1
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
2
|
Shaitelman SF, Le-Petross H, Raso MG, Swanson DM, Schalck AP, Contreras A, Yang F, Muruganandham M, Zhao GZ, Sawakuchi GO, Kim LH, Batra H, Smith BD, Stauder MC, Woodward WA, Reddy JP, Litton JK, Thompson A, Bedrosian I, Mittendorf EA. PRECISE: Preoperative Radiation Therapy to Elicit Critical Immune Stimulating Effects - A Phase 2 Clinical Trial. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03231-0. [PMID: 39147206 DOI: 10.1016/j.ijrobp.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Radiation therapy is an underinvestigated tool for priming the immune system in intact human breast cancers. We sought here to investigate if a preoperative radiation therapy boost delivered was associated with a significant change in tumor-infiltrating lymphocytes (TILs) in the tumor in estrogen receptor positive, HER2Neu nonamplified breast cancers. METHODS AND MATERIALS A total of 20 patients were enrolled in a phase 2 clinical trial and received either 7.5 Gy × 1 fraction or 2 Gy × 5 fractions, completed 6 to 8 days before surgery. Percent stromal TILs were evaluated on hematoxylin and eosin-stained samples. Short-term safety was assessed based on time to surgery, toxicities, and cosmesis up to 6 months after boost. RESULTS Stromal TIL increased 6 to 8 days after completion of boost radiation therapy (median 3.0 [IQR, 1.0-6.5]) before radiation therapy versus median 5.0 (IQR, 1.5-8.0) after radiation therapy, P = .0037. Zero grade ≥3 toxicities up to 6 months after boost were experienced. In all, 94% (16/17) patients with 6-month follow-up cosmetic assessment after breast conservation had good-excellent cosmesis by physician assessment. CONCLUSION In this phase 2 trial, preoperative radiation therapy boost resulted in a short-term increase in stromal TIL with minimal toxicities. Preoperative breast radiation therapy appears to be safe and may be a feasible means for priming the tumor microenvironment.
Collapse
Affiliation(s)
- Simona F Shaitelman
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Huong Le-Petross
- Department of Breast Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria G Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David M Swanson
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aislyn P Schalck
- Department of Genomics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alejandro Contreras
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fei Yang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Manickam Muruganandham
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George Z Zhao
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Leonard H Kim
- Department of Radiation Oncology, MD Anderson Cancer Center at Cooper, Camden, New Jersey
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin D Smith
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael C Stauder
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wendy A Woodward
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay P Reddy
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer K Litton
- Department of Clinical Research, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alastair Thompson
- Section of Breast Surgery, Division of Surgical Oncology, Baylor College of Medicine, Houston, Texas
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Ottaiano A, Santorsola M, Circelli L, Trotta AM, Izzo F, Perri F, Cascella M, Sabbatino F, Granata V, Correra M, Tarotto L, Stilo S, Fiore F, Martucci N, Rocca AL, Picone C, Muto P, Borzillo V, Belli A, Patrone R, Mercadante E, Tatangelo F, Ferrara G, Di Mauro A, Scognamiglio G, Berretta M, Capuozzo M, Lombardi A, Galon J, Gualillo O, Pace U, Delrio P, Savarese G, Scala S, Nasti G, Caraglia M. Oligo-Metastatic Cancers: Putative Biomarkers, Emerging Challenges and New Perspectives. Cancers (Basel) 2023; 15:cancers15061827. [PMID: 36980713 PMCID: PMC10047282 DOI: 10.3390/cancers15061827] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Some cancer patients display a less aggressive form of metastatic disease, characterized by a low tumor burden and involving a smaller number of sites, which is referred to as "oligometastatic disease" (OMD). This review discusses new biomarkers, as well as methodological challenges and perspectives characterizing OMD. Recent studies have revealed that specific microRNA profiles, chromosome patterns, driver gene mutations (ERBB2, PBRM1, SETD2, KRAS, PIK3CA, SMAD4), polymorphisms (TCF7L2), and levels of immune cell infiltration into metastases, depending on the tumor type, are associated with an oligometastatic behavior. This suggests that OMD could be a distinct disease with specific biological and molecular characteristics. Therefore, the heterogeneity of initial tumor burden and inclusion of OMD patients in clinical trials pose a crucial methodological question that requires responses in the near future. Additionally, a solid understanding of the molecular and biological features of OMD will be necessary to support and complete the clinical staging systems, enabling a better distinction of metastatic behavior and tailored treatments.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Anna Maria Trotta
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Izzo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Marco Correra
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Luca Tarotto
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Salvatore Stilo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Francesco Fiore
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Nicola Martucci
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Antonello La Rocca
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Carmine Picone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Paolo Muto
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Valentina Borzillo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Andrea Belli
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Renato Patrone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Edoardo Mercadante
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Fabiana Tatangelo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Gerardo Ferrara
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Annabella Di Mauro
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Giosué Scognamiglio
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | | | - Angela Lombardi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Ugo Pace
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Paolo Delrio
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Stefania Scala
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
4
|
Guo S, Han F, Zhu W. CD39 - A bright target for cancer immunotherapy. Biomed Pharmacother 2022; 151:113066. [PMID: 35550530 DOI: 10.1016/j.biopha.2022.113066] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
The ATP-adenosine pathway functions as a key modulator of innate and adaptive immunity within the tumor microenvironment, and cancer immune evasion largely involves the generation of high amounts of immunosuppressive extracellular adenosine (eADO). Consequently, inhibition of eADO-generating enzymes and/or eADO receptors can effectively restore the antitumor immunity of multiple immune cells. With several clinical strategies currently being explored to modulating the eADO pathway in patients with cancer, recent clinical data with antagonists targeting CD73 and A2A receptor have demonstrated a promising therapeutic potential in cancer. Recent findings reveal that the ectonucleotidase CD39, the limiting enzyme been viewed as "immunological switch", converts ATP-driven pro-inflammatory milieu to an anti-inflammatory state mediated by adenosine. Owing to its superior feature of CD39 antagonism that rely not only on preventing the accumulation of adenosine but also on the stabilization of extracellular ATP to restore antitumor immunity, several inhibitors and clinical trials based on CD39 are being evaluated. Consequently, there is currently a focus on understanding the role of CD39 in governing immunity and how therapeutic strategies targeting this pathway alter the antitumor potential. We herein review the impact of CD39 on tumor microenvironment with a focus on treatment preference. Additionally, we also discuss the implication for rational combination therapies, molecular regulation, as well as potential limitations.
Collapse
Affiliation(s)
- Shuwei Guo
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengfeng Han
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
5
|
Schoetz U, Klein D, Hess J, Shnayien S, Spoerl S, Orth M, Mutlu S, Hennel R, Sieber A, Ganswindt U, Luka B, Thomsen AR, Unger K, Jendrossek V, Zitzelsberger H, Blüthgen N, Belka C, Unkel S, Klinger B, Lauber K. Early senescence and production of senescence-associated cytokines are major determinants of radioresistance in head-and-neck squamous cell carcinoma. Cell Death Dis 2021; 12:1162. [PMID: 34911941 PMCID: PMC8674332 DOI: 10.1038/s41419-021-04454-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Resistance against radio(chemo)therapy-induced cell death is a major determinant of oncological treatment failure and remains a perpetual clinical challenge. The underlying mechanisms are manifold and demand for comprehensive, cancer entity- and subtype-specific examination. In the present study, resistance against radiotherapy was systematically assessed in a panel of human head-and-neck squamous cell carcinoma (HNSCC) cell lines and xenotransplants derived thereof with the overarching aim to extract master regulators and potential candidates for mechanism-based pharmacological targeting. Clonogenic survival data were integrated with molecular and functional data on DNA damage repair and different cell fate decisions. A positive correlation between radioresistance and early induction of HNSCC cell senescence accompanied by NF-κB-dependent production of distinct senescence-associated cytokines, particularly ligands of the CXCR2 chemokine receptor, was identified. Time-lapse microscopy and medium transfer experiments disclosed the non-cell autonomous, paracrine nature of these mechanisms, and pharmacological interference with senescence-associated cytokine production by the NF-κB inhibitor metformin significantly improved radiotherapeutic performance in vitro and in vivo. With regard to clinical relevance, retrospective analyses of TCGA HNSCC data and an in-house HNSCC cohort revealed that elevated expression of CXCR2 and/or its ligands are associated with impaired treatment outcome. Collectively, our study identifies radiation-induced tumor cell senescence and the NF-κB-dependent production of distinct senescence-associated cytokines as critical drivers of radioresistance in HNSCC whose therapeutic targeting in the context of multi-modality treatment approaches should be further examined and may be of particular interest for the subgroup of patients with elevated expression of the CXCR2/ligand axis.
