1
|
Cellular and Molecular Mechanisms of R/S-Roscovitine and CDKs Related Inhibition under Both Focal and Global Cerebral Ischemia: A Focus on Neurovascular Unit and Immune Cells. Cells 2021; 10:cells10010104. [PMID: 33429982 PMCID: PMC7827530 DOI: 10.3390/cells10010104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide. Following ischemic stroke, Neurovascular Unit (NVU) inflammation and peripheral leucocytes infiltration are major contributors to the extension of brain lesions. For a long time restricted to neurons, the 10 past years have shown the emergence of an increasing number of studies focusing on the role of Cyclin-Dependent Kinases (CDKs) on the other cells of NVU, as well as on the leucocytes. The most widely used CDKs inhibitor, (R)-roscovitine, and its (S) isomer both decreased brain lesions in models of global and focal cerebral ischemia. We previously showed that (S)-roscovitine acted, at least, by modulating NVU response to ischemia. Interestingly, roscovitine was shown to decrease leucocytes-mediated inflammation in several inflammatory models. Specific inhibition of roscovitine majors target CDK 1, 2, 5, 7, and 9 showed that these CDKs played key roles in inflammatory processes of NVU cells and leucocytes after brain lesions, including ischemic stroke. The data summarized here support the investigation of roscovitine as a potential therapeutic agent for the treatment of ischemic stroke, and provide an overview of CDK 1, 2, 5, 7, and 9 functions in brain cells and leucocytes during cerebral ischemia.
Collapse
|
2
|
Song Y, Ichinose T, Morita K, Yoshida Y. The toll like receptor 4-myeloid differentiation factor 88 pathway is essential for particulate matter-induced activation of CD4-positive cells. J Appl Toxicol 2018; 39:354-364. [PMID: 30289175 DOI: 10.1002/jat.3726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023]
Abstract
Asian sand dust (ASD), a type of particulate matter (PM) found in Asia, can be transported to East Asia. We recently found that acute splenic inflammation is induced by ASD in mouse models. In this study, we examined the effect of sub-chronic ASD exposure on mouse immune cells. Mice were intratracheally administered ASD once every 2 weeks for 8 weeks and killed 24 hours after the final administration. Wild-type (WT) mice showed increased cell viability after ASD administration. In contrast, ASD administration induced splenocyte activation in toll-like receptor (TLR)2-/- , but not TLR4-/- mice. Furthermore, concanavalin A-induced interleukin-2 production increased after ASD administration in WT and TLR2-/- mice, but not in TLR4-/- or myeloid differentiation factor (MyD)88-/- mice. Immunoblotting demonstrated that nuclear factor κB (NF-κB) was activated in WT mice, but not in TLR4-/- or MyD88-/- mice. The NF-κB-dependent gene products CDK2 and intercellular cell adhesion molecule-1 were upregulated upon ASD administration in WT mice, but not in TLR4-/- or MyD88-/- mice. Furthermore, the particles themselves, rather than particle constituents, activated NF-κB in CD4-positive cells through the TLR4 or MyD88 pathway. Taken together, these results indicate that particle-induced splenic inflammation occurs via TLR4-MyD88 signaling.
Collapse
Affiliation(s)
- Yuan Song
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
- Department of Clinical Laboratory, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Notsuharu, Oita, 870-1201, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| |
Collapse
|
3
|
To Be or Not to Be: Environmental Factors that Drive Myelin Formation during Development and after CNS Trauma. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are specialized glial cells that myelinate central nervous system (CNS) axons. Historically, it was believed that the primary role of myelin was to compactly ensheath axons, providing the insulation necessary for rapid signal conduction. However, mounting evidence demonstrates the dynamic importance of myelin and oligodendrocytes, including providing metabolic support to neurons and regulating axon protein distribution. As such, the development and maintenance of oligodendrocytes and myelin are integral to preserving CNS homeostasis and supporting proper functioning of widespread neural networks. Environmental signals are critical for proper oligodendrocyte lineage cell progression and their capacity to form functional compact myelin; these signals are markedly disturbed by injury to the CNS, which may compromise endogenous myelin repair capabilities. This review outlines some key environmental factors that drive myelin formation during development and compares that to the primary factors that define a CNS injury milieu. We aim to identify developmental factors disrupted after CNS trauma as well as pathogenic factors that negatively impact oligodendrocyte lineage cells, as these are potential therapeutic targets to promote myelin repair after injury or disease.
