1
|
Oliveira ACR, De Oliveira FS, Bráz AF, Oliveira JS, Lima-Santos J, Dias AAM. Unveiling the anticancer potential of the ethanolic extract from Trichoderma asperelloides. Front Pharmacol 2024; 15:1398135. [PMID: 38751785 PMCID: PMC11094271 DOI: 10.3389/fphar.2024.1398135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
The discovery of new therapeutic alternatives for cancer treatment is essential for improving efficacy and specificity, overcoming resistance, and enabling a more personalized approach for each patient. We investigated the antitumor activity of the crude ethanolic extract of the fungus Trichoderma asperelloides (ExtTa) and its interaction with chemotherapeutic drugs. It was observed, by MTT cytotoxicity assay, that ExtTa significantly reduced cell viability in breast adenocarcinoma, glioblastoma, lung carcinoma, melanoma, colorectal carcinoma, and sarcomas cell lines. The highest efficacy and selectivity of ExtTa were found against glioblastoma T98G and colorectal HCT116 cell lines. ExtTa is approximately four times more cytotoxic to those tumor cells than to non-cancer cell lines. A synergistic effect between ExtTa and doxorubicin was found in the treatment of osteosarcoma Saos-2 cells, as well as with 5-fluorouracil in the treatment of HCT116 colorectal carcinoma cells using CompuSyn software. Our data unravel the presence of bioactive compounds with cytotoxic effects against cancer cells present in T. asperelloides ethanolic crude extract, with the potential for developing novel anticancer agents.
Collapse
Affiliation(s)
- Ana Carolina R. Oliveira
- Laboratory of Inflammation and Cancer, Department of Genetics, Ecology and Evolution, Institute of Science Biological, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Santiago De Oliveira
- Laboratory of Inflammation and Cancer, Department of Genetics, Ecology and Evolution, Institute of Science Biological, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Flávia Bráz
- Laboratory of Inflammation and Cancer, Department of Genetics, Ecology and Evolution, Institute of Science Biological, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jamil S. Oliveira
- Physical Chemistry of Proteins and Enzymology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jane Lima-Santos
- Laboratory of Immunobiology, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Adriana A. M. Dias
- Laboratory of Inflammation and Cancer, Department of Genetics, Ecology and Evolution, Institute of Science Biological, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Lee LD, Pozios I, Liu V, Nachbichler SB, Böhmer D, Kamphues C, Beyer K, Bruns CJ, Kreis ME, Seeliger H. Thymidine phosphorylase induction by ionizing radiation antagonizes 5-fluorouracil resistance in human ductal pancreatic adenocarcinoma. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:255-262. [PMID: 35084511 PMCID: PMC9021112 DOI: 10.1007/s00411-022-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Chemoresistance in pancreatic ductal adenocarcinoma (PDAC) frequently contributes to failure of systemic therapy. While the radiosensitizing properties of 5-fluorouracil (FU) are well known, it is unknown whether ionizing radiation (IR) sensitizes towards FU cytotoxicity. Here, we hypothesize that upregulation of thymidine phosphorylase (TP) by IR reverses FU chemoresistance in PDAC cells. The FU resistant variant of the human PDAC cell line AsPC-1 (FU-R) was used to determine the sensitizing effects of IR. Proliferation rates of FU sensitive parental (FU-S) and FU-R cells were determined by WST-1 assays after low (0.05 Gy) and intermediate dose (2.0 Gy) IR followed by FU treatment. TP protein expression in PDAC cells before and after IR was assessed by Western blot. To analyze the specificity of the FU sensitizing effect, TP was ablated by siRNA. FU-R cells showed a 2.7-fold increase of the half maximal inhibitory concentration, compared to FU-S parental cells. Further, FU-R cells showed a concomitant IR resistance towards both doses applied. When challenging both cell lines with FU after IR, FU-R cells had lower proliferation rates than FU-S cells, suggesting a reversal of chemoresistance by IR. This FU sensitizing effect was abolished when TP was blocked by anti-TP siRNA before IR. An increase of TP protein expression was seen after both IR doses. Our results suggest a TP dependent reversal of FU-chemoresistance in PDAC cells that is triggered by IR. Thus, induction of TP expression by low dose IR may be a therapeutic approach to potentially overcome FU chemoresistance in PDAC.
