mouse retinoblastoma. Through mouse genetic analyses, we found that Arf was the critical tumor suppressor gene in the deleted region. In mice, inactivation of one allele of Arf cooperated with Rb and p107 loss to rapidly accelerate retinoblastoma, with frequent loss of heterozygosity (LOH) at the Arf locus. Arf has been reported to exhibit p53-independent tumor suppressor roles in other systems; however, our results showed no additive effect of p53 and Arf coinactivation in promoting retinoblastoma. Moreover, p53 inactivation completely eliminated any selection for Arf LOH. Thus, our data reveal important insights into the p53 pathway in retinoblastoma and show that Arf is a key collaborator with Rb in retinoblastoma suppression.
Collapse
Affiliation(s)
- Karina Conkrite
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The retinoblastoma (RB) tumor suppressor belongs to a cellular pathway that plays a crucial role in restricting the G1-S transition of the cell cycle in response to a large number of extracellular and intracellular cues. Research in the last decade has highlighted the complexity of regulatory networks that ensure proper cell cycle progression, and has also identified multiple cellular functions beyond cell cycle regulation for RB and its two family members, p107 and p130. Here we review some of the recent evidence pointing to a role of RB as a molecular adaptor at the crossroads of multiple pathways, ensuring cellular homeostasis in different contexts. In particular, we discuss the pro- and anti-tumorigenic roles of RB during the early stages of cancer, as well as the importance of the RB pathway in stem cells and cell fate decisions.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
25
|
Abstract
Retinoblastoma is a rare pediatric cancer that has served as a paradigm to investigate the mechanisms of tumorigenesis. In this issue of Genes & Development, Conkrite and colleagues (pp. 1734-1745) found high levels of the miR-17~92 and miR-106b-25 microRNAs in primary retinoblastomas and show that overexpression of miR-17~92 accelerates retinoblastoma development in mice by promoting proliferation, in part by reducing expression of the cell cycle inhibitor p21. These experiments identify the RB/miR-17~92/p21 axis as a critical regulator of retinoblastoma tumorigenesis and potentially many other cancers.
Collapse
Affiliation(s)
- Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
26
|
Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, Zmoos AF, Mazur PK, Schaffer BE, Ostermeier A, Vogel H, Sylvester KG, Thorgeirsson SS, Grompe M, Sage J. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. ACTA ACUST UNITED AC 2011; 208:1963-76. [PMID: 21875955 PMCID: PMC3182062 DOI: 10.1084/jem.20110198] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mice lacking all three Rb genes in the liver develop tumors resembling specific subgroups of human hepatocellular carcinomas, and Notch activity appears to suppress the growth and progression of these tumors. Hepatocellular carcinoma (HCC) is the third cancer killer worldwide with >600,000 deaths every year. Although the major risk factors are known, therapeutic options in patients remain limited in part because of our incomplete understanding of the cellular and molecular mechanisms influencing HCC development. Evidence indicates that the retinoblastoma (RB) pathway is functionally inactivated in most cases of HCC by genetic, epigenetic, and/or viral mechanisms. To investigate the functional relevance of this observation, we inactivated the RB pathway in the liver of adult mice by deleting the three members of the Rb (Rb1) gene family: Rb, p107, and p130. Rb family triple knockout mice develop liver tumors with histopathological features and gene expression profiles similar to human HCC. In this mouse model, cancer initiation is associated with the specific expansion of populations of liver stem/progenitor cells, indicating that the RB pathway may prevent HCC development by maintaining the quiescence of adult liver progenitor cells. In addition, we show that during tumor progression, activation of the Notch pathway via E2F transcription factors serves as a negative feedback mechanism to slow HCC growth. The level of Notch activity is also able to predict survival of HCC patients, suggesting novel means to diagnose and treat HCC.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Medical Chemistry, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Park KS, Liang MC, Raiser DM, Zamponi R, Roach RR, Curtis SJ, Walton Z, Schaffer BE, Roake CM, Zmoos AF, Kriegel C, Wong KK, Sage J, Kim CF. Characterization of the cell of origin for small cell lung cancer. Cell Cycle 2011; 10:2806-15. [PMID: 21822053 DOI: 10.4161/cc.10.16.17012] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Small cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer that affects more than 200,000 people worldwide every year with a very high mortality rate. Here, we used a mouse genetics approach to characterize the cell of origin for SCLC; in this mouse model, tumors are initiated by the deletion of the Rb and p53 tumor suppressor genes in the lung epithelium of adult mice. We found that mouse SCLCs often arise in the lung epithelium, where neuroendocrine cells are located, and that the majority of early lesions were composed of proliferating neuroendocrine cells. In addition, mice in which Rb and p53 are deleted in a variety of non-neuroendocrine lung epithelial cells did not develop SCLC. These data indicate that SCLC likely arises from neuroendocrine cells in the lung.
