1
|
Midroni J, Salunkhe R, Liu Z, Chow R, Boldt G, Palma D, Hoover D, Vinogradskiy Y, Raman S. Incorporation of Functional Lung Imaging Into Radiation Therapy Planning in Patients With Lung Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2024; 120:370-408. [PMID: 38631538 PMCID: PMC11580018 DOI: 10.1016/j.ijrobp.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Our purpose was to provide an understanding of current functional lung imaging (FLI) techniques and their potential to improve dosimetry and outcomes for patients with lung cancer receiving radiation therapy (RT). Excerpta Medica dataBASE (EMBASE), PubMed, and Cochrane Library were searched from 1990 until April 2023. Articles were included if they reported on FLI in one of: techniques, incorporation into RT planning for lung cancer, or quantification of RT-related outcomes for patients with lung cancer. Studies involving all RT modalities, including stereotactic body RT and particle therapy, were included. Meta-analyses were conducted to investigate differences in dose-function parameters between anatomic and functional RT planning techniques, as well as to investigate correlations of dose-function parameters with grade 2+ radiation pneumonitis (RP). One hundred seventy-eight studies were included in the narrative synthesis. We report on FLI modalities, dose-response quantification, functional lung (FL) definitions, FL avoidance techniques, and correlations between FL irradiation and toxicity. Meta-analysis results show that FL avoidance planning gives statistically significant absolute reductions of 3.22% to the fraction of well-ventilated lung receiving 20 Gy or more, 3.52% to the fraction of well-perfused lung receiving 20 Gy or more, 1.3 Gy to the mean dose to the well-ventilated lung, and 2.41 Gy to the mean dose to the well-perfused lung. Increases in the threshold value for defining FL are associated with decreases in functional parameters. For intensity modulated RT and volumetric modulated arc therapy, avoidance planning results in a 13% rate of grade 2+ RP, which is reduced compared with results from conventional planning cohorts. A trend of increased predictive ability for grade 2+ RP was seen in models using FL information but was not statistically significant. FLI shows promise as a method to spare FL during thoracic RT, but interventional trials related to FL avoidance planning are sparse. Such trials are critical to understanding the effect of FL avoidance planning on toxicity reduction and patient outcomes.
Collapse
Affiliation(s)
- Julie Midroni
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada
| | - Rohan Salunkhe
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Zhihui Liu
- Biostatistics, Princess Margaret Cancer Center, Toronto, Canada
| | - Ronald Chow
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Gabriel Boldt
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - David Palma
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada; Ontario Institute for Cancer Research, Toronto, Canada
| | - Douglas Hoover
- London Regional Cancer Program, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, United States of America; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, United States of America
| | - Srinivas Raman
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Doshita K, Tabuchi Y, Kenmotsu H, Omori S, Kawabata T, Kodama H, Nishioka N, Miyawaki E, Iida Y, Mamesaya N, Kobayashi H, Ko R, Wakuda K, Ono A, Naito T, Murakami H, Mori K, Harada H, Kaneko T, Takahashi T. Incidence and Treatment Outcome of Radiation Pneumonitis in Patients With Limited-stage Small Cell Lung Cancer Treated With Concurrent Accelerated Hyperfractionated Radiation Therapy and Chemotherapy. Adv Radiat Oncol 2022; 8:101129. [PMID: 36845617 PMCID: PMC9943774 DOI: 10.1016/j.adro.2022.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose This study aimed to clarify the characteristics of and evaluate the risk factors for radiation pneumonitis (RP) induced by chemoradiation therapy (CRT) using accelerated hyperfractionated (AHF) radiation therapy (RT) in patients with limited-stage small cell lung cancer (LS-SCLC). Methods and Materials Between September 2002 and February 2018, 125 patients with LS-SCLC were treated with early concurrent CRT using AHF-RT. Chemotherapy was comprised of carboplatin/cisplatin with etoposide. RT was administered twice daily (45 Gy/30 fractions). We collected data regarding onset and treatment outcomes for RP, and analyzed the relationship between RP and total lung dose-volume histogram findings. Uni- and multivariate analyses were performed to assess patient- and treatment-related factors for grade ≥2 RP. Results The median age of patients was 65 years, and 73.6% of participants were men. In addition, 20% and 80.0% of participants presented with disease stage II and III, respectively. The median follow-up time was 73.1 months. Grades 1, 2, and 3 RP were observed in 69, 17, and 12 patients, respectively. Grades 4 to 5 RP were not observed. RP was treated with corticosteroids in patients with grade ≥2 RP, without recurrence. The median time from initiation of RT to onset of RP was 147 days. Three patients developed RP within 59 days, 6 within 60 to 89 days, 16 within 90 to 119 days, 29 within 120 to 149 days, 24 within 150 to 179 days, and 20 within ≥180 days. Among the dose-volume histogram parameters, the percentage of lung volume receiving >30 Gy (V30) was most strongly related to the incidence of grade ≥2 RP, and the optimal threshold to predict RP incidence was V30 ≥20%. On multivariate analysis, V30 ≥20% was an independent risk factor for grade ≥2 RP. Conclusions The incidence of grade ≥2 RP correlated strongly with a V30 of ≥20%. Contrarily, the onset of RP induced by concurrent CRT using AHF-RT may occur later. RP is manageable in patients with LS-SCLC.
