1
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
2
|
Dong Q, Xue T, Yan H, Liu F, Liu R, Zhang K, Chong Y, Du J, Zhang H. Radiotherapy combined with nano-biomaterials for cancer radio-immunotherapy. J Nanobiotechnology 2023; 21:395. [PMID: 37899463 PMCID: PMC10614396 DOI: 10.1186/s12951-023-02152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Radiotherapy (RT) plays an important role in tumor therapy due to its noninvasiveness and wide adaptation. In recent years, radiation therapy has been discovered to induce an anti-tumor immune response, which arouses widespread concern among scientists and clinicians. In this review, we highlight recent advances in the applications of nano-biomaterials for radiotherapy-activated immunotherapy. We first discuss the combination of different radiosensitizing nano-biomaterials and immune checkpoint inhibitors to enhance tumor immune response and improve radiotherapy efficacy. Subsequently, various nano-biomaterials-enabled tumor oxygenation strategies are introduced to alleviate the hypoxic tumor environment and amplify the immunomodulatory effect. With the aid of nano-vaccines and adjuvants, radiotherapy refreshes the host's immune system. Additionally, ionizing radiation responsive nano-biomaterials raise innate immunity-mediated anti-tumor immunity. At last, we summarize the rapid development of immune modulatable nano-biomaterials and discuss the key challenge in the development of nano-biomaterials for tumor radio-immunotherapy. Understanding the nano-biomaterials-assisted radio-immunotherapy will maximize the benefits of clinical radiotherapy and immunotherapy and facilitate the development of new combinational therapy modality.
Collapse
Affiliation(s)
- Qingrong Dong
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China
| | - Tingyu Xue
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China
| | - Haili Yan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China
| | - Fang Liu
- College of Pharmacy, Shanxi Medical University, Jinzhong, 030619, People's Republic of China
| | - Ruixue Liu
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China
| | - Kun Zhang
- College of Pharmacy, Shanxi Medical University, Jinzhong, 030619, People's Republic of China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Jiangfeng Du
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China.
- College of Pharmacy, Shanxi Medical University, Jinzhong, 030619, People's Republic of China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| | - Hui Zhang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
3
|
Zhou M, Tang Y, Xu W, Hao X, Li Y, Huang S, Xiang D, Wu J. Bacteria-based immunotherapy for cancer: a systematic review of preclinical studies. Front Immunol 2023; 14:1140463. [PMID: 37600773 PMCID: PMC10436994 DOI: 10.3389/fimmu.2023.1140463] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
4
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
5
|
Yasunaga M, Kobayashi F, Sogo Y, Murotomi K, Hirose M, Hara Y, Yamazaki M, Ito A. The enhancing effects of heparin on the biological activity of FGF-2 in heparin-FGF-2-calcium phosphate composite layers. Acta Biomater 2022; 148:345-354. [PMID: 35697197 DOI: 10.1016/j.actbio.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the composite layers is important for its wider application in orthopedics and dentistry. This study incorporated low-molecular-weight heparin (LMWH) into the FGF-2-calcium phosphate composite layers and clarified the enhancing effects of LMWH on the biological activity of FGF-2 in the composite layers in vitro. LMWH-FGF-2-calcium phosphate composite layers were successfully formed on zirconia in supersaturated calcium phosphate solutions. The composite layers comprised continuous and macroscopically homogeneous layers and particles smaller than 500 nm in size composed of amorphous calcium phosphate. The amounts of Ca and P deposited on zirconia remained almost unchanged with the addition of LMWH under the presence of FGF-2 in the supersaturated calcium phosphate solution. The LMWH in the supersaturated calcium phosphate solution increased the stability of FGF-2 in the solution and the amount of FGF-2 in the composite layers. The LMWH in the composite layers increased the mitogenic and endothelial tube-forming activities of FGF-2, and FGF-2 activity of inducing osteogenic differentiation gene expression pattern in the composite layers. Our results indicate that the enhanced biological activity of FGF-2 in the LMWH-FGF-2-calcium phosphate composite layers is attributed to an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the supersaturated calcium phosphate solution and the composite layers. The LMWH-FGF-2-calcium phosphate composite layer is a promising coating for orthopedic and dental implants. STATEMENT OF SIGNIFICANCE: Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the layers is important for wider its application in orthopedics and dentistry. This study demonstrates the enhancing effects of low-molecular-weight heparin (LMWH) contained within LMWH-FGF-2-calcium phosphate composite layers on the biological activity of FGF-2 in vitro. Our results indicate that the enhanced biological activity of FGF-2 within the composite layers arises from an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the LMWH-FGF-2-calcium phosphate composite layers and supersaturated calcium phosphate solutions used for coating the composite layers.
