1
|
Wu K, Sun Q, Liu D, Lu J, Wen D, Zang X, Gao L. Alternative Splicing Landscape of Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241272051. [PMID: 39113534 PMCID: PMC11307358 DOI: 10.1177/15330338241272051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck malignancies are a significant global health concern, with head and neck squamous cell carcinoma (HNSCC) being the sixth most common cancer worldwide accounting for > 90% of cases. In recent years, there has been growing recognition of the potential role of alternative splicing (AS) in the etiology of cancer. Increasing evidence suggests that AS is associated with various aspects of cancer progression, including tumor occurrence, invasion, metastasis, and drug resistance. Additionally, AS is involved in shaping the tumor microenvironment, which plays a crucial role in tumor development and response to therapy. AS can influence the expression of factors involved in angiogenesis, immune response, and extracellular matrix remodeling, all of which contribute to the formation of a supportive microenvironment for tumor growth. Exploring the mechanism of AS events in HNSCC could provide insights into the development and progression of this cancer, as well as its interaction with the tumor microenvironment. Understanding how AS contributes to the molecular changes in HNSCC cells and influences the tumor microenvironment could lead to the identification of new therapeutic targets. Targeted chemotherapy and immunotherapy strategies tailored to the specific AS patterns in HNSCC could potentially improve treatment outcomes and reduce side effects. This review explores the concept, types, processes, and technological advancements of AS, focusing on its role in the initiation, progression, treatment, and prognosis of HNSCC.
Collapse
Affiliation(s)
- Kehan Wu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Qianhui Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Dongxu Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiayi Lu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Deyu Wen
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiyan Zang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
2
|
Liu M, Guo J, Jia R. Emerging roles of alternative RNA splicing in oral squamous cell carcinoma. Front Oncol 2022; 12:1019750. [PMID: 36505770 PMCID: PMC9732560 DOI: 10.3389/fonc.2022.1019750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative RNA splicing (ARS) is an essential and tightly regulated cellular process of post-transcriptional regulation of pre-mRNA. It produces multiple isoforms and may encode proteins with different or even opposite functions. The dysregulated ARS of pre-mRNA contributes to the development of many cancer types, including oral squamous cell carcinoma (OSCC), and may serve as a biomarker for the diagnosis and prognosis of OSCC and an attractive therapeutic target. ARS is mainly regulated by splicing factors, whose expression is also often dysregulated in OSCC and involved in tumorigenesis. This review focuses on the expression and roles of splicing factors in OSCC, the alternative RNA splicing events associated with OSCC, and recent advances in therapeutic approaches that target ARS.
Collapse
Affiliation(s)
- Miaomiao Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China,*Correspondence: Jihua Guo, ; Rong Jia,
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China,RNA Institute, Wuhan University, Wuhan, China,*Correspondence: Jihua Guo, ; Rong Jia,
| |
Collapse
|
3
|
Sulkshane P, Teni T. Myeloid cell leukemia-1: a formidable barrier to anticancer therapeutics and the quest of targeting it. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:278-296. [PMID: 36045907 PMCID: PMC9400788 DOI: 10.37349/etat.2022.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Glickman Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
4
|
Myeloid cell leukemia-1 expression in cancers of the oral cavity: a scoping review. Cancer Cell Int 2022; 22:182. [PMID: 35524332 PMCID: PMC9074253 DOI: 10.1186/s12935-022-02603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background B cell lymphoma-2 (Bcl-2) family members play important roles in cell survival as well as cell death. The role of myeloid cell leukemia-1 (Mcl-1), an important member of the Bcl-2 family, is well established in hematopoietic malignancies. However, the association between Mcl-1 and oral cavity, cancers is not clearly defined. Methods A scoping review was conducted until June 30, 2021, using four major databases, PubMed, Scopus, Web of Science, and Embase. Medical subject headings keywords for Mcl-1, along with its other identifiers, and head and neck cancers (only oral cavity tumors) were used to evaluate the expression, function, molecular association, and therapeutic approach of Mcl-1 in oral cavity cancers and precancers. Findings Mcl-1 expression was associated with the progression of oral cavity cancers. The molecular mechanism and pathways of Mcl-1 in oral cavity cancers established via experimental results have been highlighted in this review. Moreover, the various synthetic and naturally derived therapeutic agents targeting Mcl-1 have been documented. Novelty/Improvement Based on our present review, Mcl-1 appears to be an effective anticancer target that can be used in the therapeutic management of oral cancers.
