1
|
Subramaniam MD, Iyer M, Nair AP, Venkatesan D, Mathavan S, Eruppakotte N, Kizhakkillach S, Chandran MK, Roy A, Gopalakrishnan AV, Vellingiri B. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis 2020; 9:610-637. [PMID: 35782976 PMCID: PMC9243399 DOI: 10.1016/j.gendis.2020.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ocular cells like, retinal pigment epithelium (RPE) is a highly specialized pigmented monolayer of post-mitotic cells, which is located in the posterior segment of the eye between neuro sensory retina and vascular choroid. It functions as a selective barrier and nourishes retinal visual cells. As a result of high-level oxygen consumption of retinal cells, RPE cells are vulnerable to chronic oxidative stress and an increased level of reactive oxygen species (ROS) generated from mitochondria. These oxidative stress and ROS generation in retinal cells lead to RPE degeneration. Various sources including mtDNA damage could be an important factor of oxidative stress in RPE. Gene therapy and mitochondrial transfer studies are emerging fields in ocular disease research. For retinal degenerative diseases stem cell-based transplantation methods are developed from basic research to preclinical and clinical trials. Translational research contributions of gene and cell therapy would be a new strategy to prevent, treat and cure various ocular diseases. This review focuses on the effect of oxidative stress in ocular cell degeneration and recent translational researches on retinal degenerative diseases to cure blindness.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Corresponding author.
| | - Mahalaxmi Iyer
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Aswathy P. Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sinnakaruppan Mathavan
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Nimmisha Eruppakotte
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Soumya Kizhakkillach
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manoj kumar Chandran
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Punjab 144411, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 600127, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Corresponding author. Human Molecular Cytogenetics and Stem Cell, Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.Fax: +91 422 2422387.
| |
Collapse
|
2
|
Rowe G, Kelm NQ, Beare JE, Tracy E, Yuan F, LeBlanc AJ. Enhanced beta-1 adrenergic receptor responsiveness in coronary arterioles following intravenous stromal vascular fraction therapy in aged rats. Aging (Albany NY) 2019; 11:4561-4578. [PMID: 31296794 PMCID: PMC6660031 DOI: 10.18632/aging.102069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 04/30/2023]
Abstract
Our past study showed that a single tail vein injection of adipose-derived stromal vascular fraction (SVF) into old rats was associated with improved dobutamine-mediated coronary flow reserve. We hypothesize that i.v. injection of SVF improves coronary microvascular function in aged rats via alterations in beta adrenergic microvascular signaling. Female Fischer-344 rats aged young (3 months, n=32) and old (24 months, n=30) were utilized, along with two cell therapies intravenously injected in old rats four weeks prior to sacrifice: 1x107 green fluorescent protein (GFP+) SVF cells (O+SVF, n=21), and 5x106 GFP+ bone-marrow mesenchymal stromal cells (O+BM, n=6), both harvested from young donors. Cardiac ultrasound and pressure-volume measurements were obtained, and coronary arterioles were isolated from each group for microvessel reactivity studies and immunofluorescence staining. Coronary flow reserve decreased with advancing age, but this effect was rescued by the SVF treatment in the O+SVF group. Echocardiography showed an age-related diastolic dysfunction that was improved with SVF to a greater extent than with BM treatment. Coronary arterioles isolated from SVF-treated rats showed amelioration of the age-related decrease in vasodilation to a non-selective β-AR agonist. I.v. injected SVF cells improved β-adrenergic receptor-dependent coronary flow and microvascular function in a model of advanced age.
