1
|
Kawula M, Purice D, Li M, Vivar G, Ahmadi SA, Parodi K, Belka C, Landry G, Kurz C. Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer. Radiat Oncol 2022; 17:21. [PMID: 35101068 PMCID: PMC8805311 DOI: 10.1186/s13014-022-01985-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Background The evaluation of automatic segmentation algorithms is commonly performed using geometric metrics. An analysis based on dosimetric parameters might be more relevant in clinical practice but is often lacking in the literature. The aim of this study was to investigate the impact of state-of-the-art 3D U-Net-generated organ delineations on dose optimization in radiation therapy (RT) for prostate cancer patients. Methods A database of 69 computed tomography images with prostate, bladder, and rectum delineations was used for single-label 3D U-Net training with dice similarity coefficient (DSC)-based loss. Volumetric modulated arc therapy (VMAT) plans have been generated for both manual and automatic segmentations with the same optimization settings. These were chosen to give consistent plans when applying perturbations to the manual segmentations. Contours were evaluated in terms of DSC, average and 95% Hausdorff distance (HD). Dose distributions were evaluated with the manual segmentation as reference using dose volume histogram (DVH) parameters and a 3%/3 mm gamma-criterion with 10% dose cut-off. A Pearson correlation coefficient between DSC and dosimetric metrics, i.e. gamma index and DVH parameters, has been calculated. Results 3D U-Net-based segmentation achieved a DSC of 0.87 (0.03) for prostate, 0.97 (0.01) for bladder and 0.89 (0.04) for rectum. The mean and 95% HD were below 1.6 (0.4) and below 5 (4) mm, respectively. The DVH parameters, V\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{60/65/70\,{\mathrm{Gy}}}$$\end{document}60/65/70Gy for the bladder and V\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{50/65/70\,{\mathrm{Gy}}}$$\end{document}50/65/70Gy for the rectum, showed agreement between dose distributions within \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \, 5\%$$\end{document}±5% and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \,2\%$$\end{document}±2%, respectively. The D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{98/2\%}$$\end{document}98/2% and V\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{95\%}$$\end{document}95%, for prostate and its 3 mm expansion (surrogate clinical target volume) showed agreement with the reference dose distribution within 2% and 3 Gy with the exception of one case. The average gamma pass-rate was 85%. The comparison between geometric and dosimetric metrics showed no strong statistically significant correlation. Conclusions The 3D U-Net developed for this work achieved state-of-the-art geometrical performance. Analysis based on clinically relevant DVH parameters of VMAT plans demonstrated neither excessive dose increase to OARs nor substantial under/over-dosage of the target in all but one case. Yet the gamma analysis indicated several cases with low pass rates. The study highlighted the importance of adding dosimetric analysis to the standard geometric evaluation.
Collapse
|
2
|
Huang C, Yang Y, Panjwani N, Boyd S, Xing L. Pareto Optimal Projection Search (POPS): Automated Radiation Therapy Treatment Planning by Direct Search of the Pareto Surface. IEEE Trans Biomed Eng 2021; 68:2907-2917. [PMID: 33523802 PMCID: PMC8526351 DOI: 10.1109/tbme.2021.3055822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Radiation therapy treatment planning is a time-consuming, iterative process with potentially high inter-planner variability. Fully automated treatment planning processes could reduce a planner's active treatment planning time and remove inter-planner variability, with the potential to tremendously improve patient turnover and quality of care. In developing fully automated algorithms for treatment planning, we have two main objectives: to produce plans that are 1) Pareto optimal and 2) clinically acceptable. Here, we propose the Pareto optimal projection search (POPS) algorithm, which provides a general framework for directly searching the Pareto front. METHODS Our POPS algorithm is a novel automated planning method that combines two main search processes: 1) gradient-free search in the decision variable space and 2) projection of decision variables to the Pareto front using the bisection method. We demonstrate the performance of POPS by comparing with clinical treatment plans. As one possible quantitative measure of treatment plan quality, we construct a clinical acceptability scoring function (SF) modified from the previously developed general evaluation metric (GEM). RESULTS On a dataset of 21 prostate cases collected as part of clinical workflow, our proposed POPS algorithm produces Pareto optimal plans that are clinically acceptable in regards to dose conformity, dose homogeneity, and sparing of organs-at-risk. CONCLUSION Our proposed POPS algorithm provides a general framework for fully automated treatment planning that achieves clinically acceptable dosimetric quality without requiring active planning from human planners. SIGNIFICANCE Our fully automated POPS algorithm addresses many key limitations of other automated planning approaches, and we anticipate that it will substantially improve treatment planning workflow.