Collapse
|
5
|
Identification of Candidate Target Genes and Immune Cells in Oral Squamous Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:5802110. [PMID: 35003322 PMCID: PMC8739923 DOI: 10.1155/2021/5802110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
Background The advance of new treatment strategies for more effective management of oral cancer requires identification of novel biological targets. Therefore, the purpose of this study is to identify novel biomarkers associated with oral tumorigenesis and prognostic signature by comparing gene expression profile of oral squamous cell carcinomas (OSCCs). Methods Four datasets including GSE25099, GSE30784, GSE37991, and GSE41613 were collected from Gene Expression Omnibus (GEO) database. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Cox model analysis, identification of key genes, and Kaplan-Meier analysis were also performed. The xCell was utilized to analyze the infiltration levels of immune cells. Results A total of 235 differentially expressed genes (DEGs) were found to be dysregulated in OSCC. These genes were mainly enriched in ECM receptor interaction and focal adhesion. Cox regression analysis identified 10 genes considered as key genes. Kaplan-Meier analysis showed that low expression of SERPINE1 (also known as PAI-1), high expression of CD1C, and C-X3-C motif chemokine receptor 1 (CX3CR1) were associated with well prognostic status in OSCC patients. In addition, we constructed a 3-immune-cell signature (myeloid dendritic cell, T cell CD4+ central memory, and common myeloid progenitor) that may be used to predict the survival status of OSCC patients. Conclusion Three key genes and 3-immune-cell signature were potential biomarkers for the prognosis of OSCC, and they may serve as potential targets for the treatment of OSCC patients.
Collapse
|
6
|
Sulkshane P, Pawar SN, Waghole R, Pawar SS, Rajput P, Uthale A, Oak S, Kalkar P, Wani H, Patil R, Nair S, Rane P, Teni T. Elevated USP9X drives early-to-late-stage oral tumorigenesis via stabilisation of anti-apoptotic MCL-1 protein and impacts outcome in oral cancers. Br J Cancer 2021; 125:547-560. [PMID: 34079080 PMCID: PMC8367974 DOI: 10.1038/s41416-021-01421-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Overexpression of anti-apoptotic MCL-1 protein in oral squamous cell carcinoma (OSCC) is linked to disease progression, therapy resistance and poor outcome. Despite its characteristic short half-life owing to ubiquitin-proteasome-dependent degradation, oral tumours frequently show elevated MCL-1 protein expression. Hence, we investigated the role of deubiquitinase USP9X in stabilising MCL-1 protein and its contribution to oral tumorigenesis. METHODS Expression of MCL-1 and USP9X was assessed by immunoblotting and immunohistochemistry in oral cancer cell lines and tissues. The association between MCL-1 and USP9X was confirmed by coimmunoprecipitation and immunofluorescence. Cell death assessment was performed by MTT, flow cytometry and clonogenic assays. RESULTS Both USP9X and MCL-1 are significantly elevated in oral premalignant lesions and oral tumours versus normal mucosa. USP9X interacts with and deubiquitinates MCL-1, thereby stabilising it. Pharmacological inhibition of USP9X potently induced cell death in OSCC cells in vitro and in vivo. The elevated expression of USP9X and MCL-1 correlated with poor prognosis in OSCC patients. CONCLUSION We demonstrate the oncogenic role of USP9X in driving early-to-late stages of oral tumorigenesis via stabilisation of MCL-1, suggesting its potential as a prognostic biomarker and therapeutic target in oral cancers.
