1
|
Baess SC, Burkhart AK, Cappello S, Graband A, Seré K, Zenke M, Niemann C, Iden S. Lrig1- and Wnt-dependent niches dictate segregation of resident immune cells and melanocytes in murine tail epidermis. Development 2022; 149:275959. [PMID: 35815643 PMCID: PMC9382897 DOI: 10.1242/dev.200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
The barrier-forming, self-renewing mammalian epidermis comprises keratinocytes, pigment-producing melanocytes and resident immune cells as first-line host defense. In murine tail skin, interfollicular epidermis patterns into pigmented ‘scale’ and hypopigmented ‘interscale’ epidermis. Why and how mature melanocytes accumulate in scale epidermis is unresolved. Here, we delineate a cellular hierarchy among epidermal cell types that determines skin patterning. Already during postnatal development, melanocytes co-segregate with newly forming scale compartments. Intriguingly, this process coincides with partitioning of both Langerhans cells and dendritic epidermal T cells to interscale epidermis, suggesting functional segregation of pigmentation and immune surveillance. Analysis of non-pigmented mice and of mice lacking melanocytes or resident immune cells revealed that immunocyte patterning is melanocyte and melanin independent and, vice versa, immune cells do not control melanocyte localization. Instead, genetically enforced progressive scale fusion upon Lrig1 deletion showed that melanocytes and immune cells dynamically follow epithelial scale:interscale patterns. Importantly, disrupting Wnt-Lef1 function in keratinocytes caused melanocyte mislocalization to interscale epidermis, implicating canonical Wnt signaling in organizing the pigmentation pattern. Together, this work uncovers cellular and molecular principles underlying the compartmentalization of tissue functions in skin. Summary: Pigmentation and immune surveillance functions in murine tail skin are spatially segregated by Lrig1- and Wnt-Lef1-dependent keratinocyte lineages that control the partitioning of melanocytes and tissue-resident immune cells into distinct epidermal niches.
Collapse
Affiliation(s)
- Susanne C. Baess
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Ann-Kathrin Burkhart
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Sabrina Cappello
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Annika Graband
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Kristin Seré
- Institute for Biomedical Engineering 4 , Department of Cell Biology , , 52074 Aachen , Germany
- RWTH Aachen University Medical School 4 , Department of Cell Biology , , 52074 Aachen , Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University 5 , 52074 Aachen , Germany
| | - Martin Zenke
- Institute for Biomedical Engineering 4 , Department of Cell Biology , , 52074 Aachen , Germany
- RWTH Aachen University Medical School 4 , Department of Cell Biology , , 52074 Aachen , Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University 5 , 52074 Aachen , Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Center of Biochemistry 6 , Faculty of Medicine , , 50931 Cologne , Germany
- University Hospital Cologne 6 , Faculty of Medicine , , 50931 Cologne , Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| |
Collapse
|
2
|
Overexpression of Flii during Murine Embryonic Development Increases Symmetrical Division of Epidermal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22158235. [PMID: 34361001 PMCID: PMC8348627 DOI: 10.3390/ijms22158235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023] Open
Abstract
Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/β-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/−, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/− embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and β-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.
Collapse
|
3
|
Schleicher K, Schramek D. AJUBA: A regulator of epidermal homeostasis and cancer. Exp Dermatol 2021; 30:546-559. [PMID: 33372298 DOI: 10.1111/exd.14272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The epidermis, outermost layer of the skin, is constantly renewing itself through proliferative and differentiation processes. These processes are vital to maintain proper epidermal integrity during skin development and homeostasis and for preventing skin diseases and cancers. The biological mechanisms that permit this balancing act are vast, where individual pathway regulators are known, but the exact regulatory control and cross-talk between simultaneously turning one biological pathway on and an opposing one off remain elusive. This review explores the diverse roles the scaffolding protein AJUBA plays during epidermal homeostasis and cancer. Initially identified for its role in promoting meiotic progression in oocytes through Grb2 and MAP kinase activity, AJUBA also maintains cytoskeletal tension permitting epidermal tissue development and responds to retinoic acid committing cells to initiate development of surface epidermal layer. AJUBA regulates proliferation of skin stem cells through Hippo and Wnt signalling and encourages mitotic commitment through Aurora-A, Aurora-B and CDK1. In addition, AJUBA also induces epidermal differentiation to maintain appropriate epidermal thickness and barrier function by activating Notch signalling and stabilizing catenins and actin during cellular remodelling. AJUBA also plays an imperative context-dependent tumor-promoting and tumor-suppressive role within epithelial cancers. AJUBA's abundant roles within the epidermis signify its importance as a molecular switchboard, vetting multiple signalling pathways to control epidermal biology.