Collapse
Affiliation(s)
- Kwon-Sik Park
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM, MacPherson D. miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 2011; 25:1734-45. [PMID: 21816922 DOI: 10.1101/gad.17027411] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The miR-17~92 cluster is a potent microRNA-encoding oncogene. Here, we show that miR-17~92 synergizes with loss of Rb family members to promote retinoblastoma. We observed miR-17~92 genomic amplifications in murine retinoblastoma and high expression of miR-17~92 in human retinoblastoma. While miR-17~92 was dispensable for mouse retinal development, miR-17~92 overexpression, together with deletion of Rb and p107, led to rapid emergence of retinoblastoma with frequent metastasis to the brain. miR-17~92 oncogenic function in retinoblastoma was not mediated by a miR-19/PTEN axis toward apoptosis suppression, as found in lymphoma/leukemia models. Instead, miR-17~92 increased the proliferative capacity of Rb/p107-deficient retinal cells. We found that deletion of Rb family members led to compensatory up-regulation of the cyclin-dependent kinase inhibitor p21Cip1. miR-17~92 overexpression counteracted p21Cip1 up-regulation, promoted proliferation, and drove retinoblastoma formation. These results demonstrate that the oncogenic determinants of miR-17~92 are context-specific and provide new insights into miR-17~92 function as an RB-collaborating gene in cancer.
Collapse
Affiliation(s)
- Karina Conkrite
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Montoya-Durango DE, Ramos KS. Retinoblastoma family of proteins and chromatin epigenetics: a repetitive story in a few LINEs. Biomol Concepts 2011; 2:233-45. [DOI: 10.1515/bmc.2011.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/31/2011] [Indexed: 12/20/2022] Open
Abstract
AbstractThe retinoblastoma (RB) protein family in mammals is composed of three members: pRB (or RB1), p107, and p130. Although these proteins do not directly bind DNA, they associate with the E2F family of transcription factors which function as DNA sequence-specific transcription factors. RB proteins alter gene transcription via direct interference with E2F functions, as well as recruitment of transcriptional repressors and corepressors that silence gene expression through DNA and histone modifications. E2F/RB complexes shape the chromatin landscape through recruitment to CpG-rich regions in the genome, thus making E2F/RB complexes function as local and global regulators of gene expression and chromatin dynamics. Recruitment of E2F/pRB to the long interspersed nuclear element (LINE1) promoter enhances the role that RB proteins play in genome-wide regulation of heterochromatin. LINE1 elements are dispersed throughout the genome and therefore recruitment of RB to the LINE1 promoter suggests that LINE1 could serve as the scaffold on which RB builds up heterochromatic regions that silence and shape large stretches of chromatin. We suggest that mutations in RB function might lead to global rearrangement of heterochromatic domains with concomitant retrotransposon reactivation and increased genomic instability. These novel roles for RB proteins open the epigenetic-based way for new pharmacological treatments of RB-associated diseases, namely inhibitors of histone and DNA methylation, as well as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Diego E. Montoya-Durango
- 1Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kenneth S. Ramos
- 1Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
30
|
Functional interactions between retinoblastoma and c-MYC in a mouse model of hepatocellular carcinoma. PLoS One 2011; 6:e19758. [PMID: 21573126 PMCID: PMC3089631 DOI: 10.1371/journal.pone.0019758] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 04/10/2011] [Indexed: 12/28/2022] Open
Abstract
Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes.