Collapse
Affiliation(s)
- Prasad Sulkshane
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India ,grid.6451.60000000121102151Present Address: Glickman Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sagar N. Pawar
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Rohit Waghole
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Sushil S. Pawar
- KBH Dental College and Hospital, Panchwati, Nashik, Maharashtra India
| | - Priyanka Rajput
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Abhay Uthale
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India
| | - Swapnil Oak
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India
| | - Prajakta Kalkar
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Harshada Wani
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India
| | - Rahul Patil
- KBH Dental College and Hospital, Panchwati, Nashik, Maharashtra India
| | - Sudhir Nair
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India ,grid.410871.b0000 0004 1769 5793Department of Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra India
| | - Pallavi Rane
- grid.410869.20000 0004 1766 7522Clinical Research Secretariat, ACTREC, TMC, Kharghar, Navi Mumbai, Maharashtra India
| | - Tanuja Teni
- grid.410871.b0000 0004 1769 5793Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, Maharashtra India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra India
| |
Collapse
|
7
|
Pai S, Bamodu OA, Lin YK, Lin CS, Chu PY, Chien MH, Wang LS, Hsiao M, Yeh CT, Tsai JT. CD47-SIRPα Signaling Induces Epithelial-Mesenchymal Transition and Cancer Stemness and Links to a Poor Prognosis in Patients with Oral Squamous Cell Carcinoma. Cells 2019; 8:cells8121658. [PMID: 31861233 PMCID: PMC6952929 DOI: 10.3390/cells8121658] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC), with high mortality rates, is one of the most diagnosed head and neck cancers. Epithelial-to-mesenchymal transition (EMT) and the generation of cancer stem cells (CSCs) are two keys for therapy-resistance, relapse, and distant metastasis. Accumulating evidence indicates that aberrantly expressed cluster of differentiation (CD)47 is associated with cell-death evasion and metastasis; however, the role of CD47 in the generation of CSCs in OSCC is not clear. Methods: We investigated the functional roles of CD47 in OSCC cell lines SAS, TW2.6, HSC-3, and FaDu using the bioinformatics approach, immunoblotting, immunofluorescence staining, and assays for cellular migration, invasion, colony, and orosphere formation, as well as radiosensitivity. Results: We demonstrated increased expression of CD47 in OSCC patients was associated with an estimated poorly survival disadvantage (p = 0.0391) and positively correlated with the expression of pluripotency factors. Silencing CD47 significantly suppressed cell viability and orosphere formation, accompanied by a downregulated expression of CD133, SRY-Box transcription factor 2 (SOX2), octamer-binding transcription factor 4 (OCT4), and c-Myc. In addition, CD47-silenced OSCC cells showed reduced EMT, migration, and clonogenicity reflected by increased E-cadherin and decreased vimentin, Slug, Snail, and N-cadherin expression. Conclusion: Of therapeutic relevance, CD47 knockdown enhanced the anti-OSCC effect of radiotherapy. Collectively, we showed an increased CD47 expression promoted the generation of CSCs and malignant OSCC phenotypes. Silencing CD47, in combination with radiation, could provide an alternative and improved therapeutic efficacy for OSCC patients.
Collapse
Affiliation(s)
- Shin Pai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; (S.P.); (C.-S.L.); (M.-H.C.); (L.-S.W.)
- Department of Oral & Maxillofacial Surgery, Saint Martin de Porres Hospital, Chaiyi City 600, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Medical Research and Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Yen-Kuang Lin
- Biostatistics Center, Taipei Medical University, Taipei City 110, Taiwan;
| | - Chun-Shu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; (S.P.); (C.-S.L.); (M.-H.C.); (L.-S.W.)