Collapse
|
3
|
Grün A, Kawgan-Kagan M, Kaul D, Badakhshi H, Stromberger C, Budach V, Böhmer D. Impact of bladder volume on acute genitourinary toxicity in intensity modulated radiotherapy for localized and locally advanced prostate cancer. Strahlenther Onkol 2018; 195:517-525. [PMID: 30443682 DOI: 10.1007/s00066-018-1398-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE To evaluate the effect of changes in bladder volume during high-dose intensity-modulated-radiotherapy (IMRT) of prostate cancer on acute genitourinary (GU) toxicity and prospectively evaluate a simple biofeedback technique for reproducible bladder filling with the aim of reducing acute GU toxicity. METHODS One hundred ninety-three patients were trained via a biofeedback mechanism to maintain a partially filled bladder with a reproducible volume of 200-300 cc at planning CT and subsequently at each fraction of radiotherapy. We prospectively analyzed whether and to what extent the patients' ability to maintain a certain bladder filling influenced the degree of acute GU toxicity and whether cut-off values could be differentiated. RESULTS We demonstrated that the ability to reach a reproducible bladder volume above a threshold volume of 180 cc and maintain that volume via biofeedback throughout treatment predicts for a decrease in acute GU toxicity during curative high-dose IMRT of the prostate. Patients who were not able to reach a partial bladder filling to that cut-off value and were not able to maintain a partially filled bladder throughout treatment had a significantly higher risk of developing ≥grade 2 GU acute toxicity. CONCLUSION Our results support the hypothesis that a biofeedback training for the patient is an easy-to-apply, useful, and cost-effective tool for reducing acute GU toxicity in high-dose IMRT of the prostate. Patients who are not able to reach and maintain a certain bladder volume during planning and treatment-two independent risk factors-might need special consideration.
Collapse
Affiliation(s)
- Arne Grün
- Department for Radiation Oncology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Michael Kawgan-Kagan
- Department for Radiation Oncology, Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125, Berlin, Germany
| | - David Kaul
- Department for Radiation Oncology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Harun Badakhshi
- Department for Radiation Oncology, Ernst-von-Bergmann Klinikum, Charlottenstraße 72, 14467, Potsdam, Germany
| | - Carmen Stromberger
- Department for Radiation Oncology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Volker Budach
- Department for Radiation Oncology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dirk Böhmer
- Department for Radiation Oncology, Charité-University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
4
|
Chen H, Zhong Z, Liao Y, Pompoš A, Hrycushko B, Albuquerque K, Zhen X, Zhou L, Gu X. A non-rigid point matching method with local topology preservation for accurate bladder dose summation in high dose rate cervical brachytherapy. Phys Med Biol 2016; 61:1217-37. [PMID: 26788825 DOI: 10.1088/0031-9155/61/3/1217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the 'thin plate splines-robust point matching' (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7 ± 0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7 ± 1.8 mm and 1.6 ± 0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7 ± 2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50 ± 19%, 37 ± 11% and 28 ± 11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases with GPU acceleration. The efficiency and accuracy shown with the TPS-RPM-LTP indicate that it is a practical and promising tool for bladder dose summation in adaptive cervical cancer brachytherapy.
Collapse
Affiliation(s)
- Haibin Chen
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br J Cancer 2015; 112:1536-45. [PMID: 25839988 PMCID: PMC4454887 DOI: 10.1038/bjc.2015.113] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022] Open
Abstract
Background: In recent years, the rapidly advancing field of low-temperature atmospheric pressure plasmas has shown considerable promise for future translational biomedical applications, including cancer therapy, through the generation of reactive oxygen and nitrogen species. Method: The cytopathic effect of low-temperature plasma was first verified in two commonly used prostate cell lines: BPH-1 and PC-3 cells. The study was then extended to analyse the effects in paired normal and tumour (Gleason grade 7) prostate epithelial cells cultured directly from patient tissue. Hydrogen peroxide (H2O2) and staurosporine were used as controls throughout. Results: Low-temperature plasma (LTP) exposure resulted in high levels of DNA damage, a reduction in cell viability, and colony-forming ability. H2O2 formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis. Conclusions: This study demonstrates that LTP treatment causes cytotoxic insult in primary prostate cells, leading to rapid necrotic cell death. It also highlights the need to study primary cultures in order to gain more realistic insight into patient response.