Collapse
Affiliation(s)
- Gabrielle Rowe
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| | - Natia Q. Kelm
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
| | - Jason E. Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA
| | - Evan Tracy
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| | - Fangping Yuan
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
| | - Amanda J. LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Inoue O, Takamura M. Insights From 10-Year Outcomes of Mesenchymal Stem Cell Transplantation in Heart Failure Patients. Circ J 2019; 83:1446-1448. [PMID: 31142705 DOI: 10.1253/circj.cj-19-0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oto Inoue
- Department of Cardiology, Graduate School of Medical Science, Kanazawa University
| | - Masayuki Takamura
- Department of Cardiology, Graduate School of Medical Science, Kanazawa University
| |
Collapse
|
4
|
Abushouk AI, Salem AMA, Saad A, Afifi AM, Afify AY, Afify H, Salem HSE, Ghanem E, Abdel-Daim MM. Mesenchymal Stem Cell Therapy for Doxorubicin-Induced Cardiomyopathy: Potential Mechanisms, Governing Factors, and Implications of the Heart Stem Cell Debate. Front Pharmacol 2019; 10:635. [PMID: 31258475 PMCID: PMC6586740 DOI: 10.3389/fphar.2019.00635] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, researchers have reported several mechanisms for doxorubicin (DOX)-induced cardiomyopathy, including oxidative stress, inflammation, and apoptosis. Another mechanism that has been suggested is that DOX interferes with the cell cycle and induces oxidative stress in C-kit+ cells (commonly known as cardiac progenitor cells), reducing their regenerative capacity. Cardiac regeneration through enhancing the regenerative capacity of these cells or administration of other stem cells types has been the axis of several studies over the past 20 years. Several experiments revealed that local or systemic injections with mesenchymal stem cells (MSCs) were associated with significantly improved cardiac function, ameliorated inflammatory response, and reduced myocardial fibrosis. They also showed that several factors can affect the outcome of MSC treatment for DOX cardiomyopathy, including the MSC type, dose, route, and timing of administration. However, there is growing evidence that the C-kit+ cells do not have a cardiac regenerative potential in the adult mammalian heart. Similarly, the protective mechanisms of MSCs against DOX-induced cardiomyopathy are not likely to include direct differentiation into cardiomyocytes and probably occur through paracrine secretion, antioxidant and anti-inflammatory effects. Better understanding of the involved mechanisms and the factors governing the outcomes of MSCs therapy are essential before moving to clinical application in patients with DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
| | | | - Anas Saad
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed M Afifi
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Hesham Afify
- Wake Forest University, Winston-Salem, NC, United States
| | | | - Esraa Ghanem
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Dayan V, Sotelo V, Delfina V, Delgado N, Rodriguez C, Suanes C, Langhain M, Ferrando R, Keating A, Benech A, Touriño C. Human Mesenchymal Stromal Cells Improve Cardiac Perfusion in an Ovine Immunocompetent Animal Model. J INVEST SURG 2016; 29:218-25. [PMID: 26891475 DOI: 10.3109/08941939.2015.1128997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) hold considerable promise in the treatment of ischemic heart disease. Most preclinical studies of MSCs for acute myocardial infarction (AMI) have been performed either in syngeneic animal models or with human cells in xenogeneic immunodeficient animals. A preferable pre-clinical model, however, would involve human MSCs in an immunocompetent animal. METHODS AMI was generated in adult sheep by inducing ischemia reperfusion of the second diagonal branch. Sheep (n = 10) were randomized to receive an intravenous injection of human MSCs (1 × 10(6) cells/kg) or phosphate buffered saline. Cardiac function and remodeling were evaluated with echocardiography. Perfusion scintigraphy was used to identify sustained myocardial ischemia. Interaction between human MSCs and ovine lymphocytes was assessed by a mixed lymphocyte response (MLR). RESULTS Sheep receiving human MSCs showed significant improvement in myocardial perfusion at 1 month compared with baseline measurements. There was no change in ventricular dimensions in either group after 1 month of AMI. No adverse events or symptoms were observed in the sheep receiving human MSCs. The MLR was negative. CONCLUSION The immunocompetent ovine AMI model demonstrates the clinical safety and efficacy of human MSCs. The human cells do not appear to be immunogenic, further suggesting that immunocompetent sheep may serve as a suitable pre-clinical large animal model for testing human MSCs.