Collapse
Affiliation(s)
- Mayu Yasunaga
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Fumiko Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Sogo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motohiro Hirose
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Hara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuo Ito
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
6
|
Roudi R, D'Angelo A, Sirico M, Sobhani N. Immunotherapeutic treatments in hepatocellular carcinoma; achievements, challenges and future prospects. Int Immunopharmacol 2021; 101:108322. [PMID: 34735916 DOI: 10.1016/j.intimp.2021.108322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and fatal malignancies with an alarming trend all around the world. Common therapeutic approaches in the early stage of disease are surgical resection, ablation, and liver transplantation. Due to the insidious identity of HCC, the majority of the patients are diagnosed at advanced stages, where tumor spreading, or distant metastasis unfortunately have already occurred. Immunotherapeutic options have elicited a promising approach in some malignancies with Food and Drug Administration (FDA) approving the first checkpoint inhibitor anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) ipilimumab for the treatment of melanoma ten years ago. In the past decade, many clinical trials have been investigating anti-CTLA-4 as well as anti-programmed cell death protein 1 (PD-1) therapies in various solid tumors, including HCC. In this mini-review we will discuss the latest clinical data from clinical trials for immune-checkpoint inhibitors for the treatment of HCC.
Collapse
Affiliation(s)
- Raheleh Roudi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Alberto D'Angelo
- Department of Biology & Biochemistry, University of Bath, Bath BA2-7AX, UK
| | - Marianna Sirico
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014 Meldola, Italy
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Maruyama K, Cheng JY, Ishii H, Takahashi Y, Zangiacomi V, Satoh T, Hosono T, Yamaguchi K. Activation of NLRP3 Inflammasome Complexes by Beta-Tricalcium Phosphate Particles and Stimulation of Immune Cell Migration in vivo. J Innate Immun 2021; 14:207-217. [PMID: 34619679 DOI: 10.1159/000518953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Beta-tricalcium phosphate (β-TCP) serves as a bone substitute in clinical practice because it is resorbable, biocompatible, osteointegrative, and osteoconductive. Particles of β-TCP are also inflammatory mediators although the mechanism of this function has not been fully elucidated. Regardless, the ability of β-TCP to stimulate the immune system might be useful for immunomodulation. The present study aimed to determine the effects of β-TCP particles on NLR family pyrin domain containing 3 (NLRP3) inflammasome complexes. We found that β-TCP activates NLRP3 inflammasomes, and increases interleukin (IL)-1β production in primary cultured mouse dendritic cells (DCs) and macrophages, and human THP-1 cells in caspase-1 dependent manner. In THP-1 cells, β-TCP increased also IL-18 production, and NLRP3 inflammasome activation by β-TCP depended on phagocytosis, potassium efflux, and reactive oxygen species (ROS) generation. We also investigated the effects of β-TCP in wild-type and NLRP3-deficient mice in vivo. Immune cell migration around subcutaneously injected β-TCP particles was reduced in NLRP3-deficient mice. These findings suggest that the effects of β-TCP particles in vivo are at least partly mediated by NLRP3 inflammasome complexes.