Collapse
Affiliation(s)
- Krista Schleicher
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Flora P, Ezhkova E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development 2020; 147:147/22/dev194100. [PMID: 33191273 DOI: 10.1242/dev.194100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
5
|
Box K, Joyce BW, Devenport D. Epithelial geometry regulates spindle orientation and progenitor fate during formation of the mammalian epidermis. eLife 2019; 8:47102. [PMID: 31187731 PMCID: PMC6592681 DOI: 10.7554/elife.47102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022] Open
Abstract
The control of cell fate through oriented cell division is imperative for proper organ development. Basal epidermal progenitor cells divide parallel or perpendicular to the basement membrane to self-renew or produce differentiated stratified layers, but the mechanisms regulating the choice between division orientations are unknown. Using time-lapse imaging to follow divisions and fates of basal progenitors, we find that mouse embryos defective for the planar cell polarity (PCP) gene, Vangl2, exhibit increased perpendicular divisions and hyperthickened epidermis. Surprisingly, this is not due to defective Vangl2 function in the epidermis, but to changes in cell geometry and packing that arise from the open neural tube characteristic of PCP mutants. Through regional variations in epidermal deformation and physical manipulations, we show that local tissue architecture, rather than cortical PCP cues, regulates the decision between symmetric and stratifying divisions, allowing flexibility for basal cells to adapt to the needs of the developing tissue.
Collapse
Affiliation(s)
- Kimberly Box
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Bradley W Joyce
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
6
|
Ryan KE, Kim PS, Fleming JT, Brignola E, Cheng FY, Litingtung Y, Chiang C. Lkb1 regulates granule cell migration and cortical folding of the cerebellar cortex. Dev Biol 2017; 432:165-177. [PMID: 28974424 PMCID: PMC5694378 DOI: 10.1016/j.ydbio.2017.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Cerebellar growth and foliation require the Hedgehog-driven proliferation of granule cell precursors (GCPs) in the external granule layer (EGL). However, that increased or extended GCP proliferation generally does not elicit ectopic folds suggests that additional determinants control cortical expansion and foliation during cerebellar development. Here, we find that genetic loss of the serine-threonine kinase Liver Kinase B1 (Lkb1) in GCPs increased cerebellar cortical size and foliation independent of changes in proliferation or Hedgehog signaling. This finding is unexpected given that Lkb1 has previously shown to be critical for Hedgehog pathway activation in cultured cells. Consistent with unchanged proliferation rate of GCPs, the cortical expansion of Lkb1 mutants is accompanied by thinning of the EGL. The plane of cell division, which has been implicated in diverse processes from epithelial surface expansions to gyrification of the human cortex, remains unchanged in the mutants when compared to wild-type controls. However, we find that Lkb1 mutants display delayed radial migration of post-mitotic GCPs that coincides with increased cortical size, suggesting that aberrant cell migration may contribute to the cortical expansion and increase foliation. Taken together, our results reveal an important role for Lkb1 in regulating cerebellar cortical size and foliation in a Hedgehog-independent manner.
