1
|
Ye Y, Lin M, Zhou G, Wang W, Yao Y, Su Y, Qi J, Zheng Y, Zhong C, Chen X, Huang M, Lu Y. Fuyuan decoction prevents nasopharyngeal carcinoma metastasis by inhibiting circulating tumor cells/ endothelial cells interplay and enhancing anti-cancer immune response. Front Pharmacol 2024; 15:1355650. [PMID: 38738179 PMCID: PMC11084272 DOI: 10.3389/fphar.2024.1355650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Distant metastasis is a major cause of treatment failure in cancer patients and a key challenge to improving cancer care today. We hypothesized that enhancing anti-cancer immune response and inhibiting circulating tumor cells (CTCs) adhesion and transendothelial migration through synergistic multi-target approaches may effectively prevent cancer metastasis. "Fuyuan Decoction" (FYD) is a traditional Chinese medicine compound that is widely used to prevent postoperative metastasis in cancer patients, but its underlying mechanism remains unclear. In this work, we systematically elucidated the underlying molecular mechanism by which FYD prevents cancer metastasis through multi-compound and multi-target synergies in vitro and in vivo. FYD significantly prevented cancer metastasis at non-cytotoxic concentrations by suppressing the adhesion of CTCs to endothelial cells and their subsequent transendothelial migration, as well as enhancing anti-cancer immune response. Mechanistically, FYD interrupts adhesion of CTCs to vascular endothelium by inhibiting TNF-α-induced CAMs expression via regulation of the NF-κB signaling pathway in endothelial cells. FYD inhibits invasion and migration of CTCs by suppressing EMT, PI3K/AKT and FAK signaling pathways. Moreover, FYD enhances the anti-cancer immune response by significantly increasing the population of Tc and NK cells in the peripheral immune system. In addition, the chemical composition of FYD was determined by UPLC-HRMS, and the results indicated that multiple compounds in FYD prevents cancer metastasis through multi-target synergistic treatment. This study provides a modern medical basis for the application of FYD in the prevention of cancer metastasis, and suggesting that multi-drug and multi-target synergistic therapy may be one of the most effective ways to prevent cancer metastasis.
Collapse
Affiliation(s)
- Yuying Ye
- Department of Otorhinolaryngology, Affiliated People’s Hospital (Fujian Provincial People’s Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengting Lin
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guiyu Zhou
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Weiyu Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yinyin Yao
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yafei Su
- Department of Otorhinolaryngology, Fuzhou Second Hospital, Fuzhou, China
| | - Jianqiang Qi
- Center for Teaching of Clinical Skills, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanfang Zheng
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chunlian Zhong
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xi Chen
- Department of Otorhinolaryngology, Affiliated People’s Hospital (Fujian Provincial People’s Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
2
|
Morshed MN, Akter R, Karim MR, Iqbal S, Kang SC, Yang DC. Bioconversion, Pharmacokinetics, and Therapeutic Mechanisms of Ginsenoside Compound K and Its Analogues for Treating Metabolic Diseases. Curr Issues Mol Biol 2024; 46:2320-2342. [PMID: 38534764 DOI: 10.3390/cimb46030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural abundance that is primarily produced by physicochemical processing, side chain modification, or metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to primary ginsenosides, which has raised concerns in the field of ginseng research and development, as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2, and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis, lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its medicinal application. The purpose of this review is to lay the groundwork for future clinical studies and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing bioavailability and regulating hazardous variables are crucial for its use in clinical trials.
Collapse
Affiliation(s)
- Md Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
3
|
Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother 2022; 156:113912. [DOI: 10.1016/j.biopha.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
|
4
|
Liu J, Wang Y, Yu Z, Lv G, Huang X, Lin H, Ma C, Lin Z, Qu P. Functional Mechanism of Ginsenoside Compound K on Tumor Growth and Metastasis. Integr Cancer Ther 2022; 21:15347354221101203. [PMID: 35615883 PMCID: PMC9152193 DOI: 10.1177/15347354221101203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, as the most important constituents of ginseng, have been extensively investigated in cancer chemoprevention and therapeutics. Among the ginsenosides, Compound K (CK), a rare protopanaxadiol type of ginsenoside, has been most broadly used for cancer treatment due to its high anticancer bioactivity. However, the functional mechanism of CK in cancer is not well known. This review describes the structure, transformation and pharmacological activity of CK and discusses the functional mechanisms of CK and its metabolites, which regulate signaling pathways related to tumor growth and metastasis. CK inhibits tumor growth by inducing tumor apoptosis and tumor cell differentiation, regulates the tumor microenvironment by suppressing tumor angiogenesis-related proteins, and downregulates the roles of immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs). There is currently much research on the potential development of CK as a new strategy when administered alone or in combination with other compounds.
