1
|
A cell-ECM mechanism for connecting the ipsilateral eye to the brain. Proc Natl Acad Sci U S A 2021; 118:2104343118. [PMID: 34654745 PMCID: PMC8545493 DOI: 10.1073/pnas.2104343118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Distinct features of the visual world are transmitted from the retina to the brain through anatomically segregated circuits. Despite this being an organizing principle of visual pathways in mammals, we lack an understanding of the signaling mechanisms guiding axons of different types of retinal neurons into segregated layers of brain regions. We explore this question by identifying how axons from the ipsilateral retina innervate a specific lamina of the superior colliculus. Our studies reveal a unique cell–extracellular matrix recognition mechanism that specifies precise targeting of these axons to the superior colliculus. Loss of this mechanism not only resulted in the absence of this eye-specific visual circuit, but it led to an impairment of innate predatory visual behavior as well. Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell–extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.
Collapse
|
2
|
Abstract
Binocular vision depends on retinal ganglion cell (RGC) axon projection either to the same side or to the opposite side of the brain. In this article, we review the molecular mechanisms for decussation of RGC axons, with a focus on axon guidance signaling at the optic chiasm and ipsi- and contralateral axon organization in the optic tract prior to and during targeting. The spatial and temporal features of RGC neurogenesis that give rise to ipsilateral and contralateral identity are described. The albino visual system is highlighted as an apt comparative model for understanding RGC decussation, as albinos have a reduced ipsilateral projection and altered RGC neurogenesis associated with perturbed melanogenesis in the retinal pigment epithelium. Understanding the steps for RGC specification into ipsi- and contralateral subtypes will facilitate differentiation of stem cells into RGCs with proper navigational abilities for effective axon regeneration and correct targeting of higher-order visual centers.
Collapse
Affiliation(s)
- Carol Mason
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA; .,Department of Neuroscience, Columbia University, New York, NY 10027, USA.,Department of Ophthalmology, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Nefeli Slavi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
3
|
Varadarajan SG, Huberman AD. Assembly and repair of eye-to-brain connections. Curr Opin Neurobiol 2018; 53:198-209. [PMID: 30339988 DOI: 10.1016/j.conb.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Vision is the sense humans rely on most to navigate the world and survive. A tremendous amount of research has focused on understanding the neural circuits for vision and the developmental mechanisms that establish them. The eye-to-brain, or 'retinofugal' pathway remains a particularly important model in these contexts because it is essential for sight, its overt anatomical features relate to distinct functional attributes and those features develop in a tractable sequence. Much progress has been made in understanding the growth of retinal axons out of the eye, their selection of targets in the brain, the development of laminar and cell type-specific connectivity within those targets, and also dendritic connectivity within the retina itself. Moreover, because the retinofugal pathway is prone to degeneration in many common blinding diseases, understanding the cellular and molecular mechanisms that establish connectivity early in life stands to provide valuable insights into approaches that re-wire this pathway after damage or loss. Here we review recent progress in understanding the development of retinofugal pathways and how this information is important for improving visual circuit regeneration.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States; Department of Ophthalmology, Stanford University School of Medicine, Stanford, United States; BioX, Stanford University School of Medicine, Stanford, United States; Neurosciences Institute, Stanford University School of Medicine, Stanford, United States.