Collapse
Affiliation(s)
- Kosei Doshita
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan,Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuya Tabuchi
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Nagaizumi-cho Suntou-gun, Shizuoka, Japan
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan,Corresponding author: Hirotsugu Kenmotsu, PhD
| | - Shota Omori
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Takanori Kawabata
- Clinical Research Center, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Hiroaki Kodama
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Naoya Nishioka
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Eriko Miyawaki
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Yuko Iida
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Haruki Kobayashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Ryo Ko
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Kazushige Wakuda
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Akira Ono
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Haruyasu Murakami
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Keita Mori
- Clinical Research Center, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| | - Hideyuki Harada
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Nagaizumi-cho Suntou-gun, Shizuoka, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Toshiaki Takahashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, Nagaizumi-cho Sunto-gun, Shizuoka, Japan
| |
Collapse
|
3
|
Li B, Ren G, Guo W, Zhang J, Lam SK, Zheng X, Teng X, Wang Y, Yang Y, Dan Q, Meng L, Ma Z, Cheng C, Tao H, Lei H, Cai J, Ge H. Function-Wise Dual-Omics analysis for radiation pneumonitis prediction in lung cancer patients. Front Pharmacol 2022; 13:971849. [PMID: 36199694 PMCID: PMC9528994 DOI: 10.3389/fphar.2022.971849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study investigates the impact of lung function on radiation pneumonitis prediction using a dual-omics analysis method. Methods: We retrospectively collected data of 126 stage III lung cancer patients treated with chemo-radiotherapy using intensity-modulated radiotherapy, including pre-treatment planning CT images, radiotherapy dose distribution, and contours of organs and structures. Lung perfusion functional images were generated using a previously developed deep learning method. The whole lung (WL) volume was divided into function-wise lung (FWL) regions based on the lung perfusion functional images. A total of 5,474 radiomics features and 213 dose features (including dosiomics features and dose-volume histogram factors) were extracted from the FWL and WL regions, respectively. The radiomics features (R), dose features (D), and combined dual-omics features (RD) were used for the analysis in each lung region of WL and FWL, labeled as WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD. The feature selection was carried out using ANOVA, followed by a statistical F-test and Pearson correlation test. Thirty times train-test splits were used to evaluate the predictability of each group. The overall average area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and f1-score were calculated to assess the performance of each group. Results: The FWL-RD achieved a significantly higher average AUC than the WL-RD group in the training (FWL-RD: 0.927 ± 0.031, WL-RD: 0.849 ± 0.064) and testing cohorts (FWL-RD: 0.885 ± 0.028, WL-RD: 0.762 ± 0.053, p < 0.001). When using radiomics features only, the FWL-R group yielded a better classification result than the model trained with WL-R features in the training (FWL-R: 0.919 ± 0.036, WL-R: 0.820 ± 0.052) and testing cohorts (FWL-R: 0.862 ± 0.028, WL-R: 0.750 ± 0.057, p < 0.001). The FWL-D group obtained an average AUC of 0.782 ± 0.032, obtaining a better classification performance than the WL-D feature-based model of 0.740 ± 0.028 in the training cohort, while no significant difference was observed in the testing cohort (FWL-D: 0.725 ± 0.064, WL-D: 0.710 ± 0.068, p = 0.54). Conclusion: The dual-omics features from different lung functional regions can improve the prediction of radiation pneumonitis for lung cancer patients under IMRT treatment. This function-wise dual-omics analysis method holds great promise to improve the prediction of radiation pneumonitis for lung cancer patients.