Collapse
Affiliation(s)
- Ulrike Schoetz
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.,Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital Gießen and Marburg, Marburg, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Seyd Shnayien
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Steffen Spoerl
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Samet Mutlu
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roman Hennel
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Anja Sieber
- Institute of Pathology, Charite-Universitätsmedizin Berlin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Ute Ganswindt
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.,Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Benedikt Luka
- Division for Cariology, Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas R Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner site Freiburg, Freiburg im Breisgau, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charite-Universitätsmedizin Berlin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany
| | - Steffen Unkel
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Bertram Klinger
- Institute of Pathology, Charite-Universitätsmedizin Berlin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.
| |
Collapse
|
6
|
Ottaiano A, Petito A, Santorsola M, Gigantino V, Capuozzo M, Fontanella D, Di Franco R, Borzillo V, Buonopane S, Ravo V, Scipilliti E, Totaro G, Serra M, Ametrano G, Penta R, Tatangelo F, Scognamiglio G, Di Mauro A, Di Bonito M, Napolitano M, Scala S, Rea G, Santagata S, Lombardi A, Grimaldi A, Caputo C, Crispo A, Celentano E, De Feo G, Circelli L, Savarese G, Ruggiero R, Perri F, Granata V, Botti G, Caraglia M, Nasti G, Muto P. Prospective Evaluation of Radiotherapy-Induced Immunologic and Genetic Effects in Colorectal Cancer Oligo-Metastatic Patients with Lung-Limited Disease: The PRELUDE-1 Study. Cancers (Basel) 2021; 13:4236. [PMID: 34439390 PMCID: PMC8394588 DOI: 10.3390/cancers13164236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND in recent years, the management of advanced colorectal cancer (CRC) has been greatly improved with integrated strategies including stereotactic radiation therapy (SRT). The administration of SRT has been demonstrated, particularly in oligo-metastatic (om) CRC, to be a safe and effective option. Interestingly, it has been demonstrated that SRT can induce regression of tumors in non-irradiated regions ("abscopal effect") through stimulation of anti-tumor immune effects ("radiation-induced immunity"). We have recently shown that lung-limited omCRC is characterized by regression of tumor clones bearing specific key driver gene mutations. AIMS to assess the genetic evolution on tumor cancer cells induced by SRT in lung-limited omCRC. Secondary objectives included descriptions of the abscopal effect, responses' duration, toxicity, and progression-free survival. A translational research will be performed to evaluate tumor genetic evolution (through liquid biopsies and Next Generation Sequencing), HLA class I repertoire, peripheral immune cells, and cytokine dynamics. METHODS PRELUDE-1 is a prospective translational study. SRT will be administered only to the largest nodule (with a maximum diameter ≤ 25 mm) in omCRC with two or three radiologically evident lesions. The sample size is based on the innovative hypothesis that radiation-induced immunity could induce regression of tumor clones bearing KRAS oncogene mutations. According to the binomial test, considering the frequency of KRAS mutations and assuming a probability of mutant KRAS→wild type KRAS of p0 = 0.0077, with α = 0.05 and 1-β = 0.60, the final sample size is 25 patients.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- SSD—Innovative Therapies for Abdominal Metastases Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
| | - Angela Petito
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Mariachiara Santorsola
- SSD—Innovative Therapies for Abdominal Metastases Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
| | - Valerio Gigantino
- Innovalab Scarl, Molecular Biology, Centro Direzionale, Isola A2, 80143 Naples, Italy; (V.G.); (M.C.); (D.F.)
| | - Maurizio Capuozzo
- Innovalab Scarl, Molecular Biology, Centro Direzionale, Isola A2, 80143 Naples, Italy; (V.G.); (M.C.); (D.F.)
| | - Daniela Fontanella
- Innovalab Scarl, Molecular Biology, Centro Direzionale, Isola A2, 80143 Naples, Italy; (V.G.); (M.C.); (D.F.)
| | - Rossella Di Franco
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Valentina Borzillo
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Sergio Buonopane
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Vincenzo Ravo
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Esmeralda Scipilliti
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Giuseppe Totaro
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Marcello Serra
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Gianluca Ametrano
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Roberta Penta
- Oncohaematology Department, A.O.R.N. Santobono-Pausilipon di Napoli, 80123 Naples, Italy;
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (F.T.); (G.S.); (A.D.M.); (M.D.B.)
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (F.T.); (G.S.); (A.D.M.); (M.D.B.)
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (F.T.); (G.S.); (A.D.M.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (F.T.); (G.S.); (A.D.M.); (M.D.B.)
| | - Maria Napolitano
- Functional Genomics, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.N.); (S.S.); (G.R.); (S.S.)
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.N.); (S.S.); (G.R.); (S.S.)
| | - Giuseppina Rea
- Functional Genomics, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.N.); (S.S.); (G.R.); (S.S.)
| | - Sara Santagata
- Functional Genomics, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.N.); (S.S.); (G.R.); (S.S.)
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, via de Crecchio 7, 80138 Naples, Italy; (A.L.); (A.G.); (C.C.); (M.C.)
| | - Anna Grimaldi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, via de Crecchio 7, 80138 Naples, Italy; (A.L.); (A.G.); (C.C.); (M.C.)
| | - Carlo Caputo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, via de Crecchio 7, 80138 Naples, Italy; (A.L.); (A.G.); (C.C.); (M.C.)
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.C.); (E.C.)
| | - Egidio Celentano
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.C.); (E.C.)
| | - Gianfranco De Feo
- Scientific Directorate, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (G.D.F.); (G.B.)
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (L.C.); (G.S.); (R.R.)
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (L.C.); (G.S.); (R.R.)
| | - Raffaella Ruggiero
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (L.C.); (G.S.); (R.R.)
| | - Francesco Perri
- Head&Neck Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Vincenza Granata
- Radiology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (G.D.F.); (G.B.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, via de Crecchio 7, 80138 Naples, Italy; (A.L.); (A.G.); (C.C.); (M.C.)
| | - Guglielmo Nasti
- SSD—Innovative Therapies for Abdominal Metastases Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| |
Collapse
|
7
|
Merkel Cell Carcinoma of the Head and Neck: Epidemiology, Pathogenesis, Current State of Treatment and Future Directions. Cancers (Basel) 2021; 13:cancers13143506. [PMID: 34298720 PMCID: PMC8305628 DOI: 10.3390/cancers13143506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, cutaneous neuroendocrine malignancy with increasing incidence. The skin of the head and neck is a common subsite for MCC with distinctions in management from other anatomic areas. Given the rapid pace of developments regarding MCC pathogenesis (Merkel cell polyoma virus (MCPyV)-positive or virus-negative, cell of origin), diagnosis, staging and treatment, and up to date recommendations are critical for optimizing outcomes. This review aims to summarize currently available literature for MCC of the head and neck. The authors reviewed current literature, including international guidelines regarding MCC pathogenesis, epidemiology, diagnosis, staging, and treatment. Subsequently recommendations were derived including the importance of baseline imaging, MCPyV serology testing, primary site surgery, nodal evaluation, radiotherapy, and the increasing role of immune modulating agents in MCC. MCPyV serology testing is increasingly important with potential distinctions in treatment response and surveillance between virus-positive and virus-negative MCC. Surgical management continues to balance optimizing local control with minimal morbidity. Similarly, radiotherapy continues to have importance in the adjuvant, definitive, and palliative setting for MCC of the head and neck. Immunotherapy has changed the paradigm for advanced MCC, with increasing work focusing on optimizing outcomes for non-responders and high-risk patients, including those with immunosuppression.