Collapse
Affiliation(s)
- Kaitlyn E Ryan
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Patrick S Kim
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Jonathan T Fleming
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Emily Brignola
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Frances Y Cheng
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Ying Litingtung
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Dainichi T, Hayden MS, Park SG, Oh H, Seeley JJ, Grinberg-Bleyer Y, Beck KM, Miyachi Y, Kabashima K, Hashimoto T, Ghosh S. PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division. Cell Rep 2016; 15:1615-23. [PMID: 27184845 DOI: 10.1016/j.celrep.2016.04.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/17/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022] Open
Abstract
Asymmetric cell division (ACD) in a perpendicular orientation promotes cell differentiation and organizes the stratified epithelium. However, the upstream cues regulating ACD have not been identified. Here, we report that phosphoinositide-dependent kinase 1 (PDK1) plays a critical role in establishing ACD in the epithelium. Production of phosphatidyl inositol triphosphate (PIP3) is localized to the apical side of basal cells. Asymmetric recruitment of atypical protein kinase C (aPKC) and partitioning defective (PAR) 3 is impaired in PDK1 conditional knockout (CKO) epidermis. PDK1(CKO) keratinocytes do not undergo calcium-induced activation of aPKC or IGF1-induced activation of AKT and fail to differentiate. PDK1(CKO) epidermis shows decreased expression of Notch, a downstream effector of ACD, and restoration of Notch rescues defective expression of differentiation-induced Notch targets in vitro. We therefore propose that PDK1 signaling regulates the basal-to-suprabasal switch in developing epidermis by acting as both an activator and organizer of ACD and the Notch-dependent differentiation program.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Matthew S Hayden
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Sung-Gyoo Park
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Hyunju Oh
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - John J Seeley
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Kristen M Beck
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Yoshiki Miyachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takashi Hashimoto
- Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka 830-0011, Japan
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
8
|
Yang J, Plikus MV, Komarova NL. The Role of Symmetric Stem Cell Divisions in Tissue Homeostasis. PLoS Comput Biol 2015; 11:e1004629. [PMID: 26700130 PMCID: PMC4689538 DOI: 10.1371/journal.pcbi.1004629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
Successful maintenance of cellular lineages critically depends on the fate decision dynamics of stem cells (SCs) upon division. There are three possible strategies with respect to SC fate decision symmetry: (a) asymmetric mode, when each and every SC division produces one SC and one non-SC progeny; (b) symmetric mode, when 50% of all divisions produce two SCs and another 50%-two non-SC progeny; (c) mixed mode, when both the asymmetric and two types of symmetric SC divisions co-exist and are partitioned so that long-term net balance of the lineage output stays constant. Theoretically, either of these strategies can achieve lineage homeostasis. However, it remains unclear which strategy(s) are more advantageous and under what specific circumstances, and what minimal control mechanisms are required to operate them. Here we used stochastic modeling to analyze and quantify the ability of different types of divisions to maintain long-term lineage homeostasis, in the context of different control networks. Using the example of a two-component lineage, consisting of SCs and one type of non-SC progeny, we show that its tight homeostatic control is not necessarily associated with purely asymmetric divisions. Through stochastic analysis and simulations we show that asymmetric divisions can either stabilize or destabilize the lineage system, depending on the underlying control network. We further apply our computational model to biological observations in the context of a two-component lineage of mouse epidermis, where autonomous lineage control has been proposed and notable regional differences, in terms of symmetric division ratio, have been noted-higher in thickened epidermis of the paw skin as compared to ear and tail skin. By using our model we propose a possible explanation for the regional differences in epidermal lineage control strategies. We demonstrate how symmetric divisions can work to stabilize paw epidermis lineage, which experiences high level of micro-injuries and a lack of hair follicles as a back-up source of SCs.
Collapse
Affiliation(s)
- Jienian Yang
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center and Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Natalia L. Komarova
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sada A, Tumbar T. New insights into mechanisms of stem cell daughter fate determination in regenerative tissues. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:1-50. [PMID: 23273858 DOI: 10.1016/b978-0-12-405210-9.00001-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cells can self-renew and differentiate over extended periods of time. Understanding how stem cells acquire their fates is a central question in stem cell biology. Early work in Drosophila germ line and neuroblast showed that fate choice is achieved by strict asymmetric divisions that can generate each time one stem and one differentiated cell. More recent work suggests that during homeostasis, some stem cells can divide symmetrically to generate two differentiated cells or two identical stem cells to compensate for stem cell loss that occurred by direct differentiation or apoptosis. The interplay of all these factors ensures constant tissue regeneration and the maintenance of stem cell pool size. This interplay can be modeled as a population-deterministic dynamics that, at least in some systems, may be described as stochastic behavior. Here, we overview recent progress made on the characterization of stem cell dynamics in regenerative tissues.