Collapse
|
4
|
Dulamea AO. The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies. Neural Regen Res 2017; 12:1939-1944. [PMID: 29323026 PMCID: PMC5784335 DOI: 10.4103/1673-5374.221146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oligodencrocytes (OLs) are the main glial cells of the central nervous system involved in myelination of axons. In multiple sclerosis (MS), there is an imbalance between demyelination and remyelination processes, the last one performed by oligodendrocyte progenitor cells (OPCs) and OLs, resulting into a permanent demyelination, axonal damage and neuronal loss. In MS lesions, astrocytes and microglias play an important part in permeabilization of blood-brain barrier and initiation of OPCs proliferation. Migration and differentiation of OPCs are influenced by various factors and the process is finalized by insufficient acummulation of OLs into the MS lesion. In relation to all these processes, the author will discuss the potential targets for remyelination strategies.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Department of Neurology, Fundeni Clinical Institute, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| |
Collapse
|
5
|
Tognatta R, Miller RH. Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. Neuropharmacology 2016; 110:539-547. [PMID: 27108096 DOI: 10.1016/j.neuropharm.2016.04.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/01/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
The concept of the oligodendrocyte lineage as simply a source of myelinating cells in the vertebrate CNS is undergoing radical revision. Elucidation of the origins of oligodendrocytes in the CNS has led to identification of important signaling pathways, the timing and mechanism of lineage commitments and overlapping as well as redundant functionality among oligodendrocytes. The realization that a significant proportion of the oligodendrocyte lineage cells remain in a proliferative and immature state suggests they have roles other than as a reservoir of myelinating cells. While early studies were focused on understanding the development of oligodendrocytes, more recent work has begun to define the role of oligodendrocyte lineage cells in CNS functionality and the identification of new avenues for neural repair. A relatively unexplored aspect of the oligodendrocyte lineage is their contribution either directly or indirectly to the pathology of neurodegenerative diseases such as ALS and Alzheimer's disease. Here we briefly consider the potential role of oligodendrocyte lineage cells as mediators of neural repair and neurodegeneration in the vertebrate CNS. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Reshmi Tognatta
- George Washington University, School of Medicine and Health Sciences, 2300 Eye Street NW, Ross Hall 709G, Washington, DC, 20037, USA
| | - Robert H Miller
- George Washington University, School of Medicine and Health Sciences, 2300 Eye Street NW, Ross Hall 709G, Washington, DC, 20037, USA.
| |
Collapse
|
6
|
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis? Int J Mol Sci 2015; 16:15057-85. [PMID: 26151843 PMCID: PMC4519887 DOI: 10.3390/ijms160715057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS.
Collapse
|
7
|
Abstract
Multiple sclerosis is an autoimmune disease of the CNS resulting in degeneration of myelin sheaths and loss of oligodendrocytes, which means that protection and electrical insulation of axons and rapid signal propagation are impaired, leading to axonal damage and permanent disabilities. Partial replacement of lost oligodendrocytes and remyelination can occur as a result of activation and recruitment of resident oligodendroglial precursor cells. However, the overall remyelination capacity remains inefficient because precursor cells often fail to generate new oligodendrocytes. Increasing evidence points to the existence of several molecular inhibitors that act on these cells and interfere with their cellular maturation. The p57kip2 gene encodes one such potent inhibitor of oligodendroglial differentiation and this study sheds light on the underlying mode of action. We found that subcellular distribution of the p57kip2 protein changed during differentiation of rat, mouse, and human oligodendroglial cells both in vivo and in vitro. Nuclear export of p57kip2 was correlated with promoted myelin expression, higher morphological phenotypes, and enhanced myelination in vitro. In contrast, nuclear accumulation of p57kip2 resulted in blocked oligodendroglial differentiation. Experimental evidence suggests that the inhibitory role of p57kip2 depends on specific interactions with binding proteins such as LIMK-1, CDK2, Mash1, and Hes5 either by controlling their site of action or their activity. Because functional restoration in demyelinating diseases critically depends on the successful generation of oligodendroglial cells, a therapeutic need that is currently unmet, the regulatory mechanism described here might be of particular interest for identifying suitable drug targets and devising novel therapeutic approaches.