Collapse
Affiliation(s)
- Victor Dayan
- a Faculty of Medicine, Department of Medical Pathology , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Veronica Sotelo
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Valentina Delfina
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Natalia Delgado
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Carlos Rodriguez
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Carol Suanes
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - María Langhain
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - Rodolfo Ferrando
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - Armand Keating
- d Cell Therapy Program, Princess Margaret Hospital , University Health Network, University of Toronto , Toronto , Canada
| | - Alejandro Benech
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Cristina Touriño
- a Faculty of Medicine, Department of Medical Pathology , University of the Republic of Uruguay , Montevideo , Uruguay
| |
Collapse
|
6
|
Gho JMIH, Kummeling GJM, Koudstaal S, Jansen Of Lorkeers SJ, Doevendans PA, Asselbergs FW, Chamuleau SAJ. Cell therapy, a novel remedy for dilated cardiomyopathy? A systematic review. J Card Fail 2014; 19:494-502. [PMID: 23834925 DOI: 10.1016/j.cardfail.2013.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is the most common form of nonischemic cardiomyopathy worldwide and can lead to sudden cardiac death and heart failure. Despite ongoing advances made in the treatment of DCM, improvement of outcome remains problematic. Stem cell therapy has been extensively studied in preclinical and clinical models of ischemic heart disease, showing potential benefit. DCM is associated with a major health burden, and few studies have been performed on cell therapy for DCM. In this systematic review we aimed to provide an overview of preclinical and clinical studies performed on cell therapy for DCM. METHODS AND RESULTS A systematic search, critical appraisal, and summarized outcomes are presented. In total, 29 preclinical and 15 clinical studies were included. Methodologic quality of reported studies in general was low based on the Centre for Evidence Based Medicine, Oxford University, criteria. A large heterogeneity in inclusion criteria, procedural characteristics, and outcome measures was noted. The majority of studies showed a significant increase in left ventricular ejection fraction after cell therapy during follow-up. CONCLUSIONS Stem cell therapy has shown moderate but significant effects in clinical trials for ischemic heart disease, but it remains to be determined if we can extrapolate these results to DCM patients. There is a need for methodologically sound studies to elucidate underlying mechanisms and translate those into improved therapy for clinical practice. To validate safety and efficacy of cell therapy for DCM, adequate randomized (placebo) controlled trials using different strategies are mandatory.
Collapse
Affiliation(s)
- Johannes M I H Gho
- Department of Cardiology, Division Heart & Lungs, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
du Pré BC, Doevendans PA, van Laake LW. Stem cells for cardiac repair: an introduction. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:186-97. [PMID: 23888179 PMCID: PMC3708059 DOI: 10.3969/j.issn.1671-5411.2013.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/16/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.
Collapse
Affiliation(s)
- Bastiaan C du Pré
- Departments of Cardiology and Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, P.O. box 85500, 3508 GA Utrecht, the Netherlands
| | | | | |
Collapse
|
8
|
Merlet N, Piriou N, Rozec B, Grabherr A, Lauzier B, Trochu JN, Gauthier C. Increased beta2-adrenoceptors in doxorubicin-induced cardiomyopathy in rat. PLoS One 2013; 8:e64711. [PMID: 23741376 PMCID: PMC3669386 DOI: 10.1371/journal.pone.0064711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/17/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The toxicity of doxorubicin, leading to an irreversible heart failure, limits its use as chemotherapeutic agent. The beneficial effects of early administration of β-blocker were reported in patients with heart failure due to doxorubicin, suggesting an important role of β-adrenoceptors (β-ARs). This study aimed to identify a putative target (β-AR and/or its effectors) at the early phase of a chronic doxorubicin-induced cardiomyopathy (Dox-CM) in a rat model. METHODOLOGY Dox-CM was induced by six doxorubicin injections (cumulative dose: 15 mg x kg(-1)) and validated by echocardiography and left ventricle (LV) catheterization. The