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Faculty of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; (S.P.); (C.-S.L.); (M.-H.C.); (L.-S.W.)
| | - Liang-Shun Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; (S.P.); (C.-S.L.); (M.-H.C.); (L.-S.W.)
- Department of Medical Research and Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
- Department of Thoracic Surgery, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei City 115, Taiwan;
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; (S.P.); (C.-S.L.); (M.-H.C.); (L.-S.W.)
- Department of Medical Research and Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
- Correspondence: (C.-T.Y.); (J.-T.T.); Tel.: +886-2-249-0088 (ext. 8881) (C.-T.Y.); +886-2-249-0088 (ext. 8885) (J.-T.T.); Fax: +886-2-2248-0900 (C.-T.Y. & J.-T.T.)
| | - Jo-Ting Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; (S.P.); (C.-S.L.); (M.-H.C.); (L.-S.W.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Radiology, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan
- Correspondence: (C.-T.Y.); (J.-T.T.); Tel.: +886-2-249-0088 (ext. 8881) (C.-T.Y.); +886-2-249-0088 (ext. 8885) (J.-T.T.); Fax: +886-2-2248-0900 (C.-T.Y. & J.-T.T.)
| |
Collapse
|
8
|
Divaricoside Exerts Antitumor Effects, in Part, by Modulating Mcl-1 in Human Oral Squamous Cell Carcinoma Cells. Comput Struct Biotechnol J 2019; 17:151-159. [PMID: 30788081 PMCID: PMC6369261 DOI: 10.1016/j.csbj.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiac glycosides (CGs), prescribed to treat congestive heart failure and arrhythmias, exert potent antitumor activity. In this study, divaricoside (DIV), a CG isolated from Strophanthus divaricatus was examined for its antitumor potency in oral squamous cell carcinoma (OSCC) cells. Cell growth was inhibited by DIV in a dose- and time-dependent manner in SCC2095 and OECM-1 OSCC cells using MTT assays. DIV induced S and G2/M phase arrest accompanied by downregulation of phosphorylated CDC25C, CDC25C, and CDC2 in SCC2095 cells. In addition, DIV induced apoptosis by activating caspase-3 and downregulating the expression of Mcl-1. Furthermore, overexpression of Mcl-1 partially reversed DIV-induced death in SCC2095 cells. Additionally, western blot and transmission electron microscopy analyses also indicated that DIV induced autophagy in SCC2095 cells. However, the combination of autophagy inhibitor did not affect DIV-mediated apoptosis in SCC2095 cells. Together, these findings suggest that translational potential of DIV to be developed as a therapeutic agent for OSCC treatment.
Collapse
|
9
|
Di C, Syafrizayanti, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Sun C, Zhang H, Hoheisel JD. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ 2018; 26:1181-1194. [PMID: 30464224 PMCID: PMC6748147 DOI: 10.1038/s41418-018-0231-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is a fundamental process that plays a considerable role in generating protein diversity. Pre-mRNA splicing is also the key to the pathology of numerous diseases, especially cancers. In this review, we discuss how aberrant splicing isoforms precisely regulate three basic functional aspects in cancer: proliferation, metastasis and apoptosis. Importantly, clinical function of aberrant splicing isoforms is also discussed, in particular concerning drug resistance and radiosensitivity. Furthermore, this review discusses emerging strategies how to modulate pathologic aberrant splicing isoforms, which are attractive, novel therapeutic agents in cancer. Last we outline current and future directions of isoforms diagnostic methodologies reported so far in cancer. Thus, it is highlighting significance of aberrant splicing isoforms as markers for cancer and as targets for cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Syafrizayanti