Collapse
Affiliation(s)
- Bing Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ge Ren
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wei Guo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sai-Kit Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yunhan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yang Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qinfu Dan
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lingguang Meng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chen Cheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hongyan Tao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hongchang Lei
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- *Correspondence: Hong Ge, ; Jing Cai,
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Hong Ge, ; Jing Cai,
| |
Collapse
|
4
|
Li F, Luo Y, Chen J, He L, Liang Y, Lai J, Guo F. Association between tumor morphology and dosimetric parameters of organs at risk after intensity-modulated radiotherapy in esophagus cancer. J Appl Clin Med Phys 2022; 23:e13612. [PMID: 35635800 PMCID: PMC9278670 DOI: 10.1002/acm2.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE We explored the effects of geometrical topological properties of tumors such as tumor length and "axial cross-sectional area (ACSA)" of tumors (planning target volume [PTV] volume /PTV length) on the dosimetric parameters of organs at risk (lung and heart) in patients with esophagus cancer (EPC) treated by way of intensity-modulated radiation therapy (IMRT), so as to provide a guideline for the dosimetric limitation for organs at risk in IMRT treatment. METHODS A retrospective analysis was done on 103 cases of patients with EPC who were treated by IMRT from November 2010 to August 2019, in which PTV-G stood for the externally expanded planning target volume (PTV) of the gross tumor volume (GTV) and PTV-C for the externally expanded volume of the clinical target volume (CTV). A linear regression model was employed to analyze the several pairs of correlation: the 1st one between the relative length of tumors (PTV length/lung length) and pulmonary dose-volume parameters, the 2nd one between ACSA of tumors and pulmonary dose-volume parameters, the 3rd one between PTV length and the dosimetric parameters of the heart, and the last one between ACSA of tumors and the dosimetric parameters of the heart. RESULTS (i) There was a strong positive correlation between the relative length of tumors (PTV length/lung length) and V5 (p < 0.001, r = 0.73), and V10 (p < 0.001, r = 0.66) of the lung. There was a moderate positive correlation between the relative length of tumors and V30 (p < 0.001, r = 0.44) of the lung, and a weak positive correlation between the relative length of tumors and V20 (p < 0.001, r = 0.39) of the lung. (ii) There was a strong positive correlation between ACSA of tumors (PTV volume/PTV length) and V30 (p < 0.001, r = 0.67) of the lung, a moderate positive correlation between ACSA of tumors and V20 (p <0.001, r = 0.51) of the lung, and a weak positive correlation between ACSA of tumors and V10 (p = 0.019, r = 0.23) of the lung, yet there was not an obvious correlation between ACSA of tumors and V5 p > 0.05) of the lung. (iii) There was a moderate positive correlation between PTV length and V40 (p < 0.001, r = 0.58), and Dmean (p < 0.001, r = 0.52) of the heart, yet there was no obvious correlation between ACSA of tumors and Dmean and V40 of the heart (p > 0.05). CONCLUSIONS (i) Compared with the high-dose region of the lung, the relative length of tumors (PTV length/lung length) has a greater impact on the low-dose region of the lung. The linear regression equation of scatter plot showed that when the relative length of tumors increased by 0.1, the lung dose-volume parameters of V5 , V10 , V20 , and V30 increased by approximately 5.37%, 3.59%, 1.05%, and 1.08%, respectively. When PTV length increased by 1 cm, Dmean and V40 of the heart increased by approximately 153.6 cGy and 2.03%, respectively. (ii) Compared with the low-dose region of the lung, the value of ACSA of tumors (PTV volume/PTV length) has a greater impact on the high-dose region of the lung. However, the value of ACSA of tumors has no significant effect on the dosimetric parameters of the heart (Dmean and V40 ). The linear regression equation of scatter plot showed that when ACSA of tumors increased by 10 cm2 , the lung dose-volume parameters of V10 , V20, and V30 increased by approximately 3.11%, 3.37%, and 4.01%, respectively.
Collapse
Affiliation(s)
- Fahui Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuxuan Luo
- The Medical Technology and Engineering Academy of Fujian Medical University, Fuzhou, China
| | - Jing Chen
- The Medical Technology and Engineering Academy of Fujian Medical University, Fuzhou, China
| | - Liping He
- The Medical Technology and Engineering Academy of Fujian Medical University, Fuzhou, China
| | - Yiying Liang
- The Medical Technology and Engineering Academy of Fujian Medical University, Fuzhou, China
| | - Junjie Lai
- The Medical Technology and Engineering Academy of Fujian Medical University, Fuzhou, China
| | - Feibao Guo
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,The Medical Technology and Engineering Academy of Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Lucia F, Rehn M, Blanc-Béguin F, Le Roux PY. Radiation Therapy Planning of Thoracic Tumors: A Review of Challenges Associated With Lung Toxicities and Potential Perspectives of Gallium-68 Lung PET/CT Imaging. Front Med (Lausanne) 2021; 8:723748. [PMID: 34513884 PMCID: PMC8429617 DOI: 10.3389/fmed.2021.723748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the introduction of new radiotherapy techniques, such as intensity modulated radiation therapy or stereotactic body radiation therapy, radiation induced lung injury remains a significant treatment related adverse event of thoracic radiation therapy. Functional lung avoidance radiation therapy is an emerging concept in the treatment of lung disease to better preserve lung function and to reduce pulmonary toxicity. While conventional ventilation/perfusion (V/Q) lung scintigraphy is limited by a relatively low spatial and temporal resolution, the recent advent of 68Gallium V/Q lung PET/CT imaging offers a potential to increase the accuracy of lung functional mapping and to better tailor lung radiation therapy plans to the individual's lung function. Lung PET/CT imaging may also improve our understanding of radiation induced lung injury compared to the current anatomical based dose–volume constraints. In this review, recent advances in radiation therapy for the management of primary and secondary lung tumors and in V/Q PET/CT imaging for the assessment of functional lung volumes are reviewed. The new opportunities and challenges arising from the integration of V/Q PET/CT imaging in radiation therapy planning are also discussed.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, Brest, France