β-AR protein expressions in LV were evaluated by western-blot at days 35 (d35) and 70 (d70) after the first doxorubicin injection. Ex vivo cardiac contractility (dP/dtmax, dP/dtmin) was evaluated on isolated heart in response to specific β-AR stimulations at d35. RESULTS At d35, Dox-CM hearts were characterized by mild LV systolic and diastolic dysfunctions, which were exacerbated at d70. In Dox-CM hearts, β3-AR expression was only decreased at d70 (-37±8%). At d35, β1-AR expression was decreased by 68±6%, but ex vivo β1-AR function was preserved due to, at least in part, an increased adenylyl cyclase response assessed by forskolin. β2-AR expression was increased both at d35 (+58±22%) and d70 (+174±35%), with an increase of ex vivo β2-AR response at d35. Inhibition of Gi protein with pertussis toxin did not affect β2-AR response in Dox-CM hearts, suggesting a decoupling of β2-AR to Gi protein. CONCLUSION This study highlights the β1/β2-AR imbalance in early Dox-CM and reveals the important role that β2-AR/Gi coupling could play in this pathology. Our results suggest that β2-AR could be an interesting target at early stage of Dox-CM.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Cardiomyopathies/chemically induced
- Cardiomyopathies/metabolism
- Cardiomyopathies/mortality
- Cardiomyopathies/physiopathology
- Cardiotonic Agents/pharmacology
- Colforsin/pharmacology
- Doxorubicin
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression Regulation
- Heart/drug effects
- Heart/physiopathology
- Isoproterenol/pharmacology
- Male
- Myocardial Contraction/drug effects
- Pertussis Toxin/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Nolwenn Merlet
- l’institut du thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
- Université de Nantes, Nantes, France
| | - Nicolas Piriou
- l’institut du thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
- CHU Nantes, l’institut du thorax, Nantes, France
| | - Bertrand Rozec
- l’institut du thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
- CHU Nantes, Department of Anaesthesiology, Nantes, France
| | - Amandine Grabherr
- l’institut du thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
| | - Benjamin Lauzier
- l’institut du thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
- Université de Nantes, Nantes, France
| | - Jean-Noël Trochu
- l’institut du thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
- Université de Nantes, Nantes, France
- CHU Nantes, l’institut du thorax, Nantes, France
| | - Chantal Gauthier
- l’institut du thorax, Unité Inserm UMR 1087/CNRS UMR 6291, Nantes, France
- Université de Nantes, Nantes, France
- * E-mail:
| |
Collapse
|
9
|
Leontyev S, Schlegel F, Spath C, Schmiedel R, Nichtitz M, Boldt A, Rübsamen R, Salameh A, Kostelka M, Mohr FW, Dhein S. Transplantation of engineered heart tissue as a biological cardiac assist device for treatment of dilated cardiomyopathy. Eur J Heart Fail 2013; 15:23-35. [PMID: 23243122 DOI: 10.1093/eurjhf/hfs200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM The aim of this study was to characterize an alternative treatment for dilated cardiomyopathy (DCM) using a novel cardiac biological assist device created from engineered heart tissue (EHT). METHODS AND RESULTS The EHTs were constructed in vitro from matrigel, collagen, and neonatal rat cardiomyocytes as small ring-like spontaneously contracting devices. DCM was induced in 50 rats by 6 weeks doxorubicin treatment (2.5 mg/kg/week). After 38 drug-free days, rats underwent either implantation of EHT (DCM-EHT, n = 13), which was sutured around the ventricles, or sham operation (DCM-Sham, n = 12). Eleven untreated healthy rats served as the control group. Rats were investigated using a Millar catheter for pressure-volume loop recording, and by echocardiography 30 days after operation. Thereafter, the hearts were excised and investigated functionally, histologically, and biochemically. Doxorubicin led to the development of DCM with reduced fractional shortening (FS), reduced dP/dt(max), increased systolic and diastolic LV diameters, and reduced response to dobutamine. In DCM-Sham, these changes were further enhanced, while in DCM-EHT we found improved FS, dP/dt(max), and dobutamine responsiveness. In isolated hearts, electrical multielectrode mapping revealed that EHT was electrically activated synchronously to the recipient heart. Histologically, we found increased vascularization in the EHT and the recipient heart, and EHT vessels connected to the coronary system. CONCLUSIONS Implantation of EHT improves LV performance in rats with doxorubicin-induced DCM.