Collapse
Affiliation(s)
- Kouji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Jin-Yan Cheng
- Advanced Analysis Technology Department, Corporate R&D Center, Olympus Corporation, Tokyo, Japan
| | - Hidee Ishii
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yu Takahashi
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Vincent Zangiacomi
- Regional Resource Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takatomo Satoh
- Advanced Analysis Technology Department, Corporate R&D Center, Olympus Corporation, Tokyo, Japan
| | - Tetsuji Hosono
- Laboratory of Medicinal Microbiology, Yokohama College of Pharmacy, Yokohama, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
8
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
9
|
Vanneste BG, Van Limbergen EJ, Dubois L, Samarska IV, Wieten L, Aarts MJ, Marcelissen T, De Ruysscher D. Immunotherapy as sensitizer for local radiotherapy. Oncoimmunology 2020; 9:1832760. [PMID: 33194319 PMCID: PMC7605354 DOI: 10.1080/2162402x.2020.1832760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of this report was to systematically review the radiation enhancement factor (REF) effects of immunotherapy on radiotherapy (RT) to the local tumor in comparison with other traditional radiation sensitizers such as cisplatin. PubMed and Medline databases were searched until February 2019. Reports with abscopal effect in the results were excluded. Graphs of the selected papers were digitized using Plot Digitizer (Sourceforge.net) in order to calculate the tumor growth delay (TGD) caused by immunotherapy. To enable comparison between different studies,the TGD were used to define the REF between RT versus the RT/immunotherapy combination. Thirty-two preclinical papers, and nine clinical series were selected. Different mouse models were exposed to RT doses ranging from 1 to 10 fractions of 1.8 to 20 Gray (Gy) per fraction. Endpoints were heterogeneous, ranging from regression to complete local response. No randomized clinical studies were identified. The median preclinical REF effect of different immunotherapy was varying from 1.7 to 9.1. There was no relationship observed either with subclasses of immunotherapy orRT doses. In the clinical studies, RT doses ranged from 1 to 37 fractions of 1.8 to 24 Gy per fraction. Most clinical trials used ipilimumab and interleukin-2. Local control rate in the clinical series ranged from 66% to 100%. A strong REF of immunotherapy (1.7 to 9.1) was observed, this being higher than traditionally sensitizers such as cisplatin (1.1). This result implies that for the same RT dose, a higher local control was achieved with a combination of immunotherapy and RT in preclinical settings. This study therefore supports the use of combined RT and immunotherapy to improve local tumor control in clinical settings without exacerbation of toxicities.
Collapse
Affiliation(s)
- Ben G.L. Vanneste
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Iryna V. Samarska
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L. Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M. J.B. Aarts
- Department of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - T. Marcelissen
- Department of Urology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
10
|
Li X, Wang X, Ito A. An MRI-visible immunoadjuvant based on hollow Gd 2O 3 nanospheres for cancer immunotherapy. Chem Commun (Camb) 2020; 56:8186-8189. [PMID: 32618297 DOI: 10.1039/d0cc03568h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hollow Gd2O3 nanospheres significantly promote the cellular uptake of a tumor antigen by antigen presenting cells, exhibit pH-dependent alteration of the MR signal intensity and markedly enhance the antitumor immunity. Hollow Gd2O3 nanospheres are promising as magnetic resonance imaging (MRI)-visible cancer immunoadjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
11
|
Mycobacteria-Based Vaccines as Immunotherapy for Non-urological Cancers. Cancers (Basel) 2020; 12:cancers12071802. [PMID: 32635668 PMCID: PMC7408281 DOI: 10.3390/cancers12071802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
The arsenal against different types of cancers has increased impressively in the last decade. The detailed knowledge of the tumor microenvironment enables it to be manipulated in order to help the immune system fight against tumor cells by using specific checkpoint inhibitors, cell-based treatments, targeted antibodies, and immune stimulants. In fact, it is widely known that the first immunotherapeutic tools as immune stimulants for cancer treatment were bacteria and still are; specifically, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) continues to be the treatment of choice for preventing cancer recurrence and progression in non-invasive bladder cancer. BCG and also other mycobacteria or their components are currently under study for the immunotherapeutic treatment of different malignancies. This review focuses on the preclinical and clinical assays using mycobacteria to treat non-urological cancers, providing a wide knowledge of the beneficial applications of these microorganisms to manipulate the tumor microenvironment aiming at tumor clearance.