Collapse
Affiliation(s)
- Lucas D Lee
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Ioannis Pozios
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Verena Liu
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Silke B Nachbichler
- Department of Radiotherapy and Radiation Oncology, Klinikum der Universität München, 81377, Munich, Germany
| | - Dirk Böhmer
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Carsten Kamphues
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Katharina Beyer
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Christiane J Bruns
- Department of Surgery, University Hospital of Cologne, 50937, Cologne, Germany
| | - Martin E Kreis
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Hendrik Seeliger
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany.
- IU Health University, 10243, Berlin, Germany.
| |
Collapse
|
3
|
Sobanski T, Rose M, Suraweera A, O’Byrne K, Richard DJ, Bolderson E. Cell Metabolism and DNA Repair Pathways: Implications for Cancer Therapy. Front Cell Dev Biol 2021; 9:633305. [PMID: 33834022 PMCID: PMC8021863 DOI: 10.3389/fcell.2021.633305] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
DNA repair and metabolic pathways are vital to maintain cellular homeostasis in normal human cells. Both of these pathways, however, undergo extensive changes during tumorigenesis, including modifications that promote rapid growth, genetic heterogeneity, and survival. While these two areas of research have remained relatively distinct, there is growing evidence that the pathways are interdependent and intrinsically linked. Therapeutic interventions that target metabolism or DNA repair systems have entered clinical practice in recent years, highlighting the potential of targeting these pathways in cancer. Further exploration of the links between metabolic and DNA repair pathways may open new therapeutic avenues in the future. Here, we discuss the dependence of DNA repair processes upon cellular metabolism; including the production of nucleotides required for repair, the necessity of metabolic pathways for the chromatin remodeling required for DNA repair, and the ways in which metabolism itself can induce and prevent DNA damage. We will also discuss the roles of metabolic proteins in DNA repair and, conversely, how DNA repair proteins can impact upon cell metabolism. Finally, we will discuss how further research may open therapeutic avenues in the treatment of cancer.
Collapse
Affiliation(s)
- Thais Sobanski
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Mokrani S, Granotier-Beckers C, Etienne O, Kortulewski T, Grisolia C, de Villartay JP, Boussin FD. Higher chromosome stability in embryonic neural stem and progenitor cells than in fibroblasts in response to acute or chronic genotoxic stress. DNA Repair (Amst) 2020; 88:102801. [PMID: 32032862 DOI: 10.1016/j.dnarep.2020.102801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 11/16/2022]
Abstract
High fidelity of genetic transmission in neural stem and progenitor cells (NSPCs) has been long time considered to be crucial for brain development and homeostasis. However, recent studies have identified recurrent DSB clusters in dividing NSPCs, which may underlie the diversity of neuronal cell types. This raised the interest in understanding how NSPCs sense and repair DSBs and how this mechanism could be altered by environmental genotoxic stress caused by pollutants or ionizing radiation. Here, we show that embryonic mouse neural stem and progenitor cells (NSPCs) have significantly higher capacity than mouse embryonic fibroblasts (MEFs) to maintain their chromosome stability in response to acute (γ-radiation) and chronic (tritiated thymidine -3H-T- incorporation into DNA) genotoxic stress. Cells deficient for XLF/Cernunnos, which is involved in non-homologous end joining DNA (NHEJ) repair, highlighted important variations in fidelity of DNA repair pathways between the two cell types. Strikingly, a progressive and generalized chromosome instability was observed in MEFs cultured with 3H-T at long-term, whereas NSPCs cultured in the same conditions, preserved their chromosome stability thanks to higher DNA repair activity further enhanced by an adaptive response and also to the elimination of damaged cells by apoptosis. This specific DNA damage response of NSPCs may rely on the necessity for preservation of their genome stability together with their possible function in creating neuronal genetic diversity.
Collapse
Affiliation(s)
- Sofiane Mokrani
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France
| | - Christine Granotier-Beckers
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France.
| | - Olivier Etienne
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France
| | | | - Jean-Pierre de Villartay
- Genome Dynamics in the Immune System Laboratory, Inserm, UMR 1163, Institut Imagine, Université Paris-Descartes, Sorbonne Paris-Cité, France
| | - François D Boussin
- Laboratoire de RadioPathologie, UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, 18 route du Panorama 92265 Fontenay-aux Roses, France.
| |
Collapse
|
5
|
Differential miRNA expression profiling reveals miR-205-3p to be a potential radiosensitizer for low- dose ionizing radiation in DLD-1 cells. Oncotarget 2018; 9:26387-26405. [PMID: 29899866 PMCID: PMC5995186 DOI: 10.18632/oncotarget.25405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.