| |
Collapse
|
4
|
Carrillo GL, Su J, Monavarfeshani A, Fox MA. F-spondin Is Essential for Maintaining Circadian Rhythms. Front Neural Circuits 2018; 12:13. [PMID: 29472844 PMCID: PMC5809851 DOI: 10.3389/fncir.2018.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/25/2018] [Indexed: 12/19/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is the master pacemaker that drives circadian behaviors. SCN neurons have intrinsic, self-sustained rhythmicity that is governed by transcription-translation feedback loops. Intrinsic rhythms within the SCN do not match the day-night cycle and are therefore entrained by light-derived cues. Such cues are transmitted to the SCN by a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). In the present study, we sought to identify how axons from ipRGCs target the SCN. While none of the potential targeting cues identified appeared necessary for retinohypothalamic innervation, we unexpectedly identified a novel role for the extracellular matrix protein F-spondin in circadian behavior. In the absence of F-spondin, mice lost their ability to maintain typical intrinsic rhythmicity. Moreover, F-spondin loss results in the displacement of vasoactive intestinal peptide (VIP)-expressing neurons, a class of neurons that are essential for maintaining rhythmicity among SCN neurons. Thus, this study highlights a novel role for F-spondin in maintaining circadian rhythms.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
| | - Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Michael A. Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
5
|
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System. Annu Rev Neurosci 2018; 40:499-538. [PMID: 28772103 DOI: 10.1146/annurev-neuro-071714-033842] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vision is the sense humans rely on most to navigate the world, make decisions, and perform complex tasks. Understanding how humans see thus represents one of the most fundamental and important goals of neuroscience. The use of the mouse as a model for parsing how vision works at a fundamental level started approximately a decade ago, ushered in by the mouse's convenient size, relatively low cost, and, above all, amenability to genetic perturbations. In the course of that effort, a large cadre of new and powerful tools for in vivo labeling, monitoring, and manipulation of neurons were applied to this species. As a consequence, a significant body of work now exists on the architecture, function, and development of mouse central visual pathways. Excitingly, much of that work includes causal testing of the role of specific cell types and circuits in visual perception and behavior-something rare to find in studies of the visual system of other species. Indeed, one could argue that more information is now available about the mouse visual system than any other sensory system, in any species, including humans. As such, the mouse visual system has become a platform for multilevel analysis of the mammalian central nervous system generally. Here we review the mouse visual system structure, function, and development literature and comment on the similarities and differences between the visual system of this and other model species. We also make it a point to highlight the aspects of mouse visual circuitry that remain opaque and that are in need of additional experimentation to enrich our understanding of how vision works on a broad scale.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305
| | - Timothy J Burbridge
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California 94303; .,Bio-X, Stanford University, Stanford, California 94305
| |
Collapse
|
6
|
Seabrook TA, Dhande OS, Ishiko N, Wooley VP, Nguyen PL, Huberman AD. Strict Independence of Parallel and Poly-synaptic Axon-Target Matching during Visual Reflex Circuit Assembly. Cell Rep 2017; 21:3049-3064. [PMID: 29241535 PMCID: PMC6333306 DOI: 10.1016/j.celrep.2017.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
The use of sensory information to drive specific behaviors relies on circuits spanning long distances that wire up through a range of axon-target recognition events. Mechanisms assembling poly-synaptic circuits and the extent to which parallel pathways can "cross-wire" to compensate for loss of one another remain unclear and are crucial to our understanding of brain development and models of regeneration. In the visual system, specific retinal ganglion cells (RGCs) project to designated midbrain targets connected to downstream circuits driving visuomotor reflexes. Here, we deleted RGCs connecting to pupillary light reflex (PLR) midbrain targets and discovered that axon-target matching is tightly regulated. RGC axons of the eye-reflex pathway avoided vacated PLR targets. Moreover, downstream PLR circuitry is maintained; hindbrain and peripheral components retained their proper connectivity and function. These findings point to a model in which poly-synaptic circuit development reflects independent, highly stringent wiring of each parallel pathway and downstream station.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Onkar S Dhande
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Nao Ishiko
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Victoria P Wooley
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Phong L Nguyen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94303, USA; Bio-X, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Diao Y, Chen Y, Zhang P, Cui L, Zhang J. Molecular guidance cues in the development of visual pathway. Protein Cell 2017; 9:909-929. [PMID: 29181831 PMCID: PMC6208478 DOI: 10.1007/s13238-017-0490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/30/2017] [Indexed: 01/23/2023] Open
Abstract
70%–80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peijun Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Araújo SES, Mendonça HR, Wheeler NA, Campello-Costa P, Jacobs KM, Gomes FCA, Fox MA, Fuss B. Inflammatory demyelination alters subcortical visual circuits. J Neuroinflammation 2017; 14:162. [PMID: 28821276 PMCID: PMC5562979 DOI: 10.1186/s12974-017-0936-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory demyelinating disease classically associated with axonal damage and loss; more recently, however, synaptic changes have been recognized as additional contributing factors. An anatomical area commonly affected in MS is the visual pathway; yet, changes other than those associated with inflammatory demyelination of the optic nerve, i.e., optic neuritis, have not been described in detail. Methods Adult mice were subjected to a diet containing cuprizone to mimic certain aspects of inflammatory demyelination as seen in MS. Demyelination and inflammation were assessed by real-time polymerase chain reaction and immunohistochemistry. Synaptic changes associated with inflammatory demyelination in the dorsal lateral geniculate nucleus (dLGN) were determined by immunohistochemistry, Western blot analysis, and electrophysiological field potential recordings. Results In the cuprizone model, demyelination was observed in retinorecipient regions of the subcortical visual system, in particular the dLGN, where it was found accompanied by microglia activation and astrogliosis. In contrast, anterior parts of the pathway, i.e., the optic nerve and tract, appeared largely unaffected. Under the inflammatory demyelinating conditions, as seen in the dLGN of cuprizone-treated mice, there was an overall decrease in excitatory synaptic inputs from retinal ganglion cells. At the same time, the number of synaptic complexes arising from gamma-aminobutyric acid (GABA)-generating inhibitory neurons was found increased, as were the synapses that contain the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2B and converge onto inhibitory neurons. These synaptic changes were functionally found associated with a shift toward an overall increase in network inhibition. Conclusions Using the cuprizone model of inflammatory demyelination, our data reveal a novel form of synaptic (mal)adaption in the CNS that is characterized by a shift of the excitation/inhibition balance toward inhibitory network activity associated with an increase in GABAergic inhibitory synapses and a possible increase in excitatory input onto inhibitory interneurons. In addition, our data recognize the cuprizone model as a suitable tool in which to assess the effects of inflammatory demyelination on subcortical retinorecipient regions of the visual system, such as the dLGN, in the absence of overt optic neuritis.