Collapse
|
12
|
Wang J, Li Z, Wang Z, Yu Y, Li D, Li B, Ding J. Nanomaterials for Combinational Radio–Immuno Oncotherapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910676. [DOI: 10.1002/adfm.201910676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/09/2020] [Indexed: 08/29/2023]
Affiliation(s)
- Juan Wang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- Department of Radiation OncologyCancer Hospital of Shandong First Medical University 440 Jiyan Road Jinan 250117 P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- Department of Gastrointestinal, Colorectal, and Anal SurgeryChina–Japan Union Hospital of Jilin University 126 Xiantai Street Changchun 130012 P. R. China
| | - Zhongtang Wang
- Department of Radiation OncologyCancer Hospital of Shandong First Medical University 440 Jiyan Road Jinan 250117 P. R. China
| | - Yonghua Yu
- Department of Radiation OncologyCancer Hospital of Shandong First Medical University 440 Jiyan Road Jinan 250117 P. R. China
| | - Di Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Baosheng Li
- Department of Radiation OncologyCancer Hospital of Shandong First Medical University 440 Jiyan Road Jinan 250117 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
13
|
Precision Locoregional Therapies for Hepatocellular Carcinoma: Percutaneous Ablation and Radiotherapy. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-21540-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
14
|
Li X, Wang X, Ito A. Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem Soc Rev 2018; 47:4954-4980. [PMID: 29911725 DOI: 10.1039/c8cs00028j] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines, one of the most effective and powerful public health measures, have saved countless lives over the past century and still have a tremendous global impact. As an indispensable component of modern vaccines, adjuvants play a critical role in strengthening and/or shaping a specific immune response against infectious diseases as well as malignancies. The application of nanotechnology provides the possibility of precisely tailoring the building blocks of nanoadjuvants towards modern vaccines with the desired immune response. The last decade has witnessed great academic progress in inorganic nanomaterials for vaccine adjuvants in terms of nanometer-scale synthesis, structure control, and functionalization design. Inorganic adjuvants generally facilitate the delivery of antigens, allowing them to be released in a sustained manner, enhance immunogenicity, deliver antigens efficiently to specific targets, and induce a specific immune response. In particular, the recent discovery of the intrinsic immunomodulatory function of inorganic nanomaterials further allows us to shape the immune response towards the desired type and increase the efficacy of vaccines. In this article, we comprehensively review state-of-the-art research on the use of inorganic nanomaterials as vaccine adjuvants. Attention is focused on the physicochemical properties of versatile inorganic nanoadjuvants, such as composition, size, morphology, shape, hydrophobicity, and surface charge, to effectively stimulate cellular immunity, considering that the clinically used alum adjuvants can only induce strong humoral immunity. In addition, the efforts made to date to expand the application of inorganic nanoadjuvants in cancer vaccines are summarized. Finally, we discuss the future prospects and our outlook on tailoring inorganic nanoadjuvants towards next-generation vaccines.
Collapse
Affiliation(s)
- Xia Li
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
15
|
Tsuboi K. Advantages and Limitations in the Use of Combination Therapies with Charged Particle Radiation Therapy. Int J Part Ther 2018; 5:122-132. [PMID: 31773024 DOI: 10.14338/ijpt-18-00019.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose Studies are currently underway to help provide basic and clinical evidence for combination particle beam radiation therapy, on which there are few published reports. The purpose of this article is to summarize the current status in the use of particle beams combined with other modalities. Results Following from experiences in x-ray radiation therapy, combination therapy with proton beams (PBT) has been attempted, and several clinical studies have reported improved survival rates for patients with non-small cell lung cancer, pancreatic cancers, esophageal cancers, and glioblastomas. Recently, basic studies combining PBT with PARP inhibitors and histone deacetylase inhibitors have also reported promising results. In the area of carbon ion therapy (CIT), there are few clinical reports on combination therapy; however, the number of basic research reports exceeds that for PBT. So far, the combined use of cytotoxic drugs with CIT yields independent additive effects. In addition, it is notable that combination therapy with CIT is effective against radioresistant cancer stem-like cells. Recent evidence also suggests that local radiation therapy can induce an effective antitumor immune response. There has been an increased use of combination immune-modulating agents and cytokines with particle beams, especially CIT. The field of radiation therapy is evolving from a strong reliance on local-regional treatment to a growing reliance on systemic immunotherapy. Conclusions The combined use of anticancer agents with particle radiation therapy has a considerable potential effect. Future research in molecular targeting therapy and immunotherapy may help identify the most efficacious approach for combination therapy with protons and carbon ions.