Collapse
Affiliation(s)
- Sergey Leontyev
- Clinic for Cardiac Surgery, Heart Centre Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gava FN, Zacché E, Ortiz EM, Champion T, Bandarra MB, Vasconcelos RO, Barbosa JC, Camacho AA. Doxorubicin induced dilated cardiomyopathy in a rabbit model: An update. Res Vet Sci 2013; 94:115-21. [DOI: 10.1016/j.rvsc.2012.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/20/2012] [Accepted: 07/28/2012] [Indexed: 01/15/2023]
|
11
|
Ahmed LA. Stem cells and cardiac repair: alternative and multifactorial approaches. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-1218-2-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Steinhoff G, Strauer BE. Heart. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Doxorubicin-induced Changes of Ventricular Repolarization Heterogeneity: Results of a Chronic Rat Study. Cardiovasc Toxicol 2012; 12:312-7. [DOI: 10.1007/s12012-012-9172-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Excitation-contraction coupling in ventricular myocytes is enhanced by paracrine signaling from mesenchymal stem cells. J Mol Cell Cardiol 2012; 52:1249-56. [PMID: 22465692 DOI: 10.1016/j.yjmcc.2012.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/14/2012] [Accepted: 03/12/2012] [Indexed: 12/17/2022]
Abstract
In clinical trials mesenchymal stem cells (MSCs) are transplanted into cardiac ischemic regions to decrease infarct size and improve contractility. However, the mechanism and time course of MSC-mediated cardioprotection are incompletely understood. We tested the hypothesis that paracrine signaling by MSCs promotes changes in cardiac excitation-contraction (EC) coupling that protects myocytes from cell death and enhances contractility. Isolated mouse ventricular myocytes (VMs) were treated with control tyrode, MSC conditioned-tyrode (ConT) or co-cultured with MSCs. The Ca handling properties of VMs were monitored by laser scanning confocal microscopy and whole cell voltage clamp. ConT superfusion of VMs resulted in a time dependent increase of the Ca transient amplitude (ConT(15min): ΔF/F(0)=3.52±0.38, n=14; Ctrl(15min): ΔF/F(0)=2.41±0.35, n=14) and acceleration of the Ca transient decay (τ: ConT: 269±18ms n=14; vs. Ctrl: 315±57ms, n=14). Voltage clamp recordings confirmed a ConT induced increase in I(Ca,L) (ConT: -5.9±0.5 pA/pF n=11; vs. Ctrl: -4.04±0.3 pA/pF, n=12). The change of τ resulted from increased SERCA activity. Changes in the Ca transient amplitude and τ were prevented by the PI3K inhibitors Wortmannin (100nmol/L) and LY294002 (10μmol/L) and the Akt inhibitor V (20μmol/L) indicating regulation through PI3K signal transduction and Akt activation which was confirmed by western blotting. A change in τ was also prevented in eNOS(-/-) myocytes or by inhibition of eNOS suggesting an NO mediated regulation of SERCA activity. Since paracrine signaling further resulted in increased survival of VMs we propose that the Akt induced change in Ca signaling is also a mechanism by which MSCs mediate an anti-apoptotic effect.
Collapse
|
15
|
Kharin S, Krandycheva V, Tsvetkova A, Strelkova M, Shmakov D. Remodeling of ventricular repolarization in a chronic doxorubicin cardiotoxicity rat model. Fundam Clin Pharmacol 2012; 27:364-72. [DOI: 10.1111/j.1472-8206.2012.01037.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Sala V, Crepaldi T. Novel therapy for myocardial infarction: can HGF/Met be beneficial? Cell Mol Life Sci 2011; 68:1703-17. [PMID: 21327916 PMCID: PMC11114731 DOI: 10.1007/s00018-011-0633-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
Myocardial infarction (MI) is a leading cause of hospitalization worldwide. A recently developed strategy to improve the management of MI is based on the use of growth factors which are able to enhance the intrinsic capacity of the heart to repair itself or regenerate after damage. Among others, hepatocyte growth factor (HGF) has been proposed as a modulator of cardiac repair of damage due to the pleiotropic effects elicited by Met receptor stimulation. In this review we describe the mechanistic basis for autocrine and paracrine protection of HGF in the injured heart. We also analyse the role of HGF/Met in stem cell maintenance and in stem cell therapies for MI. Finally, we summarize the most significant results on the use of HGF in experimental models of heart injury and discuss the potential of the molecule for treating ischaemic heart disease in humans.