Collapse
Affiliation(s)
- Jinlong Liu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuchen Wang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhun Yu
- Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangfu Lv
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaowei Huang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - He Lin
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chao Ma
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Peng Qu
- National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
5
|
Arafa ESA, Refaey MS, Abd El-Ghafar OAM, Hassanein EHM, Sayed AM. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition. Heliyon 2021; 7:e08354. [PMID: 34825082 PMCID: PMC8605069 DOI: 10.1016/j.heliyon.2021.e08354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
The p38 mitogen-activated protein kinases (p38 MAPK) is a 38kD polypeptide recognized as the target for many potential anti-inflammatory agents. Accumulating evidence indicates that p38 MAPK could perform many roles in human disease pathophysiology. Therefore, great therapeutic benefits can be attained from p38 MAPK inhibitors. Ginseng is an exceptionally valued medicinal plant of the family Araliaceae (Panax genus). Recently, several studies targeted the therapeutic effects of purified individual ginsenoside, the most significant active ingredient of ginseng, and studied its particular molecular mechanism(s) of action rather than whole-plant extracts. Interestingly, several ginsenosides: ginsenosides compound K, F1, Rb1, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, Rg5, Rh1, Rh2, Ro, notoginsenoside R1, and protopanaxadiol have shown to possess great therapeutic potentials mediated by their ability to downregulate p38 MAPK signaling in different cell lines and experimental animal models. Our review compiles the research findings of various ginsenosides as potent anti-inflammatory agents, highlighting the crucial role of p38 MAPK suppression in their pharmacological actions. In addition, in silico studies were conducted to explore the probable binding of these ginsenosides to p38 MAPK. The results obtained proposed p38 MAPK involvement in the beneficial pharmacological activities of ginsenosides in different ailments. p38 MAPK plays many roles in human disease pathophysiology. Therefore, great therapeutic benefits can be attained from p38 MAPK inhibitors. Several ginsenosides showed to possess great therapeutic potentials mediated by its ability to downregulate p38 MAPK signaling. in silico studies were conducted to explore the binding of these ginsenosides to p38 MAPK and evidenced the promising their inhibitory effect.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates.,Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufiya, 32958, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
6
|
Zhou L, Li ZK, Li CY, Liang YQ, Yang F. Anticancer properties and pharmaceutical applications of ginsenoside compound K: A review. Chem Biol Drug Des 2021; 99:286-300. [PMID: 34793617 PMCID: PMC9541358 DOI: 10.1111/cbdd.13983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022]
Abstract
Ginsenoside compound K (CK) is the major intestinal bacterial metabolite of ginsenosides that exhibits anticancer potential in various cancer cells both in vitro and in vivo. The anticancer types, mechanisms, and effects of CK in the past decade have been summarized in this review. Briefly, CK exerts anticancer effects via multiple molecular mechanisms, including the inhibition of proliferation, invasion, and migration, the induction of apoptosis and autophagy, and anti‐angiogenesis. Some signaling pathways play a significant role in related processes, such as PI3K/Akt/mTOR, JNK/MAPK pathway, and reactive oxygen species (ROS). Moreover, the effects of CK combined with nanocarriers for anticancer efficiency are discussed in this review. Furthermore, we aimed to review the research progress of CK against cancer in the past decade, which might provide theoretical support and effective reference for further research on the medicinal value of small molecules, such as CK.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Zhong-Kun Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Cong-Yuan Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yue-Qin Liang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Fan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| |
Collapse
|
7
|
Xu L, Zhang X, Xiao S, Li X, Jiang H, Wang Z, Sun B, Zhao Y. Panaxadiol as a major metabolite of AD-1 can significantly inhibit the proliferation and migration of breast cancer cells: In vitro and in vivo study. Bioorg Chem 2021; 116:105392. [PMID: 34619469 DOI: 10.1016/j.bioorg.2021.105392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Previous studies have shown that 20 (R)-25-methoxyl-dammarane-3β, 12β, 20 triol (AD-1) can inhibit various cancer cell lines. This study aimed to explore the effect and mechanism of AD-1 metabolite M2 (Panaxadiol; PD) on breast cancer cells of nude mice. Five AD-1 metabolites were isolated and identified using various chromatographic techniques. PD was the main component. In vitro results showed that PD could inhibit the proliferation and migration of MDA-MB-231 cells by inducing G1-phase arrest. In addition, PD down-regulated the expression of Cyclin D1, cdk2, cdk4, cdk6, P-p38, and MMP9, and up-regulated p21 and p27. In vivo results showed that PD could effectively reduce the volume, weight, and migration of breast cancer Transcriptomics analyzed 491 differentially expressed genes by GO and KEGG enrichment. RT-PCR verification confirmed that the significant down-regulation of MMP9 was consistent with transcriptomics results. In further research showed that PD regulated the protein expression of P-p38 and MMP9 in MAPK pathway. In summary, in vivo and in vitro studies showed that PD significantly inhibit the occurrence and development of breast cancer, possibly through the MAPK pathway.