Collapse
Affiliation(s)
- Koji Tsuboi
- Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
16
|
Fernandez-Gonzalo R, Baatout S, Moreels M. Impact of Particle Irradiation on the Immune System: From the Clinic to Mars. Front Immunol 2017; 8:177. [PMID: 28275377 PMCID: PMC5319970 DOI: 10.3389/fimmu.2017.00177] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Despite the generalized use of photon-based radiation (i.e., gamma rays and X-rays) to treat different cancer types, particle radiotherapy (i.e., protons and carbon ions) is becoming a popular, and more effective tool to treat specific tumors due to the improved physical properties and biological effectiveness. Current scientific evidence indicates that conventional radiation therapy affects the tumor immunological profile in a particular manner, which in turn, might induce beneficial effects both at local and systemic (i.e., abscopal effects) levels. The interaction between radiotherapy and the immune system is being explored to combine immune and radiation (including particles) treatments, which in many cases have a greater clinical effect than any of the therapies alone. Contrary to localized, clinical irradiation, astronauts are exposed to whole body, chronic cosmic radiation, where protons and heavy ions are an important component. The effects of this extreme environment during long periods of time, e.g., a potential mission to Mars, will have an impact on the immune system that could jeopardize the health of the astronauts, hence the success of the mission. To this background, the purpose of this mini review is to briefly present the current knowledge in local and systemic immune alterations triggered by particle irradiation and to propose new lines of future research. Immune effects induced by particle radiation relevant to clinical applications will be covered, together with examples of combined radiotherapy and immunotherapy. Then, the focus will move to outer space, where the immune system alterations induced by cosmic radiation during spaceflight will be discussed.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalo
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| | - Sarah Baatout
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| | - Marjan Moreels
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| |
Collapse
|
17
|
Prack Mc Cormick B, Belgorosky D, Langle Y, Balarino N, Sandes E, Eiján AM. Bacillus Calmette-Guerin improves local and systemic response to radiotherapy in invasive bladder cancer. Nitric Oxide 2017; 64:22-30. [PMID: 28126499 DOI: 10.1016/j.niox.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/23/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND A key factor contributing to radio-resistance in conservative invasive bladder cancer (BCa) treatment is tumor hypoxia and a strategy to overcome it is to trigger the production of nitric oxide (NO). On the other hand, ionizing radiation (IR) applied to a primary tumor can induce immunogenic cell death which may set off a cytotoxic immune response against the primary tumor and its metastasis. PURPOSE To study in vitro and in vivo, the role of BCG as a local sensitizer to overcome hypoxia-associated radio-resistance through the production of NO, and as an immune-stimulator to be used in combination with IR to generate a systemic response for invasive BCa treatment. MATERIALS AND METHODS We selected the invasive murine BCa cell line MB49-I which expresses inducible NO synthase and produces NO, cultured in vitro in 2D and 3D models, and inoculated in vivo in the subcutaneous of syngeneic mice. RESULTS in vitro, multicellular murine invasive spheroids mimicked in vivo central tumor necrosis. BCG pre-treatment radio-sensitized spheroids through the induction of NO production, while no effect was shown in monolayers. In vivo, not only did BCG improve the local response to IR but it also decreased the metastatic spread and promoted the development of abscopal effect/rejection of a second tumor. CONCLUSION Since BCG has already and successfully been used for the treatment of non-invasive BCa and it improves the response to ionizing radiation in invasive BCa, these results are translational relevant to be analyzed in patients with this pathology.