Collapse
Affiliation(s)
- V. Sala
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Corso Massimo D’Azeglio 52, 10126 Turin, Italy
| | - T. Crepaldi
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Corso Massimo D’Azeglio 52, 10126 Turin, Italy
| |
Collapse
|
17
|
|
18
|
Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy. J Card Fail 2010; 17:272-81. [PMID: 21440864 DOI: 10.1016/j.cardfail.2010.11.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 11/01/2010] [Accepted: 11/11/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND We investigated clinical effects of intracoronary transplantation of CD34+ cells in patients with dilated cardiomyopathy (DCM). METHODS Of 55 patients with DCM, 28 were randomized to CD34+ transplantation (SC group), and 27 patients did not receive stem cell therapy (controls). In the SC group, peripheral blood CD34+ cells were mobilized by granulocyte-colony stimulating factor and collected via apheresis. Patients underwent myocardial scintigraphy and CD34+ cells were injected in the coronary artery supplying the segments with reduced viability. RESULTS At baseline, the 2 groups did not differ in age, gender, left ventricular ejection fraction (LVEF), or NT-proBNP levels. At 1 year, stem cell therapy was associated with an increase in LVEF (from 25.5 ± 7.5% to 30.1 ± 6.7%; P = .03), an increase in 6-minute walk distance (from 359 ± 104 m to 485 ± 127 m; P = .001), and a decrease in NT-proBNP (from 2069 ± 1996 pg/mL to 1037 ± 950 pg/mL; P = .01). The secondary endpoint of 1-year mortality or heart transplantation was lower in patients receiving SC therapy (2/28, 7%) than in controls (8/27, 30%) (P = .03), and SC therapy was the only independent predictor of outcome on multivariable analysis (P = .04). CONCLUSIONS Intracoronary stem cell transplantation could lead to improved ventricular remodeling, better exercise tolerance and potentially improved survival in patients with DCM.
Collapse
|
19
|
Rogers TB, Pati S, Gaa S, Riley D, Khakoo AY, Patel S, Wardlow RD, Frederick CA, Hall G, He LP, Lederer WJ. Mesenchymal stem cells stimulate protective genetic reprogramming of injured cardiac ventricular myocytes. J Mol Cell Cardiol 2010; 50:346-56. [PMID: 20837021 DOI: 10.1016/j.yjmcc.2010.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 12/12/2022]
Abstract
Since massive irreversible loss of cardiac myocytes occurs following myocardial injury, injection of human mesenchymal stem cells (hMSCs) has emerged as a promising therapeutic intervention. Despite the growing enthusiasm for this approach, the understanding of how hMSCs evoke cardiac improvement is ever more controversial. The present study critically tests hypothesis that hMSCs provide specific benefit directly to damaged ventricular myocytes. Cultures of neonatal mouse ventricular cardiac myocytes (nMCM) were subjected to two distinct acute stress protocols; incubations with either endotoxin, lipopolysaccharide (LPS) or toxic cytokine, IL-1β. Myocyte injury was assessed in intracellular Ca(2+) signaling assays in fluo-3-loaded nMCMs that were imaged with high temporal resolution by fluorescent microscopy. Following LPS or IL-1β treatment there was profound myocyte injury, manifest by chaotic [Ca(2+)](i) handling, quantified as a 3- to 5-fold increase in spontaneous [Ca(2+)](i) transients. Antibody neutralization experiments reveal such damage is mediated in part by interleukin-18 and not by tumor necrosis factor-α (TNF-α). Importantly, normal [Ca(2+)](i) signaling was preserved when cardiomyocytes were co-cultured with hMSCs. Since normal [Ca(2+)](i) handling was maintained in transwell cultures, where nMCMs and hMSCs were separated by a permeable membrane, a protective paracrine signaling cascade is operable. hMSCs provoke a genetic reprogramming of cardiomyocytes. LPS provokes release of TNFα from nMCMs which is blocked by hMSCs grown in co- or transwell cultures. Consistent with cytokine release, flow cytometry analyses reveal that hMSCs also block the LPS- and IL-1β-dependent activation of cardiac transcription factor, NF-κB. Importantly, hMSC-conditioned medium restores normal Ca(2+) signaling in LPS- and IL-1β-damaged nMCMs. These results reveal new evidence that hMSCs elicit protective and reparative effects on cardiac tissue through molecular reprogramming of the cardiac myocytes themselves. Thus these studies provide novel new insight into the cellular and molecular mechanisms that underlie the therapeutic benefit of hMSCs in the setting of heart failure. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Terry B Rogers
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 2010; 50:280-9. [PMID: 20727900 DOI: 10.1016/j.yjmcc.2010.08.005] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 12/12/2022]
Abstract