Collapse
|
8
|
Michailidou I, de Vries HE, Hol EM, van Strien ME. Activation of endogenous neural stem cells for multiple sclerosis therapy. Front Neurosci 2015; 8:454. [PMID: 25653584 PMCID: PMC4299409 DOI: 10.3389/fnins.2014.00454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions.
Collapse
Affiliation(s)
- Iliana Michailidou
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Netherlands
| | - Elly M Hol
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Miriam E van Strien
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
9
|
Vaish V, Rana C, Piplani H, Vaiphei K, Sanyal SN. Sulindac and Celecoxib regulate cell cycle progression by p53/p21 up regulation to induce apoptosis during initial stages of experimental colorectal cancer. Cell Biochem Biophys 2014; 68:301-19. [PMID: 23857431 DOI: 10.1007/s12013-013-9711-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the present study we have elaborated the putative mechanisms could be followed by the non-steroidal anti-inflammatory drugs (NSAIDs) viz. Sulindac and Celecoxib in the regulation of cell cycle checkpoints along with tumor suppressor proteins to achieve their chemopreventive effects in the initial stages of experimental colorectal cancer. Male Sprague-Dawley rats were administered with 1,2-dimethylhydrazine dihydrochloride (DMH) to produce early stages of colorectal carcinogenesis. The mRNA expression profiles of various target genes were analyzed by RT-PCR and validated by quantitative real-time PCR, whereas protein expression was analyzed by Western blotting. Nuclear localization of transcription factors or other nuclear proteins was analyzed by electrophoretic mobility shift assay and immunofluorescence. Flowcytometry was performed to analyze the differential apoptotic events and cell cycle regulation. Molecular docking studies with different target proteins were also performed to deduce the various putative mechanisms of action followed by Sulindac and Celecoxib. We observed that DMH administration has abruptly increased the proliferation of colonic cells which is macroscopically visible in the form of multiple plaque lesions and co-relates with the disturbed molecular mechanisms of cell cycle regulation. However, co-administration of NSAIDs has shown regulatory effects on cell cycle checkpoints via induction of various tumor suppressor proteins. We may conclude that Sulindac and Celecoxib could possibly follow p53/p21 mediated regulation of cell proliferation, where down regulation of NF-κB signaling and activation of PPARγ might serve as important additional events in vivo.
Collapse
Affiliation(s)
- Vivek Vaish
- Department of Biophysics, Basic Medical Science Building, Panjab University, Chandigarh, 160014, India
| | | | | | | | | |
Collapse
|
10
|
Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 2014; 269:343-66. [PMID: 24721734 DOI: 10.1016/j.neuroscience.2014.03.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Oligodendrocyte precursor cells (OPC) are glial cells that metamorphose into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. In this review, we summarize the interwoven factors and cascades that promote the activation, recruitment and differentiation of OPCs into myelinating oligodendrocytes in the adult brain based mostly on results found in the study of demyelinating diseases. The goal of the review was to draw a complete picture of the transformation of OPCs into mature oligodendrocytes to facilitate the study of this transformation in both the normal and diseased adult brain.