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus Limau Manis, Padang, Indonesia
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuetian Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
11
|
Weng JR, Bai LY, Ko HH, Tsai YT. Cyclocommunol induces apoptosis in human oral squamous cell carcinoma partially through a Mcl-1-dependent mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 39:25-32. [PMID: 29433680 DOI: 10.1016/j.phymed.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/01/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Crude extract of breadfruit has been reported to have antitumor activity against various cancer cell lines with unknown mechanism. PURPOSE This study aims to investigate the proapoptotic effect of cyclocommunol (CYC), a prenylflavonoid from breadfruit, in two oral squamous cell carcinoma (OSCC) cell lines, SCC2095 and Ca922. METHODS The antiproliferative effects of CYC were assessed by MTT assays and PI/annexin V analysis. SCC2095 cells were transiently transfected with Mcl-1 plasmid in overexpression experiment. Other methods used to investigate the mechanism of CYC included Western blotting, acridine orange staining and confocal microscopic visualization. RESULTS Our results showed that CYC suppressed the viability of SCC2095 and Ca922 with IC50 values at 48 h of 4.2 and 5.0 µM, respectively. This decrease in viability occurred in a caspase-dependent apoptotic manner. In addition, CYC down-regulated the phosphorylation/expression of Akt/mTOR and Mcl-1, accompanied by reactive oxygen species generation, and autophagy induction. Notably, overexpression of Mcl-1 using Mcl-1-tag-myc partially rescued CYC-mediated caspase-3 activation, PARP cleavage, and cytotoxicity. In summary, our study demonstrated the proapoptotic activity of CYC on OSCC, partially through down-regulation of Mcl-1. CONCLUSION CYC from breadfruit has translational value as a proapoptotic agent for OSCC.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Li-Yuan Bai
- College of Medicine, China Medical University, Taichung 40402, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80715, Taiwan
| | - Yi-Tung Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
12
|
FTY720 Induces Autophagy-Associated Apoptosis in Human Oral Squamous Carcinoma Cells, in Part, through a Reactive Oxygen Species/Mcl-1-Dependent Mechanism. Sci Rep 2017; 7:5600. [PMID: 28717222 PMCID: PMC5514089 DOI: 10.1038/s41598-017-06047-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/07/2017] [Indexed: 11/14/2022] Open
Abstract
In this study, we interrogated the mechanism by which the immunosuppressant FTY720 mediates anticancer effects in oral squamous cell carcinoma (OSCC) cells. FTY720 differentially suppressed the viability of the OSCC cell lines SCC4, SCC25, and SCC2095 with IC50 values of 6.1, 6.3, and 4.5 μM, respectively. This antiproliferative effect was attributable to the ability of FTY720 to induce caspase-dependent apoptosis. Mechanistic evidence suggests that FTY720-induced apoptosis was associated with its ability to inhibit Akt-NF-κB signaling, to facilitate the proteasomal degradation of the antiapoptotic protein Mcl-1, and to increase reactive oxygen species (ROS) generation. Both overexpression of Mcl-1 and inhibition of ROS partially protected cells from FTY720-induced caspase-9 activation, PARP cleavage and cytotoxicity. In addition, FTY720 induced autophagy in OSCC cells, as manifested by LC3B-II conversion, decreased p62 expression, and accumulation of autophagosomes. Inhibition of autophagy by bafilomycin A1 protected cells from FTY720-induced apoptosis. Together, these findings suggest an intricate interplay between autophagy and apoptosis in mediating the tumor-suppressive effect in OSCC cells, which underlies the translational potential of FTY720 in fostering new therapeutic strategies for OSCC.