Collapse
|
8
|
Goedegebuure RSA, Kleibeuker EA, Buffa FM, Castricum KCM, Haider S, Schulkens IA, Ten Kroode L, van den Berg J, Jacobs MAJM, van Berkel AM, van Grieken NCT, Derks S, Slotman BJ, Verheul HMW, Harris AL, Thijssen VL. Interferon- and STING-independent induction of type I interferon stimulated genes during fractionated irradiation. J Exp Clin Cancer Res 2021; 40:161. [PMID: 33964942 PMCID: PMC8106844 DOI: 10.1186/s13046-021-01962-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Improvement of radiotherapy efficacy requires better insight in the dynamic responses that occur during irradiation. Here, we aimed to identify the molecular responses that are triggered during clinically applied fractionated irradiation. METHODS Gene expression analysis was performed by RNAseq or microarray analysis of cancer cells or xenograft tumors, respectively, subjected to 3-5 weeks of 5 × 2 Gy/week. Validation of altered gene expression was performed by qPCR and/or ELISA in multiple cancer cell lines as well as in pre- and on-treatment biopsies from esophageal cancer patients ( NCT02072720 ). Targeted protein inhibition and CRISPR/Cas-induced gene knockout was used to analyze the role of type I interferons and cGAS/STING signaling pathway in the molecular and cellular response to fractionated irradiation. RESULTS Gene expression analysis identified type I interferon signaling as the most significantly enriched biological process induced during fractionated irradiation. The commonality of this response was confirmed in all irradiated cell lines, the xenograft tumors and in biopsies from esophageal cancer patients. Time-course analyses demonstrated a peak in interferon-stimulated gene (ISG) expression within 2-3 weeks of treatment. The response was accompanied by a variable induction of predominantly interferon-beta and/or -lambda, but blocking these interferons did not affect ISG expression induction. The same was true for targeted inhibition of the upstream regulatory STING protein while knockout of STING expression only delayed the ISG expression induction. CONCLUSIONS Collectively, the presented data show that clinically applied fractionated low-dose irradiation can induce a delayed type I interferon response that occurs independently of interferon expression or STING signaling. These findings have implications for current efforts that aim to target the type I interferon response for cancer treatment.
Collapse
Affiliation(s)
- Ruben S A Goedegebuure
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Esther A Kleibeuker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | | | - Kitty C M Castricum
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Syed Haider
- Department of Molecular Oncology, University of Oxford, Oxford, UK
| | - Iris A Schulkens
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Luuk Ten Kroode
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Jaap van den Berg
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Maarten A J M Jacobs
- Department of Gastroenterology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Anne-Marie van Berkel
- Department of Gastroenterology, Noord West Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Nicole C T van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Adrian L Harris
- Department of Molecular Oncology, University of Oxford, Oxford, UK
| | - Victor L Thijssen
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Pramil E, Dillard C, Escargueil AE. Colorectal Cancer and Immunity: From the Wet Lab to Individuals. Cancers (Basel) 2021; 13:cancers13071713. [PMID: 33916641 PMCID: PMC8038567 DOI: 10.3390/cancers13071713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tackling the current dilemma of colorectal cancer resistance to immunotherapy is puzzling and requires novel therapeutic strategies to emerge. However, characterizing the intricate interactions between cancer and immune cells remains difficult because of the complexity and heterogeneity of both compartments. Developing rationales is intellectually feasible but testing them can be experimentally challenging and requires the development of innovative procedures and protocols. In this review, we delineated useful in vitro and in vivo models used for research in the field of immunotherapy that are or could be applied to colorectal cancer management and lead to major breakthroughs in the coming years. Abstract Immunotherapy is a very promising field of research and application for treating cancers, in particular for those that are resistant to chemotherapeutics. Immunotherapy aims at enhancing immune cell activation to increase tumor cells recognition and killing. However, some specific cancer types, such as colorectal cancer (CRC), are less responsive than others to the current immunotherapies. Intrinsic resistance can be mediated by the development of an immuno-suppressive environment in CRC. The mutational status of cancer cells also plays a role in this process. CRC can indeed be distinguished in two main subtypes. Microsatellite instable (MSI) tumors show a hyper-mutable phenotype caused by the deficiency of the DNA mismatch repair machinery (MMR) while microsatellite stable (MSS) tumors show a comparatively more “stable” mutational phenotype. Several studies demonstrated that MSI CRC generally display good prognoses for patients and immunotherapy is considered as a therapeutic option for this type of tumors. On the contrary, MSS metastatic CRC usually presents a worse prognosis and is not responsive to immunotherapy. According to this, developing new and innovative models for studying CRC response towards immune targeted therapies has become essential in the last years. Herein, we review the in vitro and in vivo models used for research in the field of immunotherapy applied to colorectal cancer.
Collapse
Affiliation(s)
- Elodie Pramil
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Alliance Pour la Recherche en Cancérologie—APREC, Tenon Hospital, F-75012 Paris, France
| | - Clémentine Dillard
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Alliance Pour la Recherche en Cancérologie—APREC, Tenon Hospital, F-75012 Paris, France
| | - Alexandre E. Escargueil
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Correspondence: ; Tel.: +33-(0)1-49-28-46-44
| |
Collapse
|
10
|
Orth M, Albrecht V, Seidl K, Kinzel L, Unger K, Hess J, Kreutzer L, Sun N, Stegen B, Nieto A, Maas J, Winssinger N, Friedl AA, Walch AK, Belka C, Zitzelsberger H, Niyazi M, Lauber K. Inhibition of HSP90 as a Strategy to Radiosensitize Glioblastoma: Targeting the DNA Damage Response and Beyond. Front Oncol 2021; 11:612354. [PMID: 33816244 PMCID: PMC8011354 DOI: 10.3389/fonc.2021.612354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is an essential component of multi-modality treatment of glioblastoma (GBM). However, treatment failure and recurrence are frequent and give rise to the dismal prognosis of this aggressive type of primary brain tumor. A high level of inherent treatment resistance is considered to be the major underlying reason, stemming from constantly activated DNA damage response (DDR) mechanisms as a consequence of oncogene overexpression, persistent replicative stress, and other so far unknown reasons. The molecular chaperone heat shock protein 90 (HSP90) plays an important role in the establishment and maintenance of treatment resistance, since it crucially assists the folding and stabilization of various DDR regulators. Accordingly, inhibition of HSP90 represents a multi-target strategy to interfere with DDR function and to sensitize cancer cells to radiotherapy. Using NW457, a pochoxime-based HSP90 inhibitor with favorable brain pharmacokinetic profile, we show here that HSP90 inhibition at low concentrations with per se limited cytotoxicity leads to downregulation of various DNA damage response factors on the protein level, distinct transcriptomic alterations, impaired DNA damage repair, and reduced clonogenic survival in response to ionizing irradiation in glioblastoma cells in vitro. In vivo, HSP90 inhibition by NW457 improved the therapeutic outcome of fractionated CBCT-based irradiation in an orthotopic, syngeneic GBM mouse model, both in terms of tumor progression and survival. Nevertheless, in view of the promising in vitro results the in vivo efficacy was not as strong as expected, although apart from the radiosensitizing effects HSP90 inhibition also reduced irradiation-induced GBM cell migration and tumor invasiveness. Hence, our findings identify the combination of HSP90 inhibition and radiotherapy in principle as a promising strategy for GBM treatment whose performance needs to be further optimized by improved inhibitor substances, better formulations and/or administration routes, and fine-tuned treatment sequences.