Collapse
|
6
|
Multifunctional Chitosan-Capped Gold Nanoparticles for enhanced cancer chemo-radiotherapy: An invitro study. Phys Med 2018; 48:76-83. [DOI: 10.1016/j.ejmp.2018.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
|
7
|
Pirayesh Islamian J, Hatamian M, Aval NA, Rashidi MR, Mesbahi A, Mohammadzadeh M, Asghari Jafarabadi M. Targeted superparamagnetic nanoparticles coated with 2-deoxy-d-gloucose and doxorubicin more sensitize breast cancer cells to ionizing radiation. Breast 2017; 33:97-103. [DOI: 10.1016/j.breast.2017.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 02/17/2017] [Accepted: 03/18/2017] [Indexed: 11/25/2022] Open
|
8
|
Zhao X, Cui JW, Hu JH, Gao SJ, Liu XL. Effects of low-dose radiation on adaptive response in colon cancer stem cells. Clin Transl Oncol 2017; 19:907-914. [DOI: 10.1007/s12094-017-1624-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/28/2017] [Indexed: 11/29/2022]
|
9
|
MÁN IMOLA, SZEBENI GÁBORJ, PLANGÁR IMOLA, SZABÓ EMILIAR, TŐKÉS TÜNDE, SZABÓ ZOLTÁN, NAGY ZOLTÁN, FEKETE GÁBOR, FAJKA-BOJA ROBERTA, PUSKÁS LÁSZLÓG, HIDEGHÉTY KATALIN, HACKLER LÁSZLÓ. Novel real-time cell analysis platform for the dynamic monitoring of ionizing radiation effects on human tumor cell lines and primary fibroblasts. Mol Med Rep 2015; 12:4610-1619. [DOI: 10.3892/mmr.2015.4004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/28/2015] [Indexed: 11/06/2022] Open
|
10
|
Acetylamine derivative of diospyrin, a plant-derived binaphthylquinonoid, inhibits human colon cancer growth in Nod-Scid mice. Invest New Drugs 2014; 33:22-31. [DOI: 10.1007/s10637-014-0165-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/16/2014] [Indexed: 01/15/2023]
|
11
|
Radiobiological effects of multiple vs. single low-dose pre-irradiation on the HT29 cell line. Contemp Oncol (Pozn) 2014; 18:230-3. [PMID: 25258579 PMCID: PMC4171467 DOI: 10.5114/wo.2014.41386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/18/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
AIM OF THE STUDY Aim of the study was to compare radiobiological effects of multiple vs. single low-dose pre-irradiation on the HT29 cell line. This regime is designed to be as similar as possible to fractionated tumour radiotherapy treatment, and to provide data on radiobiological effects on human tumour cells. MATERIAL AND METHODS The cell line used in the study was HT29 (human colorectal adenocarcinoma, American Type Culture Collection HTB-38™). Also, for comparison, the MRC5 cell line (human foetal lung fibroblasts, American Type Culture Collection CCL 171) was used. Four-day treatment in a 4 × 2 Gy regime was performed. Cell viability was evaluated by tetrazolium colorimetric MTT assay. RESULTS Multiple low-dose pre-irradiation induced a stronger radioadaptive response compared to single low-dose application in the HT29 cell line. Multiple pre-irradiation with 0.03 Gy and 0.05 Gy caused radioadaptive effects, while in both single and multiple low-dose pre-irradiation regimes 0.07 Gy led to radiosensitivity. Radiobiological effects induced in the HT29 cell line by low-dose pre-irradiation were evidently weak during the treatment time, because a single low-dose applied only on the first day gave no radioadaptive effects. In the MRC5 cell line different effects were registered, since radioadaptive response has not been observed after multiple or single pre-irradiation. CONCLUSIONS The obtained data are interesting, especially for the possible application of low-dose pre-irradiation in radiotherapy.