| | - Martin Rehn
- Radiation Oncology Department, University Hospital, Brest, France
| | - Frédérique Blanc-Béguin
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| | - Pierre-Yves Le Roux
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| |
Collapse
|
6
|
Sha S, Dong J, Wang M, Chen Z, Gao P. Risk factors for radiation-induced lung injury in patients with advanced non-small cell lung cancer: implication for treatment strategies. World J Surg Oncol 2021; 19:214. [PMID: 34271911 PMCID: PMC8285849 DOI: 10.1186/s12957-021-02321-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The radiation-induced lung injury (RILI) in patients with advanced non-small cell lung cancer (NSCLS) is very common in clinical settings; we aimed to evaluate the risk factors of RILI in NSCLS patients, to provide insights into the treatment of NSCLS. METHODS NSCLC patients undergoing three-dimensional conformal radiotherapy (3D-CRT) in our hospital from June 1, 2018, to June 30, 2020, were included. The characteristics and treatments of RILI and non-RILI patients were analyzed. Logistic regression analyses were conducted to assess the risk factors of RILI in patients with NSCLC. RESULTS A total of 126 NSCLC patients were included; the incidence of RILI in NSCLC patients was 35.71%. There were significant differences in diabetes, smoke, chronic obstructive pulmonary disease (COPD), concurrent chemotherapy, radiotherapy dose, and planning target volume (PTV) between the RILI group and the non-RILI group (all P < 0.05). Logistic regression analyses indicated that diabetes (OR 3.076, 95%CI 1.442~5.304), smoke (OR 2.745, 95%CI 1.288~4.613), COPD (OR 3.949, 95%CI 1.067~5.733), concurrent chemotherapy (OR 2.072, 95%CI 1.121~3.498), radiotherapy dose ≥ 60 Gy (OR 3.841, 95%CI 1.932~5.362), and PTV ≥ 396 (OR 1.247, 95%CI 1.107~1.746) were the independent risk factors of RILI in patients with NSCLC (all P < 0.05). CONCLUSIONS RILI is commonly seen in NSCLS patients; early targeted measures are warranted for patients with those risk factors; future studies with larger sample sizes and different areas are needed to further elucidate the influencing factors of RILI in the treatment of NSCLS.
Collapse
Affiliation(s)
- Sha Sha
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China.
| | - Jigang Dong
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China
| | - Maoyu Wang
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China
| | - Ziyu Chen
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China
| | - Peng Gao
- Department of Radiotherapy, Jiaozhou Central Hospital, No. 29 Xuzhou Road, Jiaozhou City, Qingdao, 266300, China
| |
Collapse
|
7
|
Thomas HMT, Zeng J, Lee, Jr HJ, Sasidharan BK, Kinahan PE, Miyaoka RS, Vesselle HJ, Rengan R, Bowen SR. Comparison of regional lung perfusion response on longitudinal MAA SPECT/CT in lung cancer patients treated with and without functional tissue-avoidance radiation therapy. Br J Radiol 2019; 92:20190174. [PMID: 31364397 PMCID: PMC6849661 DOI: 10.1259/bjr.20190174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The effect of functional lung avoidance planning on radiation dose-dependent changes in regional lung perfusion is unknown. We characterized dose-perfusion response on longitudinal perfusion single photon emission computed tomography (SPECT)/CT in two cohorts of lung cancer patients treated with and without functional lung avoidance techniques. METHODS The study included 28 primary lung cancer patients: 20 from interventional (NCT02773238) (FLARE-RT) and eight from observational (NCT01982123) (LUNG-RT) clinical trials. FLARE-RT treatment plans included perfused lung dose constraints while LUNG-RT plans adhered to clinical standards. Pre- and 3 month post-treatment macro-aggregated albumin (MAA) SPECT/CT scans were rigidly co-registered to planning four-dimensional CT scans. Tumour-subtracted lung dose was converted to EQD2 and sorted into 5 Gy bins. Mean dose and percent change between pre/post-RT MAA-SPECT uptake (%ΔPERF), normalized to total tumour-subtracted lung uptake, were calculated in each binned dose region. Perfusion frequency histograms of pre/post-RT MAA-SPECT were analyzed. Dose-response data were parameterized by sigmoid logistic functions to estimate maximum perfusion increase (%ΔPERFmaxincrease), maximum perfusion decrease (%ΔPERFmaxdecrease), dose midpoint (Dmid), and dose-response slope (k). RESULTS Differences in MAA perfusion frequency distribution shape between time points were observed in 11/20 (55%) FLARE-RT and 2/8 (25%) LUNG-RT patients (p < 0.05). FLARE-RT dose response was characterized by >10% perfusion increase in the 0-5 Gy dose bin for 8/20 patients (%ΔPERFmaxincrease = 10-40%), which was not observed in any LUNG-RT patients (p = 0.03). The dose midpoint Dmid at which relative perfusion declined by 50% trended higher in FLARE-RT compared to LUNG-RT cohorts (35 GyEQD2 vs 21 GyEQD2, p = 0.09), while the dose-response slope k was similar between FLARE-RT and LUNG-RT cohorts (3.1-3.2, p = 0.86). CONCLUSION Functional lung avoidance planning may promote increased post-treatment perfusion in low dose regions for select patients, though inter-patient variability remains high in unbalanced cohorts. These preliminary findings form testable hypotheses that warrant subsequent validation in larger cohorts within randomized or case-matched control investigations. ADVANCES IN KNOWLEDGE This novel preliminary study reports differences in dose-response relationships between patients receiving functional lung avoidance radiation therapy (FLARE-RT) and those receiving conventionally planned radiation therapy (LUNG-RT). Following further validation and testing of these effects in larger patient populations, individualized estimation of regional lung perfusion dose-response may help refine future risk-adaptive strategies to minimize lung function deficits and toxicity incidence.