Collapse
Affiliation(s)
- Michael Orth
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Karin Seidl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Linda Kinzel
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Lisa Kreutzer
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Benjamin Stegen
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium, Munich, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jessica Maas
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
11
|
Tong Y, Li Z, Wu Y, Zhu S, Lu K, He Z. Lotus leaf extract inhibits ER - breast cancer cell migration and metastasis. Nutr Metab (Lond) 2021; 18:20. [PMID: 33602253 PMCID: PMC7891157 DOI: 10.1186/s12986-021-00549-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with estrogen receptor negative (ER-) breast cancer have poor prognosis due to high rates of metastasis. However, there is no effective treatment and drugs for ER- breast cancer metastasis. Our purpose of this study was to evaluate the effect of lotus leaf alcohol extract (LAE) on the cell migration and metastasis of ER- breast cancer. METHODS The anti-migratory effect of LAE were analyzed in ER- breast cancer cells including SK-BR-3, MDA-MB-231 and HCC1806 cell lines. Cell viability assay, wound-healing assay, RNA-sequence analysis and immunoblotting assay were used to evaluate the cytotoxicity and anti-migratory effect of LAE. To further investigate the inhibitory effect of LAE on metastasis in vivo, subcutaneous xenograft and intravenous injection nude mice models were established. Lung and liver tissues were analyzed by the hematoxylin and eosin staining and immunoblotting assay. RESULTS We found that lotus LAE, not nuciferine, inhibited cell migration significantly in SK-BR-3, MDA-MB-231 and HCC1806 breast cancer cells, and did not affect viability of breast cancer cells. The anti-migratory effect of LAE was dependent on TGF-β1 signaling, while independent of Wnt signaling and autophagy influx. Intracellular H2O2 was involved in the TGF-β1-related inhibition of cell migration. LAE inhibited significantly the breast cancer cells metastasis in mice models. RNA-sequence analysis showed that extracellular matrix signaling pathways are associated with LAE-suppressed cell migration. CONCLUSIONS Our findings demonstrated that lotus leaf alcohol extract inhibits the cell migration and metastasis of ER- breast cancer, at least in part, via TGF-β1/Erk1/2 and TGF-β1/SMAD3 signaling pathways, which provides a potential therapeutic strategy for ER- breast cancer.
Collapse
Affiliation(s)
- Yuelin Tong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhongwei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yikuan Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shenglong Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Keke Lu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China. .,Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
12
|
Corradini S, Niyazi M, Verellen D, Valentini V, Walsh S, Grosu AL, Lauber K, Giaccia A, Unger K, Debus J, Pieters BR, Guckenberger M, Senan S, Budach W, Rad R, Mayerle J, Belka C. X-change symposium: status and future of modern radiation oncology-from technology to biology. Radiat Oncol 2021; 16:27. [PMID: 33541387 PMCID: PMC7863262 DOI: 10.1186/s13014-021-01758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Future radiation oncology encompasses a broad spectrum of topics ranging from modern clinical trial design to treatment and imaging technology and biology. In more detail, the application of hybrid MRI devices in modern image-guided radiotherapy; the emerging field of radiomics; the role of molecular imaging using positron emission tomography and its integration into clinical routine; radiation biology with its future perspectives, the role of molecular signatures in prognostic modelling; as well as special treatment modalities such as brachytherapy or proton beam therapy are areas of rapid development. More clinically, radiation oncology will certainly find an important role in the management of oligometastasis. The treatment spectrum will also be widened by the rational integration of modern systemic targeted or immune therapies into multimodal treatment strategies. All these developments will require a concise rethinking of clinical trial design. This article reviews the current status and the potential developments in the field of radiation oncology as discussed by a panel of European and international experts sharing their vision during the "X-Change" symposium, held in July 2019 in Munich (Germany).
Collapse
Affiliation(s)
- Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dirk Verellen
- Department of Radiotherapy, Iridium Network, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincenzo Valentini
- Department of Radiation Oncology and Hematology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica S. Cuore, Rome, Italy
| | | | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Amato Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, USA
| | - Kristian Unger
- Integrative Biology Group, Helmholtz Zentrum Munich, Munich, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bradley R Pieters
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Wilfried Budach
- Department of Radiation Oncology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), TU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Internal Medicine II, University Hospital, LMU, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
13
|
Wang Y. Advances in Hypofractionated Irradiation-Induced Immunosuppression of Tumor Microenvironment. Front Immunol 2021; 11:612072. [PMID: 33569059 PMCID: PMC7868375 DOI: 10.3389/fimmu.2020.612072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Hypofractionated radiotherapy is external beam irradiation delivered at higher doses in fewer fractions than conventional standard radiotherapy, which can stimulate innate and adaptive immunity to enhance the body’s immune response against cancer. The enhancement effect of hypofractionated irradiation to immune response has been widely investigated, which is considered an approach to expand the benefit of immunotherapy. Meanwhile, increasing evidence suggests that hypofractionated irradiation may induce or enhance the suppression of immune microenvironments. However, the suppressive effects of hypofractionated irradiation on immunomicroenvironment and the molecular mechanisms involved in these conditions are largely unknown. In this context, we summarized the immune mechanisms associated with hypofractionated irradiation, highlighted the advances in its immunosuppressive effect, and further discussed the potential mechanism behind this effect. In our opinion, besides its immunogenic activity, hypofractionated irradiation also triggers homeostatic immunosuppressive mechanisms that may counterbalance antitumor effects. And this may suggest that a combination with immunotherapy could possibly improve the curative potential of hypofractionated radiotherapy.
Collapse
Affiliation(s)
- Yuxia Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Ernst A, Hennel R, Krombach J, Kapfhammer H, Brix N, Zuchtriegel G, Uhl B, Reichel CA, Frey B, Gaipl US, Winssinger N, Shirasawa S, Sasazuki T, Sperandio M, Belka C, Lauber K. Priming of Anti-tumor Immune Mechanisms by Radiotherapy Is Augmented by Inhibition of Heat Shock Protein 90. Front Oncol 2020; 10:1668. [PMID: 32984042 PMCID: PMC7481363 DOI: 10.3389/fonc.2020.01668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is an essential part of multi-modal cancer therapy. Nevertheless, for certain cancer entities such as colorectal cancer (CRC) the indications of radiotherapy are limited due to anatomical peculiarities and high radiosensitivity of the surrounding normal tissue. The development of molecularly targeted, combined modality approaches may help to overcome these limitations. Preferably, such strategies should not only enhance radiation-induced tumor cell killing and the abrogation of tumor cell clonogenicity, but should also support the stimulation of anti-tumor immune mechanisms – a phenomenon which moved into the center of interest of preclinical and clinical research in radiation oncology within the last decade. The present study focuses on inhibition of heat shock protein 90 (HSP90) whose combination with radiotherapy has previously been reported to exhibit convincing therapeutic synergism in different preclinical cancer models. By employing in vitro and in vivo analyses, we examined if this therapeutic synergism also applies to the priming of anti-tumor immune mechanisms in model systems of CRC. Our results indicate that the combination of HSP90 inhibitor treatment and ionizing irradiation induced apoptosis in colorectal cancer cells with accelerated transit into secondary necrosis in a hyperactive Kras-dependent manner. During secondary necrosis, dying cancer cells released different classes of damage-associated molecular patterns (DAMPs) that stimulated migration and recruitment of monocytic cells in vitro and in vivo. Additionally, these dying cancer cell-derived DAMPs enforced the differentiation of a monocyte-derived antigen presenting cell (APC) phenotype which potently triggered the priming of allogeneic T cell responses in vitro. In summary, HSP90 inhibition – apart from its radiosensitizing potential – obviously enables and supports the initial steps of anti-tumor immune priming upon radiotherapy and thus represents a promising partner for combined modality approaches. The therapeutic performance of such strategies requires further in-depth analyses, especially for but not only limited to CRC.
Collapse
Affiliation(s)
- Anne Ernst
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Roman Hennel
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julia Krombach
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Heidi Kapfhammer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine Fukuoka University, Fukuoka, Japan
| | | | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| |
Collapse
|
15
|
Powerski M, Drewes R, Omari J, Relja B, Surov A, Pech M. Intra-hepatic Abscopal Effect Following Radioembolization of Hepatic Metastases. Cardiovasc Intervent Radiol 2020; 43:1641-1649. [PMID: 32808201 PMCID: PMC7591411 DOI: 10.1007/s00270-020-02612-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/02/2020] [Indexed: 01/05/2023]
Abstract
Purpose To search for abscopal effects (AE) distant to the site of radiation after sequential Yittrium-90 (Y-90) radioembolization (RE) of liver malignancies. Methods and Materials In this retrospective analysis, all patients treated by RE between 2007 and 2018 (n = 907) were screened for the following setting/conditions: sequential RE of left and right liver lobe in two sessions, liver-specific MRI (MRI1) acquired max. 10 days before or after first RE (RE1), liver-specific MRI (MRI2) acquired with a minimum time interval of 20 days after MRI1, but before second RE (RE2). No systemic tumor therapies between MRI1 and MRI2. No patients with liver cirrhosis. Metastases > 5 mm in untreated liver lobes were compared in MRI1 and MRI2 and rated as follows: same size or larger in MRI2 = no abscopal effect (NAE); > 30% shrinkage without Y-90 contamination in SPECT/CT = abscopal effect (AE). Results Ninety six of 907 patients met aforementioned criteria. Median time-frame between RE1 and MRI2 was 34 (20–64) days. These 96 cases had 765 metastases which were evaluable (median 5(1–40) metastases per patient). Four patients could be identified with at least one shrinking metastasis of the untreated site: one patient with breast cancer (3 metastases: 0 NAE; 3 AE), one patient with prostate cancer (6 metastases: 3 NAE; 3 metastases > 30% shrinkage but possible Y-90 contamination) and two patients with shrinkage of one metastasis each but less than 30%. Conclusion Our retrospective study documents AE after RE of liver tumors in 1 out of 96 cases, 3 other cases remain unclear.