Stem cells play an important role in restoring cardiac function in the damaged heart. In order to mediate repair, stem cells need to replace injured tissue by differentiating into specialized cardiac cell lineages and/or manipulating the cell and molecular mechanisms governing repair. Despite early reports describing engraftment and successful regeneration of cardiac tissue in animal models of heart failure, these events appear to be infrequent and yield too few new cardiomyocytes to account for the degree of improved cardiac function observed. Instead, mounting evidence suggests that stem cell mediated repair takes place via the release of paracrine factors into the surrounding tissue that subsequently direct a number of restorative processes including myocardial protection, neovascularization, cardiac remodeling, and differentiation. The potential for diverse stem cell populations to moderate many of the same processes as well as key paracrine factors and molecular pathways involved in stem cell-mediated cardiac repair will be discussed in this review. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Maria Mirotsou
- Department of Medicine, Duke University Medical Center & Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
21
|
Donndorf P, Steinhoff G. Rolle der Stammzelltherapie in der chirurgischen Behandlung der Herzinsuffizienz. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2009. [DOI: 10.1007/s00398-009-0751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Abstract
Human heart disease is a major cause of death and disability. A variety of animal models of cardiac disease have been developed to better understand the etiology, cellular and molecular mechanisms of cardiac dysfunction and novel therapeutic strategies. The animal models have included large animals (e.g. pig and dog) and small rodents (e.g. mouse and rat) and the advantages of genetic manipulation in mice have appropriately encouraged the development of novel mouse models of cardiac disease. However, there are major differences between rodent and human hearts that raise cautions about the extrapolation of results from mouse to human. The rabbit is a medium-sized animal that has many cellular and molecular characteristics very much like human, and is a practical alternative to larger mammals. Numerous rabbit models of cardiac disease are discussed, including pressure or volume overload, ischemia, rapid-pacing, doxorubicin, drug-induced arrhythmias, transgenesis and infection. These models also lead to the assessment of therapeutic strategies which may become beneficial in human cardiac disease. Ju Chen – University of California, San Diego, Department of Medicine, La Jolla, CA, USA Robert Ross – University of California, San Diego, Cardiology Section, San Diego, CA, USA
Collapse
Affiliation(s)
- Steven M Pogwizd
- Departments of Medicine, Physiology, and Biophysics & Bioengineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Genome Building 3513, Davis, CA 95616-8636, United States
| |
Collapse
|
23
|
Abstract
Animal and preliminary human studies of adult cell therapy following acute myocardial infarction have shown an overall improvement of cardiac function. Myocardial and vascular regeneration have been initially proposed as mechanisms of stem cell action. However, in many cases, the frequency of stem cell engraftment and the number of newly generated cardiomyocytes and vascular cells, either by transdifferentiation or cell fusion, appear too low to explain the significant cardiac improvement described. Accordingly, we and others have advanced an alternative hypothesis: the transplanted stem cells release soluble factors that, acting in a paracrine fashion, contribute to cardiac repair and regeneration. Indeed, cytokines and growth factors can induce cytoprotection and neovascularization. It has also been postulated that paracrine factors may mediate endogenous regeneration via activation of resident cardiac stem cells. Furthermore, cardiac remodeling, contractility, and metabolism may also be influenced in a paracrine fashion. This article reviews the potential paracrine mechanisms involved in adult stem cell signaling and therapy.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Mandel Center for Hypertension Research, Duke University Medical Center, Durham, North Carolina 27710
- Division of Cardiology, Laboratory of Experimental Cardiology - Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Heart, Blood and Lung, University of Pavia, 27100 Pavia, Italy
| | - Zhiping Zhang
- Mandel Center for Hypertension Research, Duke University Medical Center, Durham, North Carolina 27710
- Cardiovascular Division, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Aiguo Ni
- Mandel Center for Hypertension Research, Duke University Medical Center, Durham, North Carolina 27710