Collapse
Affiliation(s)
- Hannah Mary T Thomas
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | - Howard J Lee, Jr
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | | | - Paul E Kinahan
- Department of Radiology, University of Washington School of Medicine, Seattle, USA
| | - Robert S Miyaoka
- Department of Radiology, University of Washington School of Medicine, Seattle, USA
| | - Hubert J. Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | | |
Collapse
|
8
|
Xiao L, Yang G, Chen J, Yang Y, Meng X, Wang X, Wu Q, Huo Z, Yu Q, Yu J, Kong FMS, Yuan S. Comparison of predictive powers of functional and anatomic dosimetric parameters for radiation-induced lung toxicity in locally advanced non-small cell lung cancer. Radiother Oncol 2019; 129:242-248. [PMID: 30471708 DOI: 10.1016/j.radonc.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the predictive value of the perfusion (Q) single-photon emission computed tomography (SPECT)-weighted dose-function histogram (DFH) obtained mid-treatment (mid-Tx) with radiotherapy (RT) for radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS The study population consisted of NSCLC patients who were undergoing RT treatment and enrolled in prospective imaging studies. Q-SPECT was performed prior to and during RT (at ∼40-45 Gy). A baseline dose-volume histogram (DVH) and mid-Tx DVH based on simulation CT as well as a baseline DFH and mid-Tx DFH based on Q-SPECT were calculated. Only patients with stage III NSCLC and visible functional lung (FL) changes on the mid-Tx scan were eligible for this enriched analysis. RILT was graded according to a reported scale. RESULTS Forty-two stage III NSCLC patients met the criteria for inclusion. The accumulative incidence of grade ≥2 RILT was 31% in this high-risk population. Significant differences in functional metrics such as functional lung volume FV5-FV20 at increments of 5 Gy and functional MLD (FMLD) were observed between patients with and without grade ≥2 RILT (p < 0.05). Similar results were also obtained for anatomical metrics from V5-V20 and MLD (p < 0.05). The areas under the receiver operating characteristic curves (AUCs) ranged from 0.724to 0.812 for baseline DVH parameters, from 0.745 to 0.830 for mid-Tx DVH parameters, from 0.764 to 0.878 for baseline DFH parameters, and from 0.767 to 0.891 for mid-Tx DFH parameters. Further principal components analysis showed that the AUCs were 0.814/0.817 and 0.790/0.857 for baseline/mid-Tx DVH and baseline/mid-Tx DFH, respectively. CONCLUSIONS Mid-Tx DFH parameters based on Q-SPECT were significantly elevated in patients with grade ≥2 RILT in this study population. Among the metrics compared, mid-Tx DFH seemed to have better predictive accuracy, but this difference did not reach statistical difference.
Collapse
Affiliation(s)
- Linlin Xiao
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China; Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guoren Yang
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Jinhu Chen
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Yuchen Yang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Xue Meng
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaohui Wang
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Qingwei Wu
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Zongwei Huo
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Qingxi Yu
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Jinming Yu
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China; Shandong Academy of Medical Sciences, Jinan, China
| | - Feng-Ming Spring Kong
- Department of Radiation Oncology, Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, USA.