Collapse
Affiliation(s)
- Barbara Prack Mc Cormick
- Fellowship of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad de Buenos Aires, Área Investigaciones, Instituto de Oncología "Ángel H Roffo", Argentina
| | - Denise Belgorosky
- Fellowship of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad de Buenos Aires, Área Investigaciones, Instituto de Oncología "Ángel H Roffo", Argentina
| | - Yanina Langle
- Universidad de Buenos Aires, Área Investigaciones, Instituto de Oncología "Ángel H Roffo", Argentina
| | - Natalia Balarino
- Fellowship of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad de Buenos Aires, Área Investigaciones, Instituto de Oncología "Ángel H Roffo", Argentina
| | - Eduardo Sandes
- Universidad de Buenos Aires, Área Investigaciones, Instituto de Oncología "Ángel H Roffo", Argentina
| | - Ana María Eiján
- Universidad de Buenos Aires, Área Investigaciones, Instituto de Oncología "Ángel H Roffo", Argentina; Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
18
|
Verma V, Lin SH, Simone CB, Mehta MP. Clinical outcomes and toxicities of proton radiotherapy for gastrointestinal neoplasms: a systematic review. J Gastrointest Oncol 2016; 7:644-64. [PMID: 27563457 DOI: 10.21037/jgo.2016.05.06] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Proton beam radiotherapy (PBT) is frequently shown to be dosimetrically superior to photon radiotherapy (RT), though supporting data for clinical benefit are severely limited. Because of the potential for toxicity reduction in gastrointestinal (GI) malignancies, we systematically reviewed the literature on clinical outcomes (survival/toxicity) of PBT. METHODS A systematic search of PubMed, EMBASE, abstracts from meetings of the American Society for Radiation Oncology, Particle Therapy Co-Operative Group, and American Society of Clinical Oncology was conducted for publications from 2000-2015. Thirty-eight original investigations were analyzed. RESULTS Although results of PBT are not directly comparable to historical data, outcomes roughly mirror previous data, generally with reduced toxicities for PBT in some neoplasms. For esophageal cancer, PBT is associated with reduced toxicities, postoperative complications, and hospital stay as compared to photon radiation, while achieving comparable local control (LC) and overall survival (OS). In pancreatic cancer, numerical survival for resected/unresected cases is also similar to existing photon data, whereas grade ≥3 nausea/emesis and post-operative complications are numerically lower than those reported with photon RT. The strongest data in support of PBT for HCC comes from phase II trials demonstrating very low toxicities, and a phase III trial of PBT versus transarterial chemoembolization demonstrating trends towards improved LC and progression-free survival (PFS) with PBT, along with fewer post-treatment hospitalizations. Survival and toxicity data for cholangiocarcinoma, liver metastases, and retroperitoneal sarcoma are also roughly equivalent to historical photon controls. There are two small reports for gastric cancer and three for anorectal cancer; these are not addressed further. CONCLUSIONS Limited quality (and quantity) of data hamper direct comparisons and conclusions. However, the available data, despite the inherent caveats and limitations, suggest that PBT offers the potential to achieve significant reduction in treatment-related toxicities without compromising survival or LC for multiple GI malignancies. Several randomized comparative trials are underway that will provide more definitive answers.
Collapse
Affiliation(s)
- Vivek Verma
- 1 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA ; 2 Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA ; 3 Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; 4 Miami Cancer Institute, Baptist Health South Florida, Coral Gables, FL, USA
| | - Steven H Lin
- 1 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA ; 2 Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA ; 3 Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; 4 Miami Cancer Institute, Baptist Health South Florida, Coral Gables, FL, USA
| | - Charles B Simone
- 1 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA ; 2 Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA ; 3 Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; 4 Miami Cancer Institute, Baptist Health South Florida, Coral Gables, FL, USA
| | - Minesh P Mehta
- 1 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA ; 2 Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA ; 3 Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; 4 Miami Cancer Institute, Baptist Health South Florida, Coral Gables, FL, USA
| |
Collapse
|
19
|
Yu JI, Park HC. Radiotherapy as valid modality for hepatocellular carcinoma with portal vein tumor thrombosis. World J Gastroenterol 2016; 22:6851-6863. [PMID: 27570422 PMCID: PMC4974584 DOI: 10.3748/wjg.v22.i30.6851] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/01/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Although the current standard treatment for hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT) is sorafenib, many previous studies have established the need for a reliable local modality for PVTT control, which is a major cause of liver function deterioration and metastasis. Additionally, there is growing evidence for the prognostic significance of PVTT classification according to the location of tumor thrombosis. Favorable outcomes can be obtained by applying local modalities, including surgery or transarterial chemoembolization, especially in second-order or distal branch PVTT. Rapid control of PVTT could maintain or improve liver function and reduce intrahepatic as well as distant metastasis. Radiotherapy (RT) is one of the main locoregional treatment modalities in oncologic fields, but has rarely been used in HCC because of concerns regarding hepatic toxicity. However, with the development of advanced techniques, RT has been increasingly applied in HCC management. Randomized studies have yet to definitively prove the benefit of RT, but several comparative studies have justified the application of RT in HCC. The value of RT is especially noticeable in HCC with PVTT; several prospective and retrospective studies have reported favorable outcomes, including a 40% to 60% objective response rate and median overall survival of 15 mo to 20 mo in responders. In this review, we evaluate the role of RT as an alternative local modality in HCC with PVTT.