- Cardiovascular Division, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Victor J. Dzau
- Mandel Center for Hypertension Research, Duke University Medical Center, Durham, North Carolina 27710
- Cardiovascular Division, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
24
|
Kaminski A, Steinhoff G. Current Status of Intramyocardial Bone Marrow Stem Cell Transplantation. Semin Thorac Cardiovasc Surg 2008; 20:119-25. [DOI: 10.1053/j.semtcvs.2008.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2008] [Indexed: 01/29/2023]
|
25
|
Leiker M, Suzuki G, Iyer VS, Canty JM, Lee T. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 2008; 17:911-22. [PMID: 19069634 PMCID: PMC2856331 DOI: 10.3727/096368908786576444] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Therapeutic implantation of mesenchymal stem cells (MSCs) is entering the realm of clinical trials for several human diseases, and yet much remains uncertain regarding their dynamic distribution and cell fate after in vivo application. Discrepancies in the literature can be attributed in part to the use of different cell labeling/tracking methods and cell administration protocols. To identify a stem cell detection method suitable for myocardial implantation in a large animal model, we experimented on three different MSC labeling methods: adenovirus-mediated expression of enhanced green fluorescence protein (EGFP) and beta-galactosidase (LacZ), and nuclear staining with DAPI. Intramuscular and intracoronary administrations of labeled porcine MSCs identified the nuclear affinity dye to be a reliable stem cell tracking marker. Stem cell identification is facilitated by an optimized live cell labeling condition generating bright blue fluorescence sharply confined to the nucleus. DAPI-labeled MSCs retained full viability, ceased proliferation, and exhibited an increased differentiation potential. The labeled MSCs remained fully active in expressing key growth factor and cytokine genes, and notably exhibited enhanced expression of the chemokine receptor CXCR4 and its ligand SDF1, indicating their competency in response to tissue injury. Histological analysis revealed that approximately half a million MSCs or approximately 2% of the administered MSCs remained localized in the normal pig heart 2 weeks after coronary infusion. That the vast majority of these identified MSCs were interstitial indicated the ability of MSCs to migrate across the coronary endothelium. No evidence was obtained indicating MSC differentiation to cardiomyocyte.
Collapse
Affiliation(s)
- Merced Leiker
- Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
26
|
Aupperle H, Garbade J, Schubert A, Barten M, Dhein S, Schoon HA, Mohr FW. Effects of autologous stem cells on immunohistochemical patterns and gene expression of metalloproteinases and their tissue inhibitors in doxorubicin cardiomyopathy in a rabbit model. Vet Pathol 2007; 44:494-503. [PMID: 17609194 DOI: 10.1354/vp.44-4-494] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aims to investigate the expression of metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in chronic doxorubicin cardiomyopathy in a rabbit model and to evaluate the effects of bone marrow-derived mesenchymal stem cell (MSC) transplantation in this disease. Thirty-nine 3-month-old New Zealand rabbits were divided into 4 groups: group 1 (n = 9) was the untreated control. Groups 2-4 were treated with 6 weeks of doxorubicin (3 mg/kg). Group 2 (n = 6) received no further treatment. In group 3 (n = 9), animals were treated with culture medium (CM) alone. In group 4 (n = 15), autologous MSCs (1.5-2.0 x 10(6)/ml) were injected in the left ventricular (LV) wall. Hearts were stained with HE and picrosirius red. MMP-1, -2, -3 and -9 and TIMP-2 and -3 were detected immunohistochemically. The mRNA levels were determined by real-time polymerase chain reaction. The results confirmed that doxorubicin treatment resulted in minimal myocardial fibrosis and showed that expression of MMPs increased and TIMP-3 decreased. The injection procedure resulted in increased myocardial fibrosis in groups 3 and 4. After MSC injection, MMP-1, MMP-2, and TIMP-3 expression was higher than that in group 2. CM injection led to more fibrosis, elevated TIMP-3, but diminished MMP-1 and MMP-2 expression compared with MSC injection. The mRNA levels of MMPs and TIMPs were not significantly different among all groups. In conclusion, chronic doxorubicin cardiomyopathy was characterized by increased MMP and decreased TIMP-3 expression. MSCs injection into the LV resulted in marked differences of collagen content and MMP/TIMP expression in the whole heart, although significant numbers of living MSCs were not detected after 4 weeks.
Collapse
Affiliation(s)
- H Aupperle
- Institut für Veterinär-Pathologie, An den Tierkliniken 33, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|