Collapse
|
12
|
Mahadimane PV, Vasudev V. Inducible Protective Processes in Animal Systems XIII: Comparative Analysis of Induction of Adaptive Response by EMS and MMS in Ehrlich Ascites Carcinoma Cells. SCIENTIFICA 2014; 2014:703136. [PMID: 24999435 PMCID: PMC4066937 DOI: 10.1155/2014/703136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
In order to investigate the presence of adaptive response in cancerous cells, two monofunctional alkylating agents, namely, ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS), were employed to treat Ehrlich ascites carcinoma (EAC) cells in vivo. Conditioning dose of 80 mg/kg body weight of EMS or 50 mg/kg body weight of MMS and challenging dose of 240 mg/kg body weight of EMS or 150 mg/kg body weight of MMS were selected by pilot toxicity studies. Conditioned EAC cells when challenged after 8 h time lag resulted in significant reduction in chromosomal aberrations compared to challenging dose of respective agents. As has been proved in earlier studies with normal organisms, even in cancerous cells (EAC), there is presence of adaptive response to methylating and ethylating agents. Furthermore, it is also interesting to note in the present studies that the methylating agent, MMS, is a stronger inducer of the adaptive response than the ethylating agent, EMS.
Collapse
Affiliation(s)
| | - Venkateshaiah Vasudev
- Department of Studies in Bioscience, Post-Graduate Centre, University of Mysore, Hemagangotri, Hassan, Karnataka 573220, India
| |
Collapse
|
13
|
Zhang Z, Zeng Q, Liu Y, Li C, Feng D, Wang J. Assessment of the intrinsic radiosensitivity of glioma cells and monitoring of metabolite ratio changes after irradiation by 14.7-T high-resolution ¹H MRS. NMR IN BIOMEDICINE 2014; 27:547-552. [PMID: 24677622 DOI: 10.1002/nbm.3091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Gliomas are the most common type of primary brain tumor. Radiation therapy (RT) is the primary adjuvant treatment to eliminate residual tumor tissue after surgery. However, the current RT guided by conventional imaging is unsatisfactory. A fundamental question is whether it is possible to further enhance the effectiveness and efficiency of RT based on individual radiosensitivity. In this research, to probe the correlation between radiosensitivity and the metabolite characteristics of glioma cells in vitro, a perchloric acid (PCA) extracting method was used to obtain water-soluble metabolites [such as N-acetylaspartate (NAA), choline (Cho), creatine (Cr) and succinate (Suc)]. Spectral patterns from these processed water-soluble metabolite samples were acquired by in vitro 14.7-T high-resolution ¹H MRS. Survival fraction analysis was performed to test the intrinsic radiosensitivity of glioma cell lines. Good ¹H MRS of PCA extracts from glioma cells was obtained. The radiosensitivity of glioma cells correlated positively with the Cho/Cr and Cho/NAA ratios, but negatively with the Suc/Cr ratio. Irradiation of the C6 cell line at different X-ray dosages led to changes in metabolite ratios and apoptotic rates. A plateau phase of metabolite ratio change and a decrease in apoptotic rate were found in the C6 cell line. We conclude that in vitro high-resolution ¹H MRS possesses the sensitivity required to detect subtle biochemical changes at the cellular level. ¹H MRS may aid in the assessment of the individual radiosensitivity of brain tumors, which is pivotal in the identification of the biological target volume.
Collapse
Affiliation(s)
- Zhaotao Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
14
|
Aghaee F, Islamian JP, Baradaran B, Mesbahi A, Mohammadzadeh M, Jafarabadi MA. Enhancing the Effects of Low Dose Doxorubicin Treatment by the Radiation in T47D and SKBR3 Breast Cancer Cells. J Breast Cancer 2013; 16:164-70. [PMID: 23843848 PMCID: PMC3706861 DOI: 10.4048/jbc.2013.16.2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023] Open
Abstract
Purpose Breast cancer is the most common malignancy of women worldwide. Radiotherapy consists of a vital element in the treatment of breast cancer but relative side effects and different radioactive responses are limiting factors for a successful treatment. Doxorubicin has been used to treat cancers for over 30 years and is considered as the most effective drug in the treatment of breast cancer. There are also many chronic side effects that limit the amount of doxorubicin that can be administered. The combined radio-drug treatment, with low doses, can be an approach for reducing side effects from single modality treatments instead of suitable cure rates. Methods We have studied the effect of 1, 1.5, and 2 Gy doses of 9 MV X-rays along with 1 µM doxorubicin on inducing cell death, apoptosis and also p53 and PTEN gene expression in T47D and SKBR3 breast cancer cells. Results Doxorubicin treatment resulted in upregulation of radiation-induced levels of p53 and downregulation of PTEN at 1 and 1.5 Gy in T47D breast cancer cells, as well as downregulation of p53 mRNA level of expression and upregulation of PTEN mRNA level of expression in SKBR3 breast cancer cell line. In addition, doxorubicin in combination with radiation decreased the viability of breast cancer cell lines in the both cell lines. Conclusion Low doses of doxorubicin, with least cell toxicity, may be an effective treatment for breast cancer when used in conjunction with ionizing radiation.