| | - Shuanghu Yuan
- Shandong Cancer Hospital and Institute-Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China; Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
9
|
Tomasik B, Chałubińska-Fendler J, Chowdhury D, Fendler W. Potential of serum microRNAs as biomarkers of radiation injury and tools for individualization of radiotherapy. Transl Res 2018; 201:71-83. [PMID: 30021695 DOI: 10.1016/j.trsl.2018.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Due to tremendous technological advances, radiation oncologists are now capable of personalized treatment plans and deliver the dose in a highly precise manner. However, a crucial challenge is how to escalate radiation doses to cancer cells while reducing damage to surrounding healthy tissues. This determines the probability of achieving therapeutic success whilst safeguarding patients from complications. The current dose constraints rely on observational data. Therefore, incidental toxicity observed in a minority of patients limits the admissible dose thresholds for the whole population, theoretically narrowing down the curative potential of radiotherapy. Future tools for measurements of individual's radiosensitivity before and during treatment would allow proper treatment personalization. Variation in tissue tolerance is at least partially genetically-determined and recent progress in the field of molecular biology raises the possibility that novel assays will allow to predict the response to ionizing radiation. Recently, microRNAs have garnered interest as stable biomarkers of tumor radiation response and normal-tissue toxicity. Preclinical studies in mice and nonhuman primates have shown that serum circulating microRNAs can be used to accurately distinguish pre- and postirradiation states and predict the biological impact of high-dose irradiation. First reports from human studies are also encouraging, however biology-driven precision radiation oncology, which tailors treatment to individual patient's needs, still remains to be translated into clinical studies. In this review, we summarize current knowledge about the potential of serum microRNAs as biodosimeters and biomarkers for radiation injury to lung and hematopoietic cells.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | | | - Dipanjan Chowdhury
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Functional lung imaging in radiation therapy for lung cancer: A systematic review and meta-analysis. Radiother Oncol 2018; 129:196-208. [PMID: 30082143 DOI: 10.1016/j.radonc.2018.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Abstract
RATIONALE Advanced imaging techniques allow functional information to be derived and integrated into treatment planning. METHODS A systematic review was conducted with the primary objective to evaluate the ability of functional lung imaging to predict risk of radiation pneumonitis. Secondary objectives were to evaluate dose-response relationships on post treatment functional imaging and assess the utility in including functional lung information into treatment planning. A structured search for publications was performed following PRISMA guidelines and registered on PROSPERO. RESULTS 814 articles were screened against review criteria and 114 publications met criteria. Methods of identifying functional lung included using CT, MRI, SPECT and PET to image ventilation or perfusion. Six studies compared differences between functional and anatomical lung imaging at predicting radiation pneumonitis. These found higher predictive values using functional lung imaging. Twenty-one studies identified a dose-response relationship on post-treatment functional lung imaging. Nineteen planning studies demonstrated the ability of functional lung optimised planning techniques to spare regions of functional lung. Meta-analysis of these studies found that mean (95% CI) functional volume receiving 20 Gy was reduced by 4.2% [95% CI: 2.3: 6.0] and mean lung dose by 2.2 Gy [95% CI: 1.2: 3.3] when plans were optimised to spare functional lung. There was significant variation between publications in the definition of functional lung. CONCLUSION Functional lung imaging may have potential utility in radiation therapy planning and delivery, although significant heterogeneity was identified in approaches and reporting. Recommendations have been made based on the available evidence for future functional lung trials.
Collapse
|
11
|
Du L, Yu W, Dai X, Zhao N, Huang X, Tong F, Liu F, Huang Y, Ju Z, Yang W, Cong X, Xie C, Liu X, Liang L, Han Y, Qu B. Association of DNA repair gene polymorphisms with the risk of radiation pneumonitis in lung cancer patients. Oncotarget 2017; 9:958-968. [PMID: 29416669 PMCID: PMC5787526 DOI: 10.18632/oncotarget.22982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
A total of 149 lung cancer patients were recruited to receive intensity modulated radiation therapy (IMRT). The association of developing radiation pneumonitis (RP) with genetic polymorphism was evaluated. The risks of four polymorphic sites in three DNA repair related genes (ERCC1, rs116615:T354C and rs3212986:C1516A; ERCC2, rs13181:A2251C; XRCC1, rs25487:A1196G) for developing grade ≥ 2 RP were assessed respectively. It was observed that ERCC1 T354C SNP had a significant effect on the development of grade ≥ 2 RP (CT/TT vs. CC, adjusted HR = 0.517, 95% CI, 0.285-0.939; adjusted P = 0.030). It is the first time demonstrating that CT/TT genotype of ERCC1 354 was significantly associated with lower RP risk after radio therapy.
Collapse
Affiliation(s)
- Lehui Du
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiangkun Dai
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Nana Zhao
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Fang Tong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Fang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yurong Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhongjian Ju
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaohu Cong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuanbin Xie
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoliang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lanqing Liang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanan Han
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Baolin Qu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Dhami G, Zeng J, Vesselle HJ, Kinahan PE, Miyaoka RS, Patel SA, Rengan R, Bowen SR. Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry. Strahlenther Onkol 2017; 193:410-418. [PMID: 28255667 PMCID: PMC5406240 DOI: 10.1007/s00066-017-1114-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To design and apply a framework for predicting symptomatic radiation pneumonitis in patients undergoing thoracic radiation, using both pretreatment anatomic and perfused lung dose-volume parameters. MATERIALS AND METHODS Radiation treatment planning CT scans were coregistered with pretreatment [99mTc]MAA perfusion SPECT/CT scans of 20 patients who underwent definitive thoracic radiation. Clinical radiation pneumonitis was defined as grade ≥ 2 (CTCAE v4 grading system). Anatomic lung dose-volume parameters were collected from the treatment planning scans. Perfusion dose-volume parameters were calculated from pretreatment SPECT/CT scans. Equivalent doses in 2 Gy per fraction were calculated in the lung to account for differences in treatment regimens and spatial variations in lung dose (EQD2lung). RESULTS Anatomic lung dosimetric parameters (MLD) and functional lung dosimetric parameters (pMLD70%) were identified as candidate predictors of grade ≥ 2 radiation pneumonitis (AUC > 0.93, p < 0.01). Pairing of an anatomic and functional dosimetric parameter (e. g., MLD and pMLD70%) may further improve prediction accuracy. Not all individuals with high anatomic lung dose (MLD > 13.6 GyEQD2lung, 19.3 Gy for patients receiving 60 Gy in 30 fractions) developed radiation pneumonitis, but all individuals who also had high mean dose to perfused lung (pMLD70% > 13.3 GyEQD2) developed radiation pneumonitis. CONCLUSIONS The preliminary application of this framework revealed differences between anatomic and perfused lung dosimetry in this limited patient cohort. The addition of perfused lung parameters may help risk stratify patients for radiation pneumonitis, especially in treatment plans with high anatomic mean lung dose. Further investigations are warranted.