Collapse
Affiliation(s)
- Maciej Powerski
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Ralph Drewes
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Jazan Omari
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Alexey Surov
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.,2nd Department of Radiology, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214, Gdansk, Poland
| |
Collapse
|
16
|
Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells. Int J Mol Sci 2020; 21:ijms21093279. [PMID: 32384619 PMCID: PMC7247355 DOI: 10.3390/ijms21093279] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a key process in physiological dysfunction developing upon aging or following diverse stressors including ionizing radiation. It describes the state of a permanent cell cycle arrest, in which proliferating cells become resistant to growth-stimulating factors. Senescent cells differ from quiescent cells, which can re-enter the cell cycle and from finally differentiated cells: morphological and metabolic changes, restructuring of chromatin, changes in gene expressions and the appropriation of an inflammation-promoting phenotype, called the senescence-associated secretory phenotype (SASP), characterize cellular senescence. The biological role of senescence is complex, since both protective and harmful effects have been described for senescent cells. While initially described as a mechanism to avoid malignant transformation of damaged cells, senescence can even contribute to many age-related diseases, including cancer, tissue degeneration, and inflammatory diseases, particularly when senescent cells persist in damaged tissues. Due to overwhelming evidence about the important contribution of cellular senescence to the pathogenesis of different lung diseases, specific targeting of senescent cells or of pathology-promoting SASP factors has been suggested as a potential therapeutic approach. In this review, we summarize recent advances regarding the role of cellular (fibroblastic, endothelial, and epithelial) senescence in lung pathologies, with a focus on radiation-induced senescence. Among the different cells here, a central role of epithelial senescence is suggested.
Collapse
|
17
|
Jiang MJ, Gu DN, Dai JJ, Huang Q, Tian L. Dark Side of Cytotoxic Therapy: Chemoradiation-Induced Cell Death and Tumor Repopulation. Trends Cancer 2020; 6:419-431. [PMID: 32348737 DOI: 10.1016/j.trecan.2020.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Accelerated tumor repopulation following chemoradiation is often observed in the clinic, but the underlying mechanisms remain unclear. In recent years, dying cells caused by chemoradiation have attracted much attention, and they may manifest diverse forms of cell death and release complex factors and thus orchestrate tumor repopulation cascades. Dying cells potentiate the survival of residual living tumor cells, remodel the tumor microenvironment, boost cell proliferation, and accelerate cancer cell metastasis. Moreover, dying cells also mediate the side effects of chemoradiation. These findings suggest more caution when weighing the benefits of cytotoxic therapy and the need to accordingly develop new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-Na Gu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Juan-Juan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
18
|
Zhang MX, Li XB, Guan BJ, Guan GX, Lin XY, Wu XD, Chi P, Xu BH. Dose escalation of preoperative short-course radiotherapy followed by neoadjuvant chemotherapy in locally advanced rectal cancer: protocol for an open-label, single-centre, phase I clinical trial. BMJ Open 2019; 9:e025944. [PMID: 30904869 PMCID: PMC6475145 DOI: 10.1136/bmjopen-2018-025944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Preoperative radiotherapy followed by total mesorectal excision with adjuvant chemotherapy has been recommended as the preferred treatment method for locally advanced rectal cancer (LARC). Similar rates of local control, survival and toxicity were observed in preoperative long-course chemoradiotherapy (LCRT) (45-50.4 Gy in 25-28 fractions) and in short-course radiotherapy (SCRT) with 25 Gy over five fractions. Both regimens lower the local recurrence rates compared with that of surgery followed by postoperative radiotherapy. With the simplicity and lower cost of SCRT, a growing number of patients have been receiving SCRT as preoperative radiotherapy. However, the currently established SCRT (25 Gy over five fractions) followed immediately by surgery resulted in poor downstaging and sphincter preservation rate. The pathological complete response (pCR) rate is also markedly lower with SCRT than with LCRT (0.7%vs16%). Several studies recommended SCRT with delayed surgery for more than 4 weeks with expectation of improved pathological outcomes and fewer postoperative complications. While a number of clinical trials demonstrated a persistently better overall local control with SCRT than with LCRT, overall survival advantage has not been observed. Since survival is mainly depended on distant metastases, efforts should be made towards more effective pathological response and systemic treatment. Given the apparent advantages of SCRT, we aimed to establish a dose escalation of SCRT and sequential modified FOLFOX6 (mFOLFOX6) as preoperative therapy for LARC with objectives of achieving an optimal balance of safety, cost effectiveness and clinical outcome, and to support further investigation of this regimen in a phase II/III setting. METHODS In this phase I study, three dose levels (6Gy×5F, 7Gy×5F, 8Gy×5F to gross tumour volume, while keeping the rest of irradiated volume at 5Gy×5) of SCRT followed by four cycles of mFOLFOX6 chemotherapy as neoadjuvant therapy will be tested by using the traditional 3+3 design. The pCR rate, R0 resection rate, sphincter preservation rate and treatment related toxicity will be assessed. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of Fujian Medical University Union Hospital (No. 2017YF020-02) and all participants provided written informed consent. Results from our study will be disseminated in international peer-reviewed journals. All study procedures were developed in order to assure data protection and confidentiality. TRIAL REGISTRATION NUMBER NCT03466424; Pre-results.
Collapse
Affiliation(s)
- Meng-xia Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiao-bo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Collogy of medical technology and engineering, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Bing-jie Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Guo-xian Guan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiao-yan Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiao-dong Wu
- Department of Radiation Oncology, Cancer Hospital of Fudan University, Shanghai, China
- Department of biomedical engineering, Innovative Cancer Institute, Miami, Florida, USA
| | - Pan Chi
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ben-hua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Chen Q, Chen M, Liu Z. Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chem Soc Rev 2019; 48:5506-5526. [DOI: 10.1039/c9cs00271e] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy by educating or stimulating patients’ own immune systems to attack cancer cells has demonstrated promising therapeutic responses in the clinic.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
20
|
Immune Modulatory Effects of Radiotherapy. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Krombach J, Hennel R, Brix N, Orth M, Schoetz U, Ernst A, Schuster J, Zuchtriegel G, Reichel CA, Bierschenk S, Sperandio M, Vogl T, Unkel S, Belka C, Lauber K. Priming anti-tumor immunity by radiotherapy: Dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology 2018; 8:e1523097. [PMID: 30546963 PMCID: PMC6287777 DOI: 10.1080/2162402x.2018.1523097] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022] Open
Abstract
The major goal of radiotherapy is the induction of tumor cell death. Additionally, radiotherapy can function as in situ cancer vaccination by exposing tumor antigens and providing adjuvants for anti-tumor immune priming. In this regard, the mode of tumor cell death and the repertoire of released damage-associated molecular patterns (DAMPs) are crucial. However, optimal dosing and fractionation of radiotherapy remain controversial. Here, we examined the initial steps of anti-tumor immune priming by different radiation regimens (20 Gy, 4 × 2 Gy, 2 Gy, 0 Gy) with cell lines of triple-negative breast cancer in vitro and in vivo. Previously, we have shown that especially high single doses (20 Gy) induce a delayed type of primary necrosis with characteristics of mitotic catastrophe and plasma membrane disintegration. Now, we provide evidence that protein DAMPs released by these dying cells stimulate sequential recruitment of neutrophils and monocytes in vivo. Key players in this regard appear to be endothelial cells revealing a distinct state of activation upon exposure to supernatants of irradiated tumor cells as characterized by high surface expression of adhesion molecules and production of a discrete cytokine/chemokine pattern. Furthermore, irradiated tumor cell-derived protein DAMPs enforced differentiation and maturation of dendritic cells as hallmarked by upregulation of co-stimulatory molecules and improved T cell-priming. Consistently, a recurring pattern was observed: The strongest effects were detected with 20 Gy-irradiated cells. Obviously, the initial steps of radiotherapy-induced anti-tumor immune priming are preferentially triggered by high single doses – at least in models of triple-negative breast cancer.