Collapse
|
13
|
BH3 mimetic Obatoclax (GX15-070) mediates mitochondrial stress predominantly via MCL-1 inhibition and induces autophagy-dependent necroptosis in human oral cancer cells. Oncotarget 2016; 8:60060-60079. [PMID: 28947954 PMCID: PMC5601122 DOI: 10.18632/oncotarget.11085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/23/2016] [Indexed: 01/09/2023] Open
Abstract
We have previously reported overexpression of antiapoptotic MCL-1 protein in human oral cancers and its association with therapy resistance and poor prognosis, implying it to be a potential therapeutic target. Hence, we investigated the efficacy and mechanism of action of Obatoclax, a BH3 mimetic pan BCL-2 inhibitor in human oral cancer cell lines. All cell lines exhibited high sensitivity to Obatoclax with complete clonogenic inhibition at 200-400 nM concentration which correlated with their MCL-1 expression. Mechanistic insights revealed that Obatoclax induced a caspase-independent cell death primarily by induction of a defective autophagy. Suppression of autophagy by ATG5 downregulation significantly blocked Obatoclax-induced cell death. Further, Obatoclax induced interaction of p62 with key components of the necrosome RIP1K and RIP3K. Necrostatin-1 mediated inhibition of RIP1K significantly protected the cells from Obatoclax induced cell death. Moreover, Obatoclax caused extensive mitochondrial stress leading to their dysfunction. Interestingly, MCL-1 downregulation alone caused mitochondrial stress, highlighting its importance for mitochondrial homeostasis. We also demonstrated in vivo efficacy of Obatoclax against oral cancer xenografts and its synergism with ionizing radiation in vitro. Our studies thus suggest that Obatoclax induces autophagy-dependent necroptosis in oral cancer cells and holds a great promise in the improved management of oral cancer patients.
Collapse
|
14
|
Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR. The RNA Response to DNA Damage. J Mol Biol 2016; 428:2636-2651. [PMID: 26979557 DOI: 10.1016/j.jmb.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023]
Abstract
Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.
Collapse
Affiliation(s)
- Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Nicolás Nieto Moreno
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Gwendal Dujardin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Centre for Genomic Regulation, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel J Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
15
|
Palve V, Mallick S, Ghaisas G, Kannan S, Teni T. Overexpression of Mcl-1L splice variant is associated with poor prognosis and chemoresistance in oral cancers. PLoS One 2014; 9:e111927. [PMID: 25409302 PMCID: PMC4237324 DOI: 10.1371/journal.pone.0111927] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/09/2014] [Indexed: 12/28/2022] Open
Abstract
Background Altered expression of Mcl-1, an anti-apoptotic member of the Bcl-2 family, has been linked to the progression and outcome of a variety of malignancies. We have previously reported the overexpression of Mcl-1 protein in human oral cancers. The present study aimed to evaluate the clinicopathological significance of the expression of three known Mcl-1 isoforms in oral tumors and the effect of targeting Mcl-1L isoform on chemosensitivity of oral cancer cells. Methods The expression of Mcl-1 isoforms- Mcl-1L, Mcl-1S & Mcl-1ES was analyzed in 130 paired oral tumors and 9 oral cell lines using quantitative real-time PCR & protein by western blotting. The Mcl-1 mRNA levels were correlated with clinicopathological parameters and outcome of oral cancer patients. The effect of Mcl-1L shRNA or Obatoclax (a small molecule Mcl-1 inhibitor), in combination with Cisplatin on chemosensitivity of oral cancer cells was also assessed. Results Anti-apoptotic Mcl-1L was predominantly expressed, over low or undetectable pro-apoptotic Mcl-1S and Mcl-1ES isoforms. The Mcl-1L transcripts were significantly overexpressed in all cancer cell lines and in 64% oral tumors versus adjacent normals (P<0.02). In oral cancer patients, high Mcl-1L expression was significantly associated with node positivity (P = 0.021), advanced tumor size (P = 0.013) and poor overall survival (P = 0.002). Multivariate analysis indicated Mcl-1L to be an independent prognostic factor for oral cancers (P = 0.037). Mcl-1L shRNA knockdown or its inhibition by Obatoclax in combination with Cisplatin synergistically reduced viability and growth of oral cancer cells than either treatment alone. Conclusion Our studies suggest that overexpression of Mcl-1L is associated with poor prognosis and chemoresistance in oral cancers. Mcl-1L is an independent prognostic factor and a potential therapeutic target in oral cancers.