Collapse
Affiliation(s)
- Gurleen Dhami
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Paul E Kinahan
- Department of Radiology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Robert S Miyaoka
- Department of Radiology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Shilpen A Patel
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, 98195, Seattle, WA, USA.
- Department of Radiology, University of Washington School of Medicine, 98195, Seattle, WA, USA.
| |
Collapse
|
13
|
To Find a Better Dosimetric Parameter in the Predicting of Radiation-Induced Lung Toxicity Individually: Ventilation, Perfusion or CT based. Sci Rep 2017; 7:44646. [PMID: 28294159 PMCID: PMC5353591 DOI: 10.1038/srep44646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/09/2017] [Indexed: 12/03/2022] Open
Abstract
This study aimed to find a better dosimetric parameter in predicting of radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) individually: ventilation(V), perfusion (Q) or computerized tomography (CT) based. V/Q single-photon emission computerized tomography (SPECT) was performed within 1 week prior to radiotherapy (RT). All V/Q imaging data was integrated into RT planning system, generating functional parameters based on V/Q SPECT. Fifty-seven NSCLC patients were enrolled in this prospective study. Fifteen (26.3%) patients underwent grade ≥2 RILT, the remaining forty-two (73.7%) patients didn’t. Q-MLD, Q-V20, V-MLD, V-V20 of functional parameters correlated more significantly with the occurrence of RILT compared to V20, MLD of anatomical parameters (r = 0.630; r = 0.644; r = 0.617; r = 0.651 vs. r = 0.424; r = 0.520 p < 0.05, respectively). In patients with chronic obstructive pulmonary diseases (COPD), V functional parameters reflected significant advantage in predicting RILT; while in patients without COPD, Q functional parameters reflected significant advantage. Analogous results were existed in fractimal analysis of global pulmonary function test (PFT). In patients with central-type NSCLC, V parameters were better than Q parameters; while in patients with peripheral-type NSCLC, the results were inverse. Therefore, this study demonstrated that choosing a suitable dosimetric parameter individually can help us predict RILT accurately.
Collapse
|
14
|
Changes in Pulmonary Function Following Image-Guided Stereotactic Lung Radiotherapy. J Thorac Oncol 2015; 10:1762-9. [DOI: 10.1097/jto.0000000000000670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Flockerzi E, Schanz S, Rübe CE. Even low doses of radiation lead to DNA damage accumulation in lung tissue according to the genetically-defined DNA repair capacity. Radiother Oncol 2014; 111:212-8. [PMID: 24746565 DOI: 10.1016/j.radonc.2014.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/10/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Intensity-modulated radiation therapy for thoracic malignancies increases the exposure of healthy lung tissue to low-dose radiation. The biological impact of repetitive low-dose radiation on the radiosensitive lung is unclear. MATERIALS AND METHODS In the present study, using mouse strains with different genetic DNA repair capacities, we monitored the extent of DNA damage in lung parenchyma after 2, 4, 6, 8, and 10weeks of daily low-dose 100-mGy radiation. RESULTS Using 53BP1 as a marker for double-strand breaks, we observed DNA damage accumulation during fractionated low-dose radiation with increasing cumulative doses. The amount of radiation-induced 53BP1 varied significantly between bronchiolar and alveolar epithelial cells, suggesting that different cell populations in the lung parenchyma had varying vulnerabilities to ionizing radiation. The genetic background of DNA repair determined the extent of cumulative low-dose radiation damage. Moreover, increased DNA damage during fractionated low-dose radiation affected replication, and apoptosis in the lung parenchyma, which may influence overall lung function. CONCLUSION Collectively, our results suggest that low, yet damaging, doses of radiation increase the risk of toxicity to normal lung tissue and the probability of developing secondary malignancies.