Collapse
Affiliation(s)
- Julia Krombach
- Department of Radiation Oncology, University Hospital, Munich, Germany
| | - Roman Hennel
- Department of Radiation Oncology, University Hospital, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Schoetz
- Department of Radiation Oncology, University Hospital, Munich, Germany.,Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital Gießen and Marburg, Marburg, Germany
| | - Anne Ernst
- Department of Radiation Oncology, University Hospital, Munich, Germany.,Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Jessica Schuster
- Department of Radiation Oncology, University Hospital, Munich, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, University Hospital, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University Hospital, Munich, Germany.,Translational research in haematology/oncology, Institute of Experimental Infectious Diseases and Cancer Research, Division of the University Children's Hospital of Zurich, Zurich, Switzerland
| | - Christoph A Reichel
- Department of Otorhinolaryngology, University Hospital, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University Hospital, Munich, Germany
| | - Susanne Bierschenk
- Walter Brendel Centre of Experimental Medicine, University Hospital, Munich, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, University Hospital, Munich, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Steffen Unkel
- Department of Medical Statistics, University Medical Center, Goettingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
22
|
Kinzel L, Ernst A, Orth M, Albrecht V, Hennel R, Brix N, Frey B, Gaipl US, Zuchtriegel G, Reichel CA, Blutke A, Schilling D, Multhoff G, Li M, Niyazi M, Friedl AA, Winssinger N, Belka C, Lauber K. A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer. Oncotarget 2017; 7:43199-43219. [PMID: 27259245 PMCID: PMC5190018 DOI: 10.18632/oncotarget.9774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
The chaperone heat shock protein 90 (HSP90) crucially supports the maturation, folding, and stability of a variety of client proteins which are of pivotal importance for the survival and proliferation of cancer cells. Consequently, targeting of HSP90 has emerged as an attractive strategy of anti-cancer therapy, and it appears to be particularly effective in the context of molecular sensitization towards radiotherapy as has been proven in preclinical models of different cancer entities. However, so far the clinical translation has largely been hampered by suboptimal pharmacological properties and serious hepatotoxicity of first- and second-generation HSP90 inhibitors. Here, we report on NW457, a novel radicicol-derived member of the pochoxime family with reduced hepatotoxicity, how it inhibits the DNA damage response and how it synergizes with ionizing irradiation to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Linda Kinzel
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anne Ernst
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roman Hennel
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, Head and Neck Surgery, and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
23
|
Grant M, Bollard CM. Developing T-cell therapies for lymphoma without receptor engineering. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:622-631. [PMID: 29222313 PMCID: PMC6142576 DOI: 10.1182/asheducation-2017.1.622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
T-cell therapy has emerged from the bench for the treatment of patients with lymphoma. Responses to T-cell therapeutics are regulated by multiple factors, including the patient's immune system status and disease stage. Outside of engineering of chimeric antigen receptors and artificial T-cell receptors, T-cell therapy can be mediated by ex vivo expansion of antigen-specific T cells targeting viral and/or nonviral tumor-associated antigens. These approaches are contributing to enhanced clinical responses and overall survival. In this review, we summarize the available T-cell therapeutics beyond receptor engineering for the treatment of patients with lymphoma.
Collapse
Affiliation(s)
- Melanie Grant
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and
- Departments of Pediatrics and Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
24
|
Developing T-cell therapies for lymphoma without receptor engineering. Blood Adv 2017; 1:2579-2590. [PMID: 29296911 DOI: 10.1182/bloodadvances.2017009886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
T-cell therapy has emerged from the bench for the treatment of patients with lymphoma. Responses to T-cell therapeutics are regulated by multiple factors, including the patient's immune system status and disease stage. Outside of engineering of chimeric antigen receptors and artificial T-cell receptors, T-cell therapy can be mediated by ex vivo expansion of antigen-specific T cells targeting viral and/or nonviral tumor-associated antigens. These approaches are contributing to enhanced clinical responses and overall survival. In this review, we summarize the available T-cell therapeutics beyond receptor engineering for the treatment of patients with lymphoma.
Collapse
|
25
|
Grant ML, Bollard CM. Cell therapies for hematological malignancies: don't forget non-gene-modified t cells! Blood Rev 2017; 32:203-224. [PMID: 29198753 DOI: 10.1016/j.blre.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022]
Abstract
Cell therapy currently performs an important role in the treatment of patients with various hematological malignancies. The response to the cell therapy is regulated by multiple factors including the patient's immune system status, genetic profile, stage at diagnosis, age, and underlying disease. Cell therapy that does not require genetic manipulation can be mediated by donor lymphocyte infusion strategies, selective depletion in the post-transplant setting and the ex vivo expansion of antigen-specific T cells. For hematologic malignancies, cell therapy is contributing to enhanced clinical responses and overall survival and the immune response to cell therapy is predictive of response in multiple cancer types. In this review we summarize the available T cell therapeutics that do not rely on gene engineering for the treatment of patients with blood cancers.
Collapse
Affiliation(s)
- Melanie L Grant
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
26
|
The MTH1 inhibitor TH588 demonstrates anti-tumoral effects alone and in combination with everolimus, 5-FU and gamma-irradiation in neuroendocrine tumor cells. PLoS One 2017; 12:e0178375. [PMID: 28542590 PMCID: PMC5444855 DOI: 10.1371/journal.pone.0178375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
Modulation of the redox system in cancer cells has been considered a promising target for anti-cancer therapy. The novel MTH1 inhibitor TH588 proved tremendous potential in terms of cancer cell eradication, yet its specificity has been questioned by recent reports, indicating that TH588 may also induce cancer cell death by alternative mechanisms than MTH1 inhibition. Here we used a panel of heterogeneous neuroendocrine tumor cells in order to assess cellular mechanisms and molecular signaling pathways implicated in the effects of TH588 alone as well as dual-targeting approaches combining TH588 with everolimus, cytotoxic 5-fluorouracil or γ-irradiation. Our results reflect that TH588 alone efficiently decreased the survival of neuroendocrine cancer cells by PI3K-Akt-mTOR axis downregulation, increased apoptosis and oxidative stress. However, in the dual-targeting approaches cell survival was further decreased due to an even stronger downregulation of the PI3K-Akt-mTOR axis and augmentation of apoptosis but not oxidative stress. Furthermore, we could attribute TH588 chemo- and radio-sensitizing properties. Collectively our data not only provide insights into how TH588 exactly kills cancer cells but also depict novel perspectives for combinatorial treatment approaches encompassing TH588.
Collapse
|
27
|
Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance. Cancer Lett 2016; 386:87-99. [PMID: 27867017 DOI: 10.1016/j.canlet.2016.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/25/2016] [Accepted: 11/10/2016] [Indexed: 01/06/2023]
Abstract
Radio (chemo) therapy is a crucial treatment modality for head and neck squamous cell carcinoma (HNSCC), but relapse is frequent, and the underlying mechanisms remain largely elusive. Therefore, novel biomarkers are urgently needed. Previously, we identified gains on 16q23-24 to be associated with amplification of the Fanconi anemia A (FancA) gene and to correlate with reduced progression-free survival after radiotherapy. Here, we analyzed the effects of FancA on radiation sensitivity in vitro, characterized the underlying mechanisms, and evaluated their clinical relevance. Silencing of FancA expression in HNSCC cell lines with genomic gains on 16q23-24 resulted in significantly impaired clonogenic survival upon irradiation. Conversely, overexpression of FancA in immortalized keratinocytes conferred increased survival accompanied by improved DNA repair, reduced accumulation of chromosomal translocations, but no hyperactivation of the FA/BRCA-pathway. Downregulation of interferon signaling as identified by microarray analyses, enforced irradiation-induced senescence, and elevated production of the senescence-associated secretory phenotype (SASP) appeared to be candidate mechanisms contributing to FancA-mediated radioresistance. Data of the TCGA HNSCC cohort confirmed the association of gains on 16q24.3 with FancA overexpression and impaired overall survival. Importantly, transcriptomic alterations similar to those observed upon FancA overexpression in vitro strengthened the clinical relevance. Overall, FancA amplification and overexpression appear to be crucial for radiotherapeutic failure in HNSCC.