Collapse
|
31
|
The role of placental homeobox genes in human fetal growth restriction. J Pregnancy 2011; 2011:548171. [PMID: 21547091 PMCID: PMC3087155 DOI: 10.1155/2011/548171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/17/2011] [Indexed: 12/04/2022] Open
Abstract
Fetal growth restriction (FGR) is an adverse pregnancy outcome associated with significant perinatal and paediatric morbidity and mortality, and an increased risk of chronic disease later in adult life. One of the key causes of adverse pregnancy outcome is fetal growth restriction (FGR). While a number of maternal, fetal, and environmental factors are known causes of FGR, the majority of FGR cases remain idiopathic. These idiopathic FGR pregnancies are frequently associated with placental insufficiency, possibly as a result of placental maldevelopment. Understanding the molecular mechanisms of abnormal placental development in idiopathic FGR is, therefore, of increasing importance. Here, we review our understanding of transcriptional control of normal placental development and abnormal placental development associated with human idiopathic FGR. We also assess the potential for understanding transcriptional control as a means for revealing new molecular targets for the detection, diagnosis, and clinical management of idiopathic FGR.
Collapse
|
32
|
Burkhart DL, Wirt SE, Zmoos AF, Kareta MS, Sage J. Tandem E2F binding sites in the promoter of the p107 cell cycle regulator control p107 expression and its cellular functions. PLoS Genet 2010; 6:e1001003. [PMID: 20585628 PMCID: PMC2891812 DOI: 10.1371/journal.pgen.1001003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 05/26/2010] [Indexed: 11/19/2022] Open
Abstract
The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells. The retinoblastoma tumor suppressor Rb belongs to a family of cell cycle inhibitors along with the related proteins p107 and p130. Strong evidence indicates that the three family members have both specific and overlapping functions and expression patterns in mammalian cells, including in cancer cells. However, the molecular mechanisms underlying the functional differences and similarities among Rb, p107, and p130 are still poorly understood. One proposed mechanism of compensation is a negative feedback loop involving increased p107 transcription in Rb-deficient cells. To dissect the mechanisms controlling p107 expression in both wild-type and Rb-deficient cells, we have engineered inactivating point mutations into the E2F binding sites in the endogenous p107 promoter using gene targeting in mouse embryonic stem cells. Gene expression and DNA binding assays revealed that these two sites are essential for the control of p107 transcription in wild-type and Rb mutant cells, and cell cycle assays showed their importance for normal functions of p107. These experiments identify a key node in cell cycle regulatory networks.
Collapse
Affiliation(s)
- Deborah L. Burkhart
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
- Cancer Biology Program, Stanford Medical School, Stanford, California, United States of America
| | - Stacey E. Wirt
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
- Cancer Biology Program, Stanford Medical School, Stanford, California, United States of America
| | - Anne-Flore Zmoos
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
| | - Michael S. Kareta
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medical School, Stanford, California, United States of America
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
- Cancer Biology Program, Stanford Medical School, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medical School, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Schaffer BE, Park KS, Yiu G, Conklin JF, Lin C, Burkhart DL, Karnezis AN, Sweet-Cordero EA, Sage J. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res 2010; 70:3877-83. [PMID: 20406986 DOI: 10.1158/0008-5472.can-09-4228] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small-cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer. Although SCLC patients often initially respond to therapy, tumors nearly always recur, resulting in a 5-year survival rate of less than 10%. A mouse model has been developed based on the fact that the RB and p53 tumor suppressor genes are mutated in more than 90% of human SCLCs. Emerging evidence in patients and mouse models suggests that p130, a gene related to RB, may act as a tumor suppressor in SCLC cells. To test this idea, we used conditional mutant mice to delete p130 in combination with Rb and p53 in adult lung epithelial cells. We found that loss of p130 resulted in increased proliferation and significant acceleration of SCLC development in this triple-knockout mouse model. The histopathologic features of the triple-mutant mouse tumors closely resembled that of human SCLC. Genome-wide expression profiling experiments further showed that Rb/p53/p130-mutant mouse tumors were similar to human SCLC. These findings indicate that p130 plays a key tumor suppressor role in SCLC. Rb/p53/p130-mutant mice provide a novel preclinical mouse model to identify novel therapeutic targets against SCLC.