Collapse
Affiliation(s)
- Aiko Sada
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
10
|
Chen J, Krasnow MA. Integrin Beta 1 suppresses multilayering of a simple epithelium. PLoS One 2012; 7:e52886. [PMID: 23285215 PMCID: PMC3528644 DOI: 10.1371/journal.pone.0052886] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/23/2012] [Indexed: 12/22/2022] Open
Abstract
Epithelia are classified as either simple, a single cell layer thick, or stratified (multilayered). Stratified epithelia arise from simple epithelia during development, and transcription factor p63 functions as a key positive regulator of epidermal stratification. Here we show that deletion of integrin beta 1 (Itgb1) in the developing mouse airway epithelium abrogates airway branching and converts this monolayer epithelium into a multilayer epithelium with more than 10 extra layers. Mutant lung epithelial cells change mitotic spindle orientation to seed outer layers, and cells in different layers become molecularly and functionally distinct, hallmarks of normal stratification. However, mutant lung epithelial cells do not activate p63 and do not switch to the stratified keratin profile of epidermal cells. These data, together with previous data implicating Itgb1 in regulation of epidermal stratification, suggest that the simple-versus-stratified developmental decision may involve not only stratification inducers like p63 but suppressors like Itgb1 that prevent simple epithelia from inappropriately activating key steps in the stratification program.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Biochemistry and HHMI, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (JC); (MAK)
| | - Mark A. Krasnow
- Department of Biochemistry and HHMI, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (JC); (MAK)
| |
Collapse
|
11
|
Niessen MT, Iden S, Niessen CM. The in vivo function of mammalian cell and tissue polarity regulators--how to shape and maintain the epidermal barrier. J Cell Sci 2012; 125:3501-10. [PMID: 22935653 DOI: 10.1242/jcs.092890] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The establishment and maintenance of cell and tissue polarity is crucial for a range of biological processes, such as oriented division, migration, adhesion and barrier function. The molecular pathways that regulate cell and tissue polarity have been extensively studied in lower organisms as well as in mammalian cell culture. By contrast, relatively little is still known about how polarization regulates the in vivo formation and homeostasis of mammalian tissues. Several recent papers have identified crucial roles for mammalian polarity proteins in a range of in vivo processes, including stem cell behavior, cell fate determination, junction formation and maintenance and organ development. Using the epidermis of the skin as a model system, this Commentary aims to discuss the in vivo significance of cell and tissue polarity in the regulation of mammalian tissue morphogenesis, homeostasis and disease. Specifically, we discuss the mechanisms by which the molecular players previously identified to determine polarity in vitro and/or in lower organisms regulate epidermal stratification; orient cell division to drive cell fate determination within the epidermal lineage; and orient hair follicles. We also describe how altered polarity signaling contributes to skin cancer.
Collapse
Affiliation(s)
- Michaela T Niessen
- Department of Dermatology, Center for Molecular Medicine, Robert Kochstrasse 21, 50931 Cologne, Germany
| | | | | |
Collapse
|
12
|
Tumbar T. Ontogeny and Homeostasis of Adult Epithelial Skin Stem Cells. Stem Cell Rev Rep 2012; 8:10.1007/s12015-012-9348-9. [PMID: 22290419 PMCID: PMC4103971 DOI: 10.1007/s12015-012-9348-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse epithelial skin stem cells constitute an important model system for understanding the dynamics of stem cell emergence and behavior in an intact vertebrate tissue. Recent published work defined discrete populations of epithelial stem cells in the adult skin epithelium, which reside in the hair follicle bulge and germ, isthmus, sebaceous gland and inter-follicular epidermis. Adult epidermal and hair follicle stem cells seem to adopt mostly symmetric or unidirectional fate decisions of either one of two possible fates: (1) differentiate and be lost from the tissue or (2) expand symmetrically to self-renew. Asymmetric divisions appear to be mostly implicated in differentiation and stratification of the epidermis. While mechanisms of adult stem cell homeostasis begin to be unraveled, the embryonic origin of the adult epithelial skin stem cells is poorly understood. Recent studies reported Sox9, Lgr6, and Runx1 expression in subpopulations of cells in the embryonic hair placode. These subpopulations seem to act as precursors of different classes of adult epithelial stem cells. In particular, Runx1 regulates a Wnt-mediated cross-talk between the nascent adult-type hair follicle stem cells and their environment, which is essential for timely stem cell emergence, proper maturation, long-term differentiation potential, and maintenance. The new data begin to define the basic dynamics and regulatory pathways governing the ontogeny of adult epithelial stem cells.
Collapse
Affiliation(s)
- Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA,
| |
Collapse
|
13
|
Abstract
After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related to advanced stages of tumour progression and invasiveness. But the key roles of these proteins in crosstalk with the Hippo and liver kinase B1 (LKB1)-AMPK pathways and in epithelial function and proliferation indicate that they may also be associated with the early stages of tumorigenesis. For example, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.
Collapse
Affiliation(s)
- Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| | | |
Collapse
|