Collapse
|
28
|
Popp I, Grosu AL, Niedermann G, Duda DG. Immune modulation by hypofractionated stereotactic radiation therapy: Therapeutic implications. Radiother Oncol 2016; 120:185-94. [PMID: 27495145 DOI: 10.1016/j.radonc.2016.07.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/17/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Stereotactic body radiation therapy (SBRT) has become an attractive treatment modality and a safe, non-invasive alternative to surgery to control primary or secondary malignant tumors. While emphasis has been on the local tumor control as a treatment objective for SBRT, the rare but intriguing observations of abscopal (or out-of-field) effects have pointed to the exciting possibility of activating anti-tumor immunity by using high-dose radiation. This review summarizes the available evidence supporting immune modulation by SBRT alone, as well as its potential combination with immunotherapy. Promising preclinical research has revealed an array of immune changes following SBRT, which could affect the balance between anti-tumor immunity and tumor-promoting immunosuppression. However, shifting this balance in the clinical setting to obtain survival benefits has rarely been achieved so far, emphasizing the need for a better understanding of the interactions between high-dose radiotherapy and immunity or immunotherapy. Nevertheless, the combination of SBRT with immunotherapy, particularly with immune checkpoint blockers, has the clear potential to substantially increase the rate of abscopal effects. This warrants further research in this area, both in mechanistic preclinical studies and in clinical trials incorporating correlative studies.
Collapse
Affiliation(s)
- Ilinca Popp
- Department of Radiation Oncology, University Medical Center Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Anca Ligia Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, University Medical Center Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Dan G Duda
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
29
|
Schnurr M, Duewell P, Bauer C, Rothenfusser S, Lauber K, Endres S, Kobold S. Strategies to relieve immunosuppression in pancreatic cancer. Immunotherapy 2016; 7:363-76. [PMID: 25917628 DOI: 10.2217/imt.15.9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite continuous progress in the understanding of deregulated pathways in pancreatic cancer cells and development of targeted therapies, therapeutic advances with clinical benefit have been scarce over the last decades. The recent success of immunotherapy for some solid cancers has fueled optimism that this approach might also work for pancreatic cancer. However, a highly immunosuppressive microenvironment mediated by tumor, stromal and immune cells creates a major hurdle for immunotherapy. Mouse models have helped to unravel critical immunosuppressive mechanisms that could serve as novel therapeutic targets. Here we review new promising strategies that alone or in combination with other modalities, such as chemotherapy or irradiation, have the potential to lead to tumor immune control and finally better clinical outcome.
Collapse
Affiliation(s)
- Max Schnurr
- Division of Clinical Pharmacology & Center for Integrated Protein Science Munich (CIPSM), Klinikum der Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Yoon TM, Kim SA, Cho WS, Lee DH, Lee JK, Park YL, Lee KH, Lee JH, Kweon SS, Chung IJ, Lim SC, Joo YE. SOX4 expression is associated with treatment failure and chemoradioresistance in oral squamous cell carcinoma. BMC Cancer 2015; 15:888. [PMID: 26555193 PMCID: PMC4641419 DOI: 10.1186/s12885-015-1875-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/30/2015] [Indexed: 01/01/2023] Open
Abstract
Background In humans, sex-determining region-Y (SRY) related high-mobility-group box 4 (SOX4) is linked to development and tumorigenesis. SOX4 is over-expressed in several cancers and has prognostic significance. This study evaluated whether SOX4 affects oncogenic behavior and chemoradiotherapy response in head and neck squamous cell carcinoma (HNSCC) cells, and documented the relationship between its expression and prognosis in oral squamous cell carcinoma (OSCC). Methods We used small interfering RNA in HNSCC cells to evaluate the effect of SOX4 on cell proliferation, apoptosis, chemoradiation-induced apoptosis, invasion, and migration. SOX4 expression in OSCC tissues was investigated by immunohistochemistry. Results SOX4 knockdown (KO) decreased cell proliferation and induced apoptosis by activating caspases-3 and −7, and poly-ADP ribose polymerase and suppressing X-linked inhibitor of apoptosis protein in HNSCC cells; it also enhanced radiation/cisplatin-induced apoptosis; and suppressed tumor cell invasion and migration. Immunostaining showed SOX4 protein was significantly increased in OSCC tissues compared with adjacent normal mucosa. SOX4 expression was observed in 51.8 % of 85 OSCC tissues, and was significantly correlated with treatment failure (P = 0.032) and shorter overall survival (P = 0.036) in patients with OSCC. Conclusions SOX4 may contribute to oncogenic phenotypes of HNSCC cells by promoting cell survival and causing chemoradioresistance. It could be a potential prognostic marker for OSCC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1875-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tae Mi Yoon
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Sun-Ae Kim
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Wan Seok Cho
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Dong Hoon Lee
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Joon Kyoo Lee
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Young-Lan Park
- Departments of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Kyung-Hwa Lee
- Departments of Pathology, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Jae Hyuk Lee
- Departments of Pathology, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Sun-Seog Kweon
- Departments of Preventive Medicine, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Ik-Joo Chung
- Departments of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Sang Chul Lim
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| | - Young-Eun Joo
- Departments of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 8 Hak-Dong, Dong-Ku, Gwangju, 501-757, South Korea.
| |
Collapse
|
31
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
32
|
Kötter B, Frey B, Winderl M, Rubner Y, Scheithauer H, Sieber R, Fietkau R, Gaipl US. The in vitro immunogenic potential of caspase-3 proficient breast cancer cells with basal low immunogenicity is increased by hypofractionated irradiation. Radiat Oncol 2015; 10:197. [PMID: 26383236 PMCID: PMC4573696 DOI: 10.1186/s13014-015-0506-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/10/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Radiotherapy is an integral part of breast cancer treatment. Immune activating properties of especially hypofractionated irradiation are in the spotlight of clinicians, besides the well-known effects of radiotherapy on cell cycle and the reduction of the clonogenic potential of tumor cells. Especially combination of radiotherapy with further immune stimulation induces immune-mediated anti-tumor responses. We therefore examined whether hypofractionated irradiation alone or in combination with hyperthermia as immune stimulants is capable of inducing breast cancer cells with immunogenic potential. METHODS Clonogenic assay, AnnexinA5-FITC/Propidium iodide assay and ELISA analyses of heat shock protein 70 and high mobility group box 1 protein were applied to characterize colony forming capability, cell death induction, cell death forms and release of danger signals by breast cancer cells in response to hypofractionated radiation (4x4Gy, 6x3Gy) alone and in combination with hyperthermia (41.5 °C for 1 h). Caspase-3 deficient, hormone receptor positive, p53 wild type MCF-7 and caspase-3 intact, hormone receptor negative, p53 mutated MDA-MB231 breast cancer cells, the latter in absence or presence of the pan-caspase inhibitor zVAD-fmk, were used. Supernatants of the treated tumor cells were analyzed for their potential to alter the surface expression of activation markers on human-monocyte-derived dendritic cells. RESULTS Irradiation reduced the clonogenicity of caspase deficient MCF-7 cells more than of MDA-B231 cells. In contrast, higher amounts of apoptotic and necrotic cells were induced in MDA-B231 cells after single irradiation with 4Gy, 10Gy, or 20Gy or after hypofractionated irradiation with 4x4Gy or 6x3Gy. MDA-B231 cells consecutively released higher amounts of Hsp70 and HMGB1 after hypofractionated irradiation. However, only the release of Hsp70 was further increased by hyperthermia. Both, apoptosis induction and release of the danger signals, was dependent on caspase-3. Only supernatants of MDA-B231 cells after hypofractionated irradiation resulted in slight changes of activation markers on dendritic cells; especially that of CD86 was upregulated and HT did not further impact on it. CONCLUSIONS Hypofractionated irradiation is the main stimulus for cell death induction and consecutive dendritic cell activation in caspase proficient breast cancer cells. For the assessment of radiosensitivity and immunological effects of radio- and immunotherapies the readout system is crucial.