Collapse
Affiliation(s)
- Bethany E Schaffer
- Department of Pediatrics, Stanford Medical School, Stanford, California 94305-5149, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wirt SE, Sage J. p107 in the public eye: an Rb understudy and more. Cell Div 2010; 5:9. [PMID: 20359370 PMCID: PMC2861648 DOI: 10.1186/1747-1028-5-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/02/2010] [Indexed: 11/25/2022] Open
Abstract
p107 and its related family members Rb and p130 are critical regulators of cellular proliferation and tumorigenesis. Due to the extent of functional overlap within the Rb family, it has been difficult to assess which functions are exclusive to individual members and which are shared. Like its family members, p107 can bind a variety of cellular proteins to affect the expression of many target genes during cell cycle progression. Unlike Rb and p130, p107 is most highly expressed during the G1 to S phase transition of the cell cycle in actively dividing cells and accumulating evidence suggests a role for p107 during DNA replication. The specific roles for p107 during differentiation and development are less clear, although emerging studies suggest that it can cooperate with other Rb family members to control differentiation in multiple cell lineages. As a tumor suppressor, p107 is not as potent as Rb, yet studies in knockout mice have revealed some tumor suppressor functions in mice, depending on the context. In this review, we identify the unique and overlapping functions of p107 during the cell cycle, differentiation, and tumorigenesis.
Collapse
Affiliation(s)
- Stacey E Wirt
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, CA 94305, USA.
| | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Retinoblastoma is a pediatric eye tumor that serves as a paradigm for understanding the genetic basis of cancer. This review will highlight recent advances in retinoblastoma genetic research and discuss how these new findings influence our knowledge of retinoblastoma tumorigenesis and management. RECENT FINDINGS Current data demonstrate that retinomas, benign retinal tumors found in some retinoblastoma patients, exhibit bi-allelic mutations in RB1, the retinoblastoma gene, and lack of expression of the retinoblastoma protein. Interestingly, retinomas demonstrate a low level of genomic instability that becomes progressively more severe in retinoblastoma tumors. Additionally, a subset of retinomas share genomic alterations with retinoblastoma. Collectively, these data suggest that retinomas represent true premalignant lesions and not regressed retinoblastoma tumors, as previously thought. Translational advances in retinoblastoma genetic research include development of an allele-specific assay that now enables the identification of mutational mosaicism, thereby increasing the rate of RB1 mutation detection in bilaterally affected patients to as high as 95%. SUMMARY These and related research efforts reveal novel data that enhance our understanding of the biology of retinoblastoma. These observations may facilitate new therapeutic approaches to further decrease the morbidity and mortality associated with retinoblastoma and other more common forms of cancer.
Collapse
|
36
|
Burkhart DL, Viatour P, Ho VM, Sage J. GFP reporter mice for the retinoblastoma-related cell cycle regulator p107. Cell Cycle 2008; 7:2544-52. [PMID: 18719374 DOI: 10.4161/cc.7.16.6441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The RB tumor suppressor gene is mutated in a broad range of human cancers, including pediatric retinoblastoma. Strikingly, however, Rb mutant mice develop tumors of the pituitary and thyroid glands, but not retinoblastoma. Mouse genetics experiments have demonstrated that p107, a protein related to pRB, is capable of preventing retinoblastoma, but not pituitary tumors, in Rb-deficient mice. Evidence suggests that the basis for this compensatory function of p107 is increased transcription of the p107 gene in response to Rb inactivation. To begin to address the context-dependency of this compensatory role of p107 and to follow p107 expression in vivo, we have generated transgenic mice carrying an enhanced GFP (eGFP) reporter inserted into a bacterial artificial chromosome (BAC) containing the mouse p107 gene. Expression of the eGFP transgene parallels that of p107 in these transgenic mice and identifies cells with a broad range of expression level for p107, even within particular organs or tissues. We also show that loss of Rb results in the upregulation of p107 transcription in specific cell populations in vivo, including subpopulations of hematopoietic cells. Thus, p107 BAC-eGFP transgenic mice serve as a useful tool to identify distinct cell types in which p107 is expressed and may have key functions in vivo, and to characterize changes in cellular networks accompanying Rb deficiency.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Department of Pediatrics and Genetics, Cancer Biology Program, Stanford Medical School, Stanford, California, USA
| | | | | | | |
Collapse
|