Collapse
|
20
|
Zeltsman M, Mayor M, Jones DR, Adusumilli PS. Surgical immune interventions for solid malignancies. Am J Surg 2016; 212:682-690.e5. [PMID: 27659157 DOI: 10.1016/j.amjsurg.2016.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The purpose of this study was to systematically review clinically translatable immunotherapeutic agents that are delivered regionally for solid malignancies. DATA SOURCES PubMed and ClinicalTrials.gov were searched for published and registered clinical trials, respectively. The search yielded 334 relevant publications, of which 116 articles were included for review after exclusion criteria were applied. CONCLUSIONS There has been an increase in the regional administration of cell-based and viral vector-based clinical trials over the last 5 years. Surgical interventions have been developed for intrapleural, intracranial, intraperitoneal, and intratumoral routes of access to enhance the local delivery of these therapies. Multimodality therapies that combine regional immunotherapy with other local and systemic therapies are demonstrating continued growth as the field of immunotherapy continues to expand.
Collapse
Affiliation(s)
- Masha Zeltsman
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA
| | - Marissa Mayor
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA.
| |
Collapse
|
21
|
Abstract
BACKGROUND During the past two decades, external-beam radiation technology has substantially changed from traditional two-dimensional to conformal three-dimensional to intensity-modulated planning and stereotactic body radiotherapy (SBRT). SUMMARY Modern techniques of radiotherapy (RT) are highly focused and capable of delivering an ablative dose to targeted hepatocellular carcinoma (HCC) tumors. SBRT is an option for selected patients with limited tumor volume and non-eligibility for other invasive treatments. Moreover, RT combined with a radiation sensitizer (RS) to increase the therapeutic ratio has shown promising results in select studies, prompting further investigation of this combination. With the undetermined role of RT in treatment guidelines and variation in patterns of treatment failure after RT in patient with HCC, useful biomarkers to guide RT decision-making and selection of patients are needed and emerging. KEY MESSAGE The objective of this review is to summarize the current RS with SBRT schemes and biomarkers for patient selection used to maximize the effect of RT on HCC.
Collapse
Affiliation(s)
- Chiao-Ling Tsai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC),Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (ROC)
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC)
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC),Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan (ROC),*Jason Chia-Hsien Cheng, MD, PhD, Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng Dist., Taipei 10002, Taiwan (ROC), Tel. +886 2 2356 2842, E-Mail
| |
Collapse
|
22
|
Wang X, Li X, Ito A, Watanabe Y, Tsuji NM. Rod-shaped and fluorine-substituted hydroxyapatite free of molecular immunopotentiators stimulates anti-cancer immunity in vivo. Chem Commun (Camb) 2016; 52:7078-81. [DOI: 10.1039/c6cc02848a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rod-shaped and fluorine-substituted hydroxyapatite nanoparticles significantly increased the cellular uptake of a model antigen by BMDCs, improved antigen presentation, stimulated immune-related cytokine secretion, and enhanced the anti-cancer immunity.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Xia Li
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Atsuo Ito
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Yohei Watanabe
- Immune Homeostasis Lab
- Biomedical Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
| | - Noriko M. Tsuji
- Immune Homeostasis Lab
- Biomedical Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
| |
Collapse
|
23
|
Harding JJ, El Dika I, Abou-Alfa GK. Immunotherapy in hepatocellular carcinoma: Primed to make a difference? Cancer 2015; 122:367-77. [PMID: 26540029 DOI: 10.1002/cncr.29769] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/04/2015] [Accepted: 09/17/2015] [Indexed: 12/14/2022]
Abstract
Advanced hepatocellular carcinoma (HCC) carries a dismal prognosis and the current treatment is limited to sorafenib, an agent with modest benefit. Preclinical data have indicated that several immunologic mechanisms are at play to promote HCC development and growth while impairing effective antitumor immune surveillance. Several novel approaches geared toward manipulating the immune response to HCC have suggested a therapeutic benefit in early-stage clinical trials, indicating a real potential to augment tumor-specific immunity and improve outcomes in patients with this disease. In the current study, the authors reviewed the barriers to an effective immune response against HCC and contemporary clinical investigations that may be "primed" to alter the natural history of HCC.