Collapse
Affiliation(s)
- Elias Flockerzi
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
| | - Stefanie Schanz
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
| | - Claudia E Rübe
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany.
| |
Collapse
|
16
|
Marzi S, Forina C, Marucci L, Giovinazzo G, Giordano C, Piludu F, Landoni V, Spriano G, Vidiri A. Early radiation-induced changes evaluated by intravoxel incoherent motion in the major salivary glands. J Magn Reson Imaging 2014; 41:974-82. [PMID: 24700435 DOI: 10.1002/jmri.24626] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/06/2014] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To investigate the potential of intravoxel incoherent motion (IVIM) MRI for early evaluation of irradiated major salivary glands. MATERIALS AND METHODS Thirty-four patients with head-neck cancer were included in a prospective study. All patients underwent three serial IVIM-MRI: before, half-way through, and at the end of radiotherapy (RT). Apparent diffusion coefficient (ADC), ADClow derived in the low b-value range, perfusion fraction f, and pure diffusion coefficient D were estimated. Pretreatment values and early changes of diffusion parameters were correlated with parotid mean dose (Dmean ) and volume reduction after RT. RESULTS Changes in diffusion parameters over time were all significant (P < 0.001 for ADC, ADClow , and D, P = 0.003 for f). Variations of ADC, ADClow , and f were not correlated with Dmean (P = 0.089, P = 0.252 and P = 0.884, respectively), whereas a significant relationship was found between changes in D and Dmean (r = 0.197 with CI95% = 0.004-0.375, P = 0.046). Pretreatment f and Dmean were the best independent predictors for the percentage shrinkage (P = 0.0003 and 0.0597 respectively; R(2) = 0.391). CONCLUSION Early changes of irradiated major salivary glands can be noninvasively evaluated by IVIM-MRI. Perfusion-related coefficients in conjunction with dosimetric information increase our capability to predict the change in parotid volume and hence, if further validated, guide treatment strategy in RT.
Collapse
Affiliation(s)
- Simona Marzi
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kipritidis J, Siva S, Hofman MS, Callahan J, Hicks RJ, Keall PJ. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68
Ga-labeled nanoparticles. Med Phys 2013; 41:011910. [DOI: 10.1118/1.4856055] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
18
|
Wurstbauer K, Deutschmann H, Dagn K, Kopp P, Zehentmayr F, Lamprecht B, Porsch P, Wegleitner B, Studnicka M, Sedlmayer F. DART-bid (Dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily)--a novel approach for non-resected NSCLC: final results of a prospective study, correlating radiation dose to tumor volume. Radiat Oncol 2013; 8:49. [PMID: 23497555 PMCID: PMC3606417 DOI: 10.1186/1748-717x-8-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/25/2013] [Indexed: 12/25/2022] Open
Abstract
Background Sequential chemo-radiotherapies with intensive radiation components deliver promising results in non-resected non-small cell lung cancer (NSCLC). In general, radiation doses are determined by dose constraints for normal tissues, not by features relevant for tumor control. DART-bid targets directly the doses required for tumor control, correlating doses to tumor volume in a differentiated mode. Materials/Methods Radiation doses to primary tumors were aligned along increasing tumor size within 4 groups (<2.5 cm/2.5–4.5 cm/4.5–6.0 cm/>6.0 cm; mean number of three perpendicular diameters). ICRU-doses of 73.8 Gy/79.2 Gy/84.6 Gy/90.0 Gy, respectively, were applied. Macroscopically involved nodes were treated with a median dose of 59.4 Gy, nodal sites about 6 cm cranial to involved nodes electively with 45 Gy. Fractional doses were 1.8 Gy twice daily (bid). 2 cycles chemotherapy were given before radiotherapy. Between 2004 and 2009, 160 not selected patients with 164 histologically/cytologically proven NSCLC were enrolled; Stage I: 38 patients; II: 6 pts.; IIIA: 69 pts.; IIIB: 47 pts. Weight loss >5%/3 months: 38 patients (24%). Primary endpoints are local and regional tumor control rates at 2 years (as >90% of locoregional failures occur within 2 years). Secondary endpoints are survival and toxicity. With a minimum follow-up time of 2 years for patients alive, the final results are presented. Results 32 local and 10 regional recurrences occurred. The local and regional tumor control rates at 2 years are 77% and 93%, respectively. The median overall survival (OS) time is 28.0 months, the 2- and 5-year OS rates are 57% and 19%, respectively. For stage III patients, median OS amounts to 24.3 months, 2- /5-year OS rates to 51% and 18%, respectively. 2 treatment-related deaths (progressive pulmonary fibrosis) occurred in patients with pre-existing pulmonary fibrosis. Further acute and late toxicity was mild. Conclusions This novel approach yields a high level of locoregional tumor control and survival times. In general it is well tolerated. In all outcome parameters it seems to compare favourably with simultaneous chemo-radiotherapies, at present considered ‘state of the art’; and is additionally amenable for an unselected patient population.
Collapse
Affiliation(s)
- Karl Wurstbauer
- Department of Radiation Oncology and radART-Institute for research and development on Advanced Radiation Technologies, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang D, Shi J, Liang S, Lu S, Qi X, Wang Q, Zheng G, Wang S, Zhang K, Liu H. Dose–volume histogram parameters for predicting radiation pneumonitis using receiver operating characteristic curve. Clin Transl Oncol 2012; 15:364-9. [DOI: 10.1007/s12094-012-0931-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/16/2012] [Indexed: 11/29/2022]
|