Collapse
Affiliation(s)
- Sheila Espírito Santo Araújo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Rocha Mendonça
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Paula Campello-Costa
- Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
9
|
Bibollet-Bahena O, Okafuji T, Hokamp K, Tear G, Mitchell KJ. A dual-strategy expression screen for candidate connectivity labels in the developing thalamus. PLoS One 2017; 12:e0177977. [PMID: 28558017 PMCID: PMC5448750 DOI: 10.1371/journal.pone.0177977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
The thalamus or “inner chamber” of the brain is divided into ~30 discrete nuclei, with highly specific patterns of afferent and efferent connectivity. To identify genes that may direct these patterns of connectivity, we used two strategies. First, we used a bioinformatics pipeline to survey the predicted proteomes of nematode, fruitfly, mouse and human for extracellular proteins containing any of a list of motifs found in known guidance or connectivity molecules. Second, we performed clustering analyses on the Allen Developing Mouse Brain Atlas data to identify genes encoding surface proteins expressed with temporal profiles similar to known guidance or connectivity molecules. In both cases, we then screened the resultant genes for selective expression patterns in the developing thalamus. These approaches identified 82 candidate connectivity labels in the developing thalamus. These molecules include many members of the Ephrin, Eph-receptor, cadherin, protocadherin, semaphorin, plexin, Odz/teneurin, Neto, cerebellin, calsyntenin and Netrin-G families, as well as diverse members of the immunoglobulin (Ig) and leucine-rich receptor (LRR) superfamilies, receptor tyrosine kinases and phosphatases, a variety of growth factors and receptors, and a large number of miscellaneous membrane-associated or secreted proteins not previously implicated in axonal guidance or neuronal connectivity. The diversity of their expression patterns indicates that thalamic nuclei are highly differentiated from each other, with each one displaying a unique repertoire of these molecules, consistent with a combinatorial logic to the specification of thalamic connectivity.
Collapse
Affiliation(s)
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Guy Tear
- Department of Developmental Neurobiology, New Hunt’s House, Guy’s Campus, King’s College, London, United Kingdom
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
10
|
Monavarfeshani A, Sabbagh U, Fox MA. Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis Neurosci 2017; 34:E012. [PMID: 28965517 PMCID: PMC5755970 DOI: 10.1017/s0952523817000098] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Often mislabeled as a simple relay of sensory information, the thalamus is a complicated structure with diverse functions. This diversity is exemplified by roles visual thalamus plays in processing and transmitting light-derived stimuli. Such light-derived signals are transmitted to the thalamus by retinal ganglion cells (RGCs), the sole projection neurons of the retina. Axons from RGCs innervate more than ten distinct nuclei within thalamus, including those of the lateral geniculate complex. Nuclei within the lateral geniculate complex of nocturnal rodents, which include the dorsal lateral geniculate nucleus (dLGN), ventral lateral geniculate nucleus (vLGN), and intergeniculate leaflet (IGL), are each densely innervated by retinal projections, yet, exhibit distinct cytoarchitecture and connectivity. These features suggest that each nucleus within this complex plays a unique role in processing and transmitting light-derived signals. Here, we review the diverse cytoarchitecture and connectivity of these nuclei in nocturnal rodents, in an effort to highlight roles for dLGN in vision and for vLGN and IGL in visuomotor, vestibular, ocular, and circadian function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Michael A Fox
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| |
Collapse
|
11
|
Lane-Donovan C, Desai C, Pohlkamp T, Plautz EJ, Herz J, Stowe AM. Physiologic Reelin does not play a strong role in protection against acute stroke. J Cereb Blood Flow Metab 2016; 36:1295-303. [PMID: 27146512 PMCID: PMC4929708 DOI: 10.1177/0271678x16646386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/25/2016] [Indexed: 11/17/2022]
Abstract
Stroke and Alzheimer's disease, two diseases that disproportionately affect the aging population, share a subset of pathological findings and risk factors. The primary genetic risk factor after age for late-onset Alzheimer's disease, ApoE4, has also been shown to increase stroke risk and the incidence of post-stroke dementia. One mechanism by which ApoE4 contributes to disease is by inducing in neurons a resistance to Reelin, a neuromodulator that enhances synaptic function. Previous studies in Reelin knockout mice suggest a role for Reelin in protection against stroke; however, these studies were limited by the developmental requirement for Reelin in neuronal migration. To address the question of the effect of Reelin loss on stroke susceptibility in an architecturally normal brain, we utilized a novel mouse with induced genetic reduction of Reelin. We found that after transient middle cerebral artery occlusion, mice with complete adult loss of Reelin exhibited a similar level of functional deficit and extent of infarct as control mice. Together, these results suggest that physiological Reelin does not play a strong role in protection against stroke pathology.