Collapse
Affiliation(s)
- Bernhard Kötter
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Benjamin Frey
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Markus Winderl
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yvonne Rubner
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Heike Scheithauer
- Department of Radiotherapy and Radiation Oncology, Ludwig Maximilian University Munich, D-81377, Munich, Germany.
| | - Renate Sieber
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Udo S Gaipl
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
33
|
Integrative analysis of the microRNA-mRNA response to radiochemotherapy in primary head and neck squamous cell carcinoma cells. BMC Genomics 2015; 16:654. [PMID: 26328888 PMCID: PMC4557600 DOI: 10.1186/s12864-015-1865-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 08/19/2015] [Indexed: 01/01/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous disease resulting in huge differences in the treatment response. New individualized therapy strategies including molecular targeting might help to improve treatment success. In order to identify potential targets, we developed a HNSCC radiochemotherapy cell culture model of primary HNSCC cells derived from two different patients (HN1957 and HN2092) and applied an integrative microRNA (miRNA) and mRNA analysis in order to gain information on the biological networks and processes of the cellular therapy response. We further identified potential target genes of four therapy-responsive miRNAs detected previously in the circulation of HNSCC patients by pathway enrichment analysis. Results The two primary cell cultures differ in global copy number alterations and P53 mutational status, thus reflecting heterogeneity of HNSCC. However, they also share many copy number alterations and chromosomal rearrangements as well as deregulated therapy-responsive miRNAs and mRNAs. Accordingly, six common therapy-responsive pathways (direct P53 effectors, apoptotic execution phase, DNA damage/telomere stress induced senescence, cholesterol biosynthesis, unfolded protein response, dissolution of fibrin clot) were identified in both cell cultures based on deregulated mRNAs. However, inflammatory pathways represented an important part of the treatment response only in HN1957, pointing to differences in the treatment responses of the two primary cultures. Focused analysis of target genes of four therapy-responsive circulating miRNAs, identified in a previous study on HNSCC patients, revealed a major impact on the pathways direct P53 effectors, the E2F transcription factor network and pathways in cancer (mainly represented by the PTEN/AKT signaling pathway). Conclusions The integrative analysis combining miRNA expression, mRNA expression and the related cellular pathways revealed that the majority of radiochemotherapy-responsive pathways in primary HNSCC cells are related to cell cycle, proliferation, cell death and stress response (including inflammation). Despite the heterogeneity of HNSCC, the two primary cell cultures exhibited strong similarities in the treatment response. The findings of our study suggest potential therapeutic targets in the E2F transcription factor network and the PTEN/AKT signaling pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1865-x) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Ernst A, Anders H, Kapfhammer H, Orth M, Hennel R, Seidl K, Winssinger N, Belka C, Unkel S, Lauber K. HSP90 inhibition as a means of radiosensitizing resistant, aggressive soft tissue sarcomas. Cancer Lett 2015; 365:211-22. [PMID: 26044951 DOI: 10.1016/j.canlet.2015.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 01/27/2023]
Abstract
Radiotherapy is an essential part of multi-modal treatment for soft tissue sarcomas. Treatment failure is commonly attributed to radioresistance, but comprehensive analyses of radiosensitivity are not available, and suitable biomarkers or candidates for targeted radiosensitization are scarce. Here, we systematically analyzed the intrinsic radioresistance of a panel of soft tissue sarcoma cell lines, and extracted scores of radioresistance by principal component analysis (PCA). To identify molecular markers of radioresistance, transcriptomic profiling of DNA damage response regulators was performed. The expression levels of HSP90 and its clients ATR, ATM, and NBS1 revealed strong, positive correlations with the PCA-derived radioresistance scores. Their functional involvement was addressed by HSP90 inhibition, which preferentially sensitized radioresistant sarcoma cells and was accompanied by delayed γ-H2AX foci clearance and HSP90 client protein degradation. The induction of apoptosis and necrosis was not significantly enhanced, but increased levels of basal and irradiation-induced senescence upon HSP90 inhibition were detected. Finally, evaluation of our findings in the TCGA soft tissue sarcoma cohort revealed elevated expression levels of HSP90, ATR, ATM, and NBS1 in a relevant subset of cases with particularly poor prognosis, which might preferentially benefit from HSP90 inhibition in combination with radiotherapy in the future.
Collapse
Affiliation(s)
- Anne Ernst
- Clinic for Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heike Anders
- Clinic for Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Kapfhammer
- Clinic for Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Orth
- Clinic for Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roman Hennel
- Clinic for Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karin Seidl
- Clinic for Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Claus Belka
- Clinic for Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Steffen Unkel
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Kirsten Lauber
- Clinic for Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
35
|
Kim GR, Ha GH, Bae JH, Oh SO, Kim SH, Kang CD. Metastatic colon cancer cell populations contain more cancer stem-like cells with a higher susceptibility to natural killer cell-mediated lysis compared with primary colon cancer cells. Oncol Lett 2015; 9:1641-1646. [PMID: 25789015 PMCID: PMC4356422 DOI: 10.3892/ol.2015.2918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
In the present study, the soft agar clonogenicity and the susceptibility of clonogenic cancer cells to natural killer (NK) cells were compared between primary colon cancer cells (KM12C) and metastatic colon cancer cells (KM12L4a and KM12SM) to determine whether the metastatic cancer cells consisted of more cancer stem-like cells and were resistant to NK cell-mediated lysis. The majority of colon cancer cells were positive for putative cancer stem cell markers, including CD44, CD133 and EpCAM, with the exception of KM12C cells, of which only ~55% were positive for CD133. In addition, the expression levels of sex determining region Y-box 2, Nanog and octamer-binding transcription factor 4, which are essential for maintaining self-renewal, were higher in KM12L4a and KM12SM compared with that in KM12C cells. Consistently, an increased clonogenicity of KM12L4a and KM12SM compared with KM12C cells in soft agar was observed. The expression levels of NKG2D ligands, including major histocompatibility complex class I polypeptide-related sequence A/B and UL16 binding protein 2, and of death receptor 5 were significantly higher in KM12L4a and KM12SM than in KM12C cells. Furthermore, the results indicated an increased susceptibility of KM12L4a and KM12SM to NK cell-mediated cytotoxicity in comparison with KM12C cells. These results indicated that metastatic colon cancer cell populations may consist of more cancer stem-like cells, and have greater susceptibility to NK cell-mediated lysis compared with that of primary colon cancers.
Collapse
Affiliation(s)
- Ga Rim Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | - Ga-Hee Ha
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| |
Collapse
|
36
|
Haikerwal SJ, Hagekyriakou J, MacManus M, Martin OA, Haynes NM. Building immunity to cancer with radiation therapy. Cancer Lett 2015; 368:198-208. [PMID: 25592036 DOI: 10.1016/j.canlet.2015.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.
Collapse
Affiliation(s)
- Suresh J Haikerwal
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Jim Hagekyriakou
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Michael MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Nicole M Haynes
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia.
| |
Collapse
|
37
|
Martinez FO, Gordon S. The evolution of our understanding of macrophages and translation of findings toward the clinic. Expert Rev Clin Immunol 2014; 11:5-13. [PMID: 25434688 DOI: 10.1586/1744666x.2015.985658] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
'There is at bottom only one genuinely scientific treatment for all diseases, and that is to stimulate the phagocytes,' so declaimed Sir Ralph Bloomfield Bonington in The Doctor's Dilemma, Act 1, by George Bernard Shaw (1906). More often nowadays, the need is to calm the phagocytes, given their role in inflammation and tissue damage. In spite of the growth of cellular and molecular information gained from studies in macrophage cell culture, mouse models and, to a lesser extent, human investigations, and the importance of macrophages in pathogenesis in a wide range of chronic disease processes, there is still a substantial shortfall in terms of clinical applications. In this review, we summarize concepts derived from macrophage studies and suggest possible properties suitable for diagnosis, prognosis and selective targeting of macrophage pathogenic functions.
Collapse
Affiliation(s)
- Fernando O Martinez
- Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | | |
Collapse
|
38
|
Scheithauer H, Belka C, Lauber K, Gaipl US. Immunological aspects of radiotherapy. Radiat Oncol 2014; 9:185. [PMID: 25142149 PMCID: PMC4150945 DOI: 10.1186/1748-717x-9-185] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Affiliation(s)
| | | | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, Ludwig Maximilian University Munich, D-81377 Munich, Germany.
| | | |
Collapse
|