Collapse
Affiliation(s)
| | - C Messier
- School of Psychology, University of Ottawa, Canada.
| |
Collapse
|
11
|
Li Y, Gao W, Li F, Wang J, Zhang J, Yang Y, Zhang S, Yang L. An in silico exploration of the interaction mechanism of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors. MOLECULAR BIOSYSTEMS 2014; 9:2266-81. [PMID: 23864105 DOI: 10.1039/c3mb70186g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CDK2, which interacts with cyclin A and cyclin E, is an important member of the CDK family. Having been proved to be associated with many diseases for its vital role in cell cycle, CDK2 is a promising target of anti-cancer drugs dealing with cell cycle disorders. In the present work, a total of 111 pyrazolo[1,5-a]pyrimidines (PHTPPs) as CDK2/cyclin A inhibitors were studied to conduct three-dimensional quantitative structure-activity (3D-QSAR) analyses. The optimal comparative molecular similarity indices analysis (CoMSIA) model shows that Q(2) = 0.516, Rncv(2) = 0.912, Rpre(2) = 0.914, Rm(2) = 0.843, SEP = 0.812, SEE = 0.347 with 10 components using steric, hydrophobic and H-bond donor field descriptors, indicating its effective internal and external predictive capacity. The contour maps further indicate that (1) bulky substituents in R1 are beneficial while H-bond donor groups at this position are detrimental; (2) hydrophobic contributions in the R2 area are favorable; (3) large and hydrophilic groups are well tolerated at the R3 position (a close H-bond donor moiety is favorable while a distal H-bond donor moiety in this area is disfavored); (4) bulky and hydrophobic features in the R4 region are beneficial for the biological activities and (5) the 7-N-aryl substitution is crucial to boost the inhibitory activities of the PHTPP inhibitors. Finally, docking and MD simulations demostrate that PHTPP derivatives are stabilized in a 'flying bat' conformation mainly through the H-bond interactions and hydrophobic contacts. Comparative studies indicate that PHTPP derivatives fit well within the ATP binding cleft in CDK2, with the core heterocyclic ring overlapping significantly with the adenine group of ATP despite a small deflection. In comparison to numerous other inhibitors binding to the ATP pocket, PHTPP analogues follow the binding fashion of purine inhibitors of this kinase. It is anticipated that the binding mechanism and structural features of PHTPP inhibitors studied in the present work will benefit the discovery of more potent CDK2 inhibitors, and the valid pyrazolo[1,5-a]pyrimidine-7-N-yl inhibitors will soon emerge from the large number of screening programmes to enter in clinical studies.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nadeem L, Brkic J, Chen YF, Bui T, Munir S, Peng C. Cytoplasmic mislocalization of p27 and cdk2 mediates the anti-migratory and anti-proliferative effects of Nodal in human trophoblast cells. J Cell Sci 2012; 126:445-53. [DOI: 10.1242/jcs.110197] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
p27Kip1, a cyclin-dependent kinase (CDK) inhibitor, is a multi-functional protein that regulates various cellular activities. Trophoblast proliferation, migration, and invasion are some of the key processes of placental development. We have recently reported that Nodal, a member of the transforming growth factor-β (TGF-β) superfamily, inhibits human trophoblast cell proliferation, migration and invasion. In this study, we investigated the mechanism by which Nodal regulates trophoblast activities. We found that Nodal increased p27 mRNA and protein levels by enhancing their stability. Interestingly, Nodal signaling also induced nuclear export of p27 and cdk2. Cytoplasmic translocation of p27 induced by Nodal requires p27 phosphorylation at S10. In addition, Nodal enhanced the association of p27 with cdk2, cdk5 and a microtubule-destabilizing protein; stathmin, and induced stathmin phosphorylation at S25 and S38. Furthermore, Nodal increased tubulin stability as revealed by immunofluorescent staining of acetylated tubulin. Finally, silencing of p27 reversed the inhibitory effect of Nodal on trophoblast cell proliferation, migration, and invasion. Taken together, our findings revealed a novel function of simultaneous p27 and cdk2 cytoplasmic mislocalization in mediating growth factor-regulated cell proliferation, migration and invasion.
Collapse
|