Collapse
|
6
|
Rosewall T, Kong V, Heaton R, Currie G, Milosevic M, Wheat J. The Effect of Dose Grid Resolution on Dose Volume Histograms for Slender Organs at Risk during Pelvic Intensity-modulated Radiotherapy. J Med Imaging Radiat Sci 2014; 45:204-209. [DOI: 10.1016/j.jmir.2014.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
|
7
|
Hirst AM, Frame FM, Maitland NJ, O'Connell D. Low temperature plasma: a novel focal therapy for localized prostate cancer? BIOMED RESEARCH INTERNATIONAL 2014; 2014:878319. [PMID: 24738076 PMCID: PMC3971493 DOI: 10.1155/2014/878319] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/06/2014] [Indexed: 12/16/2022]
Abstract
Despite considerable advances in recent years for the focal treatment of localized prostate cancer, high recurrence rates and detrimental side effects are still a cause for concern. In this review, we compare current focal therapies to a potentially novel approach for the treatment of early onset prostate cancer: low temperature plasma. The rapidly evolving plasma technology has the potential to deliver a wide range of promising medical applications via the delivery of plasma-induced reactive oxygen and nitrogen species. Studies assessing the effect of low temperature plasma on cell lines and xenografts have demonstrated DNA damage leading to apoptosis and reduction in cell viability. However, there have been no studies on prostate cancer, which is an obvious candidate for this novel therapy. We present here the potential of low temperature plasma as a focal therapy for prostate cancer.
Collapse
Affiliation(s)
- Adam M Hirst
- Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD, UK
| | - Fiona M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Norman J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Deborah O'Connell
- Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
8
|
Riou O, Laliberté B, Azria D, Menkarios C, Llacer Moscardo C, Dubois JB, Aillères N, Fenoglietto P. Implementing intensity modulated radiotherapy to the prostate bed: Dosimetric study and early clinical results. Med Dosim 2013; 38:117-21. [DOI: 10.1016/j.meddos.2012.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/23/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|
9
|
Elliott SP, Adejoro OO, Konety BR, Jarosek SL, Dusenbery KE, Virnig BA. Intensity Modulated Radiation Therapy Replaces 3-Dimensional Conformal Radiotherapy as Prostate Cancer Treatment. J Urol 2012; 187:1253-8. [DOI: 10.1016/j.juro.2011.11.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Indexed: 11/24/2022]
Affiliation(s)
- Sean P. Elliott
- Department of Urology, University of Minnesota, Minneapolis, Minnesota
- School of Medicine and Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Stephanie L. Jarosek
- School of Medicine and Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn E. Dusenbery
- Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Beth A. Virnig
- School of Medicine and Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
10
|
Riou O, Fenoglietto P, Laliberté B, Menkarios C, Llacer Moscardo C, Hay MH, Ailleres N, Dubois JB, Rebillard X, Azria D. Three Years of Salvage IMRT for Prostate Cancer: Results of the Montpellier Cancer Center. ISRN UROLOGY 2012; 2012:391705. [PMID: 22567417 PMCID: PMC3329735 DOI: 10.5402/2012/391705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/03/2012] [Indexed: 11/23/2022]
Abstract
Background. To assess the feasibility of salvage intensity-modulated radiation Therapy (IMRT) and to examine clinical outcome. Patients and Methods. 57 patients were treated with salvage IMRT to the prostate bed in our center from January, 2007, to February, 2010. The mean prescription dose was 68 Gy in 34 fractions. Forty-four patients received concomitant androgen deprivation. Results. Doses to organs at risk were low without altering target volume coverage. Salvage IMRT was feasible without any grade 3 or 4 acute gastrointestinal or urinary toxicity. With a median follow-up of 21 months, one grade 2 urinary and 1 grade ≥2 rectal late toxicities were reported. Biological relapse-free survival was 96.5% (2.3% (1/44) relapsed with androgen suppression and 7.7% (1/13) without). Conclusion. Salvage IMRT is feasible and results in low acute and chronic side-effects. Longer follow-up is warranted to draw conclusions in terms of oncologic control.