Collapse
Affiliation(s)
- Courtney Lane-Donovan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Charisma Desai
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Erik J Plautz
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA Center for Translational Neurodegeneration Research, Dallas, TX, USA Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA Center for Neuroscience, Department of Neuroanatomy, Albert-Ludwigs-University, Freiburg, Germany
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. Stem Cells Int 2016; 2016:2108495. [PMID: 26949399 PMCID: PMC4754494 DOI: 10.1155/2016/2108495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.
Collapse
|
13
|
Levy C, Brooks JM, Chen J, Su J, Fox MA. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex. J Comp Neurol 2014; 523:629-48. [PMID: 25349050 DOI: 10.1002/cne.23701] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022]
Abstract
Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice-like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin-expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development.
Collapse
Affiliation(s)
- C Levy
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, 24016; Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | | | | | | | | |
Collapse
|
14
|
Hammer S, Carrillo GL, Govindaiah G, Monavarfeshani A, Bircher JS, Su J, Guido W, Fox MA. Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus. Neural Dev 2014; 9:16. [PMID: 25011644 PMCID: PMC4108237 DOI: 10.1186/1749-8104-9-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/25/2014] [Indexed: 12/04/2022] Open
Abstract
Background Mouse visual thalamus has emerged as a powerful model for understanding the mechanisms underlying neural circuit formation and function. Three distinct nuclei within mouse thalamus receive retinal input, the dorsal lateral geniculate nucleus (dLGN), the ventral lateral geniculate nucleus (vLGN), and the intergeniculate nucleus (IGL). However, in each of these nuclei, retinal inputs are vastly outnumbered by nonretinal inputs that arise from cortical and subcortical sources. Although retinal and nonretinal terminals associated within dLGN circuitry have been well characterized, we know little about nerve terminal organization, distribution and development in other nuclei of mouse visual thalamus. Results Immunolabeling specific subsets of synapses with antibodies against vesicle-associated neurotransmitter transporters or neurotransmitter synthesizing enzymes revealed significant differences in the composition, distribution and morphology of nonretinal terminals in dLGN, vLGN and IGL. For example, inhibitory terminals are more densely packed in vLGN, and cortical terminals are more densely distributed in dLGN. Overall, synaptic terminal density appears least dense in IGL. Similar nuclei-specific differences were observed for retinal terminals using immunolabeling, genetic labeling, axonal tracing and serial block face scanning electron microscopy: retinal terminals are smaller, less morphologically complex, and more densely distributed in vLGN than in dLGN. Since glutamatergic terminal size often correlates with synaptic function, we used in vitro whole cell recordings and optic tract stimulation in acutely prepared thalamic slices to reveal that excitatory postsynaptic currents (EPSCs) are considerably smaller in vLGN and show distinct responses following paired stimuli. Finally, anterograde labeling of retinal terminals throughout early postnatal development revealed that anatomical differences in retinal nerve terminal structure are not observable as synapses initially formed, but rather developed as retinogeniculate circuits mature. Conclusions Taken together, these results reveal nuclei-specific differences in nerve terminal composition, distribution, and morphology in mouse visual thalamus. These results raise intriguing questions about the different functions of these nuclei in processing light-derived information, as well as differences in the mechanisms that underlie their unique, nuclei-specific development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael A Fox
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA.
| |
Collapse
|