Collapse
Affiliation(s)
- Vinayak Palve
- Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai-410210, India
| | - Sanchita Mallick
- Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai-410210, India
| | - Gauri Ghaisas
- Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai-410210, India
| | - Sadhana Kannan
- Epidemiology and Clinical Trial Unit (ECTU), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai-410210, India
| | - Tanuja Teni
- Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai-410210, India
- * E-mail:
| |
Collapse
|
16
|
Lin JC, Lin CY, Tarn WY, Li FY. Elevated SRPK1 lessens apoptosis in breast cancer cells through RBM4-regulated splicing events. RNA (NEW YORK, N.Y.) 2014; 20:1621-31. [PMID: 25140042 PMCID: PMC4174443 DOI: 10.1261/rna.045583.114] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imbalanced splicing of premessenger RNA is typical of tumorous malignancies, and the regulatory mechanisms involved in several tumorigenesis-associated splicing events are identified. Elevated expression of serine-arginine protein kinase 1 (SRPK1) may participate in the pathway responsible for the dysregulation of splicing events in malignant tumor cells. In this study, we observed a correlation between the cytoplasmic accumulation of RNA-binding motif protein 4 (RBM4) and up-regulated SRPK1 in breast cancer cells. The production of the IR-B and MCL-1S transcripts was induced separately by the overexpression of RBM4 and SRPK1 gene silencing. Overexpressed RBM4 simultaneously bound to the CU-rich elements within the MCL-1 exon2 and the downstream intron, which subsequently facilitated the exclusion of the regulated exon. Breast cancer cells are deprived of apoptotic resistance through the RBM4-mediated up-regulation of the IR-B and MCL-1S transcripts. These findings suggest that the splicing events regulated by the SRPK1-RMB4 network may contribute to tumorigenesis through altered sensitivity to apoptotic signals in breast cancer cells.
Collapse
MESH Headings
- Apoptosis
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Proliferation
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Staging
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan
| | - Fang-Yu Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 110, Taipei, Taiwan
| |
Collapse
|
17
|
Radiation oncology in vitro: trends to improve radiotherapy through molecular targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461687. [PMID: 25302298 PMCID: PMC4180203 DOI: 10.1155/2014/461687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022]
Abstract
Much has been investigated to improve the beneficial effects of radiotherapy especially in that case where radioresistant behavior is observed. Beyond simple identification of resistant phenotype the discovery and development of specific molecular targets have demonstrated therapeutic potential in cancer treatment including radiotherapy. Alterations on transduction signaling pathway related with MAPK cascade are the main axis in cancer cellular proliferation even as cell migration and invasiveness in irradiated tumor cell lines; then, for that reason, more studies are in course focusing on, among others, DNA damage enhancement, apoptosis stimulation, and growth factors receptor blockages, showing promising in vitro results highlighting molecular targets associated with ionizing radiation as a new radiotherapy strategy to improve clinical outcome. In this review we discuss some of the main molecular targets related with tumor cell proliferation and migration as well as their potential contributions to radiation oncology improvements.
Collapse
|
18
|
Yasser M, Shaikh R, Chilakapati MK, Teni T. Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation. PLoS One 2014; 9:e97777. [PMID: 24841281 PMCID: PMC4026477 DOI: 10.1371/journal.pone.0097777] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/23/2014] [Indexed: 01/24/2023] Open
Abstract
Radiotherapy is an important treatment modality for oral cancer. However, development of radioresistance is a major hurdle in the efficacy of radiotherapy in oral cancer patients. Identifying predictors of radioresistance is a challenging task and has met with little success. The aim of the present study was to explore the differential spectral profiles of the established radioresistant sublines and parental oral cancer cell lines by Raman spectroscopy. We have established radioresistant sublines namely, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B from its parental UPCI:SCC029B cell line, by using clinically admissible 2Gy fractionated ionizing radiation (FIR). The developed radioresistant character was validated by clonogenic cell survival assay and known radioresistance-related protein markers like Mcl-1, Bcl-2, Cox-2 and Survivin. Altered cellular morphology with significant increase (p<0.001) in the number of filopodia in radioresistant cells with respect to parental cells was observed. The Raman spectra of parental UPCI:SCC029B, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B cells were acquired and spectral features indicate possible differences in biomolecules like proteins, lipids and nucleic acids. Principal component analysis (PCA) provided three clusters corresponding to radioresistant 50Gy, 70Gy-UPCI:SCC029B sublines and parental UPCI:SCC029B cell line with minor overlap, which suggest altered molecular profile acquired by the radioresistant cells due to multiple doses of irradiation. The findings of this study support the potential of Raman spectroscopy in prediction of radioresistance and possibly contribute to better prognosis of oral cancer.