Collapse
Affiliation(s)
- Fahimeh Aghaee
- Department of Medical Physics, Tabriz University of Medical Sciences School of Medicine, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
15
|
Aghaee F, Pirayesh Islamian J, Baradaran B. Enhanced radiosensitivity and chemosensitivity of breast cancer cells by 2-deoxy-d-glucose in combination therapy. J Breast Cancer 2012; 15:141-7. [PMID: 22807930 PMCID: PMC3395736 DOI: 10.4048/jbc.2012.15.2.141] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/29/2012] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common malignancy, and it is also the major cause of cancer-related deaths of women worldwide. Breast cancer treatment involves surgery, chemotherapy, radiation therapy, or combination therapy, and novel strategies are needed to boost the oncologic outcome. The non-metabolizable glucose analogue, 2-deoxy-D-glucose (2-DG) which inhibits glucose synthesis and adenosine triphosphate production, is one of the important discoveries involving the disturbances that can be caused to the process of the metabolism. The glucose analogue, 2-DG, is known as a tumor sensitizer to irradiation (IR) and chemotherapy, which help improve the treatment rates. It enhances the cytotoxicity via oxidative stress, which is more redundant in tumor cells than in normal ones. This article provides a brief summary on studies related to 2-DG chemo-/radio-sensitization effects by combination therapy of 2-DG/IR or 2-DG/doxorubicin.
Collapse
Affiliation(s)
- Fahimeh Aghaee
- Department of Medical Physics, Tabriz University of Medical Sciences School of Medicine, Tabriz, Iran
| | | | | |
Collapse
|
16
|
Scott BR, Belinsky SA, Leng S, Lin Y, Wilder JA, Damiani LA. Radiation-stimulated epigenetic reprogramming of adaptive-response genes in the lung: an evolutionary gift for mounting adaptive protection against lung cancer. Dose Response 2009; 7:104-31. [PMID: 19543479 DOI: 10.2203/dose-response.08-016.scott] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Humans are continuously exposed to low-level ionizing radiation from natural sources. However, harsher radiation environments persisted during our planet's early years and mammals survived via an evolutionary gift--a system of radiation-induced natural protective measures (adaptive protection). This system includes antioxidants, DNA repair, apoptosis of severely damaged cells, epigenetically regulated apoptosis (epiapoptosis) pathways that selectively remove precancerous and other aberrant cells, and immunity against cancer. We propose a novel model in which the protective system is regulated at least in part via radiation-stress-stimulated epigenetic reprogramming (epireprogramming) of adaptive-response genes. High-dose radiation can promote epigenetically silencing of adaptive-response genes (episilencing), for example via promoter-associated DNA and/or histone methylation and/or histone deacetylation. Evidence is provided for low linear-energy-transfer (LET) radiation-activated natural protection (ANP) against high-LET alpha-radiation-induced lung cancer in plutonium-239 exposed rats and radon-progeny-exposed humans. Using a revised hormetic relative risk model for cancer induction that accounts for both epigenetic activation (epiactivation) and episilencing of genes, we demonstrate that, on average, >80% of alpha-radiation-induced rat lung cancers were prevented by chronic, low-rate gamma-ray ANP. Interestingly, lifetime exposure to residential radon at the Environmental Protection Agency's action level of 4 pCi L(-1) appears to be associated with on average a > 60% reduction in lung cancer cases, rather than an increase. We have used underlined italics to indicate newly introduced terminology.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| | | | | | | | | | | |
Collapse
|