Collapse
Affiliation(s)
- James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Imane El Dika
- Internal Medicine/Hematology and Oncology, American University of Beirut, Beirut, Lebanon
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
24
|
Gao F, Jing P, Liu J, Lu Y, Zhang P, Han W, Liu G, Ru N, Cui G, Sun C, Che Y, Zhang H, Hu Q, Wang HY, Wu Y, Guan C, Fu Q, Ma Z, Yu B. Hapten-enhanced overall survival time in advanced hepatocellular carcinoma by ultro-minimum incision personalized intratumoral chemoimmunotherapy. J Hepatocell Carcinoma 2015; 2:57-68. [PMID: 27508195 PMCID: PMC4918285 DOI: 10.2147/jhc.s80756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To compare the therapeutic effects of ultra-minimum incision personalized intratumoral chemoimmunotherapy (UMIPIC) with intratumoral chemotherapy (ITCT) in the treatment of advanced hepatocellular carcinomas and to analyze the effect of hapten as an immune booster. MATERIALS AND METHODS Patients with advanced hepatocellular carcinomas were treated with UMIPIC or ITCT with the same therapeutic procedure; the UMIPIC method had a proprietary regimen including an oxidant, a cytotoxic drug, and hapten, while ITCT delivered the same drug excluding hapten. Of 339 patients in total, 119 of the UMIPIC patients (n=214) had response data and 214 had survival data, and of the ITCT patients (n=125), 61 had response data and 125 had survival data. Tumor response was assessed with a computed tomography scan 6-8 weeks after the initial treatment; the survival rate was evaluated by follow-up visits. Tumor size was classified as small (<5 cm), large (5-10 cm), or very large (>10 cm); tumor sizes with liver function categorized using Child-Pugh class (A and B) were analyzed by correlation with overall survival. RESULTS The response rates (complete response + partial response + stable disease) were 78.68% and 81.52% in the UMIPIC and ITCT groups, respectively, with no statistically significant difference; however, the median overall survival was 7 months for UMIPIC (test) and 4 months for ITCT (control), respectively (P<0.01). The 6-month and 1-year survival rates for UMIPIC and ITCT were 58.88% vs 32.3% and 30.37% vs 13.6%, respectively (P<0.01). Single and multiple UMIPIC revealed significant improvement in overall survival compared to that of ITCT. Child-Pugh class A patients had a longer duration of survival compared to Child-Pugh class B patients in UMIPIC therapy. CONCLUSION Hapten had enhanced therapeutic effect with improvement in the survival duration in UMIPIC compared to ITCT. After reexamination, the response rate was not different due to inflammation caused by hapten. Hapten has been found to play an important role in immunotherapy to improve patient survival.
Collapse
Affiliation(s)
- Feng Gao
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Peng Jing
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Jian Liu
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Yuanfei Lu
- Jinan Baofa Cancer Hospital, Jinan, People's Republic of China
| | - Peicheng Zhang
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Wei Han
- Jinan Baofa Cancer Hospital, Jinan, People's Republic of China
| | - Guoliang Liu
- Jinan Baofa Cancer Hospital, Jinan, People's Republic of China
| | - Ning Ru
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Guanghui Cui
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Chenglin Sun
- Jinan Baofa Cancer Hospital, Jinan, People's Republic of China
| | - Yebing Che
- Jinan Baofa Cancer Hospital, Jinan, People's Republic of China
| | - Huaming Zhang
- Jinan Baofa Cancer Hospital, Jinan, People's Republic of China
| | - Qnglong Hu
- Beijing Baofa Cancer Hospital, Beijing, People's Republic of China
| | - Huan-You Wang
- Department of Pathology, UCSD School of Medicine, La Jolla, CA, USA
| | - Yingli Wu
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Changjiang Guan
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Qiang Fu
- Jinan Baofa Cancer Hospital, Jinan, People's Republic of China
| | - Zhenlu Ma
- TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China
| | - Baofa Yu
- Jinan Baofa Cancer Hospital, Jinan, People's Republic of China; TaiMei Baofa Cancer Hospital, Dongping, People's Republic of China; Beijing Baofa Cancer Hospital, Beijing, People's Republic of China
| |
Collapse
|