Collapse
Affiliation(s)
- Mohd Yasser
- KS-121, Teni Laboratory, ACTREC, Tata Memorial Centre, Kharghar-Node, Navi Mumbai, India
| | - Rubina Shaikh
- KS-04, Chilakapati Laboratory, ACTREC, Tata Memorial Centre, Kharghar-Node, Navi Mumbai, India
| | - Murali Krishna Chilakapati
- KS-04, Chilakapati Laboratory, ACTREC, Tata Memorial Centre, Kharghar-Node, Navi Mumbai, India
- * E-mail: (MKC); (TT)
| | - Tanuja Teni
- KS-121, Teni Laboratory, ACTREC, Tata Memorial Centre, Kharghar-Node, Navi Mumbai, India
- * E-mail: (MKC); (TT)
| |
Collapse
|
19
|
|
20
|
IL-6 regulates Mcl-1L expression through the JAK/PI3K/Akt/CREB signaling pathway in hepatocytes: implication of an anti-apoptotic role during liver regeneration. PLoS One 2013; 8:e66268. [PMID: 23825534 PMCID: PMC3692501 DOI: 10.1371/journal.pone.0066268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/02/2013] [Indexed: 12/21/2022] Open
Abstract
Aims To investigate the role and the regulation of the long variant of myeloid cell leukemia-1 protein (Mcl-1L) during liver regeneration. Background Liver regeneration is an important phenomenon after liver injury. The rat partial hepatectomy (PH) model was used to characterize liver regeneration and Mcl-1L expression after PH. Methods Male Wistar rats were subjected to 70% PH. The expression of mcl-1L mRNA was determined by quantitative RT-PCR, and protein levels were analyzed by Western blot analysis and immunohistochemistry during liver regeneration. Functional evaluations of Mcl-1L were tested using chemical inhibition (flavopiridol), genetic inhibition (siRNA) of Mcl-1L production, and by assaying for annexin V levels and DNA ladder formation. Serum IL-6 levels were determined by enzyme immunoassays; signal transduction of IL-6-regulated Mcl-1L expression was verified by chemical inhibitors and decoy double-stranded oligodeoxynucleotides. Results High levels of Mcl-1L were observed in remnant tissue at 4 h after PH. Administration of flavopiridol decreased Mcl-1L accumulation and also inhibited liver regeneration. IL-6 administration promoted the accumulation of Mcl-1L in rat hepatocytes, an effect that was impaired by siRNA treatments that reduced Mcl-1L production. Chemical inhibition and decoy oligonucleotide competition demonstrated that IL-6-induced Mcl-1L production required signaling mediated by JAK kinase, phosphoinositide 3-kinase (PI3K), and cAMP response-element-binding (CREB) proteins. Conclusion Mcl-1L is an anti-apoptotic protein induced during liver regeneration after PH in rats. The expression of Mcl-1L is induced by IL-6 through the JAK/PI3K/Akt/CREB signaling pathway. Chemotherapy drugs that depend on Mcl-1L- or IL-6-related signaling should be considered carefully before use in patients undergoing hepatectomy for malignant tumor resection.
Collapse
|