Collapse
Affiliation(s)
- Olivier Riou
- Département d'Oncologie Radiothérapie, CRLC Val d'Aurelle-Paul Lamarque, Montpellier 34298, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rosewall T, Bayley AJ, Chung P, Le LW, Xie J, Baxi S, Catton CN, Currie G, Wheat J, Milosevic M. The effect of delineation method and observer variability on bladder dose-volume histograms for prostate intensity modulated radiotherapy. Radiother Oncol 2011; 101:479-85. [PMID: 21864921 DOI: 10.1016/j.radonc.2011.06.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 11/16/2022]
Abstract
PURPOSE To quantify the effect of delineation method on bladder DVH, observer variability (OV) and contouring time for prostate IMRT plans. MATERIALS AND METHODS Planning CT scans and IMRT plans of 30 prostate cancer patients were anonymized. For 20 patients, 1 observer delineated the bladder using 9 methods. The effect of delineation method on the DVH curve, discrete dose levels and delineation time was quantified. For the 10 remaining CTs, 6 observers delineated bladder wall using 4 methods. Observer-based volume variation and intraclass correlation coefficient (ICC) were used to describe the dosimetric effects of OV. RESULTS Manual delineation of the bladder wall (BW_m) was significantly slower than any other method (mean: 20 min vs. ≤ 13 min) and the dosimetric effect of OV was significantly larger (V70 Gy ICC: 0.78 vs. 0.98). Only volumes created using a 2.5mm contraction from the outer surface, and a method providing a consistent wall volume, showed no notable dosimetric differences from BW_m in both absolute and relative volume. CONCLUSIONS Automatic contractions from the outer surface provide quicker, more reproducible and reasonably accurate substitutes for BW_m. The widespread use of automatic contractions to create a bladder wall volume would assist in the consistent application of IMRT dose constraints and the interpretation of reported dose.
Collapse
Affiliation(s)
- Tara Rosewall
- Princess Margaret Hospital and Department of Radiation Oncology, University of Toronto, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pederson AW, Fricano J, Correa D, Pelizzari CA, Liauw SL. Late toxicity after intensity-modulated radiation therapy for localized prostate cancer: an exploration of dose-volume histogram parameters to limit genitourinary and gastrointestinal toxicity. Int J Radiat Oncol Biol Phys 2010; 82:235-41. [PMID: 21163587 DOI: 10.1016/j.ijrobp.2010.09.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/03/2010] [Accepted: 09/21/2010] [Indexed: 12/14/2022]
Abstract
PURPOSE To characterize the late genitourinary (GU) and gastrointestinal (GI) toxicity for prostate cancer patients treated with intensity-modulated radiation therapy (IMRT) and propose dose-volume histogram (DVH) guidelines to limit late treatment-related toxicity. METHODS AND MATERIALS In this study 296 consecutive men were treated with IMRT for adenocarcinoma of the prostate. Most patients received treatment to the prostate with or without proximal seminal vesicles (90%), to a median dose of 76 Gy. Concurrent androgen deprivation therapy was given to 150 men (51%) for a median of 4 months. Late toxicity was defined by Common Toxicity Criteria version 3.0 as greater than 3 months after radiation therapy completion. Four groupings of DVH parameters were defined, based on the percentage of rectal or bladder tissue receiving 70 Gy (V(70)), 65 Gy (V(65)), and 40 Gy (V(40)). These DVH groupings, as well as clinical and treatment characteristics, were correlated to maximal Grade 2+ GU and GI toxicity. RESULTS With a median follow-up of 41 months, the 4-year freedom from maximal Grade 2+ late toxicity was 81% and 91% for GU and GI systems, respectively, and by last follow-up, the rates of Grade 2+ GU and GI toxicity were 9% and 5%, respectively. On multivariate analysis, whole-pelvic IMRT was associated with Grade 2+ GU toxicity and age was associated with Grade 2+ GI toxicity. Freedom from Grade 2+ GI toxicity at 4 years was 100% for men with rectal V(70) ≤ 10%, V(65) ≤ 20%, and V(40) ≤ 40%; 92% for men with rectal V(70) ≤ 20%, V(65) ≤ 40%, and V(40) ≤ 80%; and 85% for men exceeding these criteria (p = 0.13). These criteria were more highly associated with GI toxicity in men aged ≥70 years (p = 0.07). No bladder dose-volume relationships were associated with the risk of GU toxicity. CONCLUSIONS IMRT is associated with low rates of severe GU or GI toxicity after treatment for prostate cancer. Rectal dose constraints may help limit late GI morbidity.
Collapse
Affiliation(s)
- Aaron W Pederson
- Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
13
|
Rosewall T, Catton C, Currie G, Bayley A, Chung P, Wheat J, Milosevic M. The relationship between external beam radiotherapy dose and chronic urinary dysfunction – A methodological critique. Radiother Oncol 2010; 97:40-7. [DOI: 10.1016/j.radonc.2010.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 04/09/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
|
14
|
Fenoglietto P, Laliberte B, Allaw A, Ailleres N, Idri K, Hay MH, Moscardo CL, Gourgou S, Dubois JB, Azria D. Persistently better treatment planning results of intensity-modulated (IMRT) over conformal radiotherapy (3D-CRT) in prostate cancer patients with significant variation of clinical target volume and/or organs-at-risk. Radiother Oncol 2008; 88:77-87. [DOI: 10.1016/j.radonc.2007.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 12/05/2007] [Accepted: 12/10/2007] [Indexed: 11/30/2022]
|