Collapse
Affiliation(s)
- Lei Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shengnan Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaofei Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Jiang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyi Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Chen S, Ye H, Gong F, Mao S, Li C, Xu B, Ren Y, Yu R. Ginsenoside compound K exerts antitumour effects in renal cell carcinoma via regulation of ROS and lncRNA THOR. Oncol Rep 2021; 45:38. [PMID: 33649829 PMCID: PMC7905530 DOI: 10.3892/or.2021.7989] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/30/2020] [Indexed: 02/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common type of kidney cancer that lacks effective therapeutic options. Ginsenoside compound K (CK), an active metabolite of ginsenosides, has been reported to induce apoptosis in various types of cancer cells. However, the effects of CK in RCC remain to be elucidated. Thus, the aim of the present study was to investigate the antitumor effects of CK on RCC cells. The effects of CK on the proliferation, migration, invasion, cell cycle and apoptosis of RCC cell lines (Caki-1 and 768-O) were investigated using MTT, wound healing, Transwell and flow cytometry assays, respectively. Changes in the expression levels of long non-coding RNAs (lncRNAs) and proteins were measured via reverse transcription-quantitative PCR and western blotting, respectively. Transfections with testis associated oncogenic (THOR) small interfering RNA and pcDNA were performed to knock down and overexpress lncRNA THOR, respectively. It was found that CK could effectively inhibit the proliferation, migration and invasion of RCC cells. CK also induced cell cycle arrest and caspase-dependent apoptosis in RCC cells. Furthermore, the generation of reactive oxygen species and inhibition of the lncRNA THOR played important roles in the antitumour effects of CK in RCC cells. The present data revealed that CK was a potent antitumour agent against RCC.
Collapse
Affiliation(s)
- Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haihong Ye
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Fanger Gong
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Suming Mao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Cong Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Xu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yu Ren
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315210, P.R. China
| |
Collapse
|
9
|
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020; 203:112627. [PMID: 32702586 DOI: 10.1016/j.ejmech.2020.112627] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ginseng has been used as a well-known traditional Chinese medicine since ancient times. Ginsenosides as its main active constituents possess a broad scope of pharmacological properties including stimulating immune function, enhancing cardiovascular health, increasing resistance to stress, improving memory and learning, developing social functioning and mental health in normal persons, and chemotherapy. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides from Panax ginseng. When applied to cancer treatment, Rh2 not only exhibits the anti-proliferation, anti-invasion, anti-metastasis, induction of cell cycle arrest, promotion of differentiation, and reversal of multi-drug resistance activities against multiple tumor cells, but also alleviates the side effects after chemotherapy or radiotherapy. In the past decades, nearly 200 studies on Rh2 in the treatment of cancer have been published, however no specific reviews have been conducted by now. So the purpose of this review is to provide a systematic summary and analysis of the anticancer effects and the potential mechanisms of Rh2 extracted from Ginseng then give a future prospects about it. In the end of this paper the metabolism and derivatives of Rh2 also have been documented.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shifeng Chu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Meiyu Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xin Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yani Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| |
Collapse
|
10
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
11
|
Yang L, Zou H, Gao Y, Luo J, Xie X, Meng W, Zhou H, Tan Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab Rev 2020; 52:125-138. [PMID: 31984805 DOI: 10.1080/03602532.2020.1714645] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal microbiota and host co-evolve into a complex 'super-organism,' and this relationship plays a vital role in many physiological processes, such as drug metabolism. Ginseng is an important medicinal resource and the main ingredients are ginsenosides, which are less polar, difficult to absorb, and have low bioavailability. However, studies have shown that the biological activity of ginsenosides such as compound K (CK), ginsenoside Rg3 (Rg3), ginsenoside Rh2 (Rh2), 20(S)-protopanaxatriol (20(S)-PPT), and 20(S)-protopanaxadiol (20(S)-PPD) is closely related to the gastrointestinal microbiota. In this paper, the metabolic pathway of gastrointestinal microbiota-generated ginsenosides and the main pharmacological effects of these metabolites are discussed. Furthermore, our study provides a new insight into the discovery of novel drugs. Specifically, in new drug screening process, candidates with low biological activity and bioavailability should not be excluded. Because their metabolites may exhibit good pharmacological effects due to the involvement of the gastrointestinal microbiota. In addition, in further research studies to develop probiotics, a combination of agents could exert greater efficacy than single agents. Moreover, differences in lifestyle and diet lead to differences in the gastrointestinal microbiota in the human body. Therefore, administration of the same drug dose to different individuals could elicit different therapeutic effects, owing to the involvement of the gastrointestinal microbiota. Thus, treatment accuracy could be achieved by detecting the gastrointestinal microbiota before drug treatment.HighlightsGastrointestinal microbiota plays a decisive role in bioactivities of ginsenosides.The metabolic pathway and main pharmacological effects of ginsenoside metabolites are discussed.It provides new insights into novel drug discovery and further research to find probiotic, combinations to exert greater efficacy.Differences in lifestyle and diet, varies the gastrointestinal microbiota in the human body. However, the same dose of a drug producing different therapeutic effects may involve gastrointestinal microbiota.
Collapse
Affiliation(s)
- Li Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, Hunan, PR China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Junjia Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Xiaonv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Wenhui Meng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| |
Collapse
|
12
|
Yang Y, Liu X, Li S, Chen Y, Zhao Y, Wei Y, Qiu Y, Liu Y, Zhou Z, Han J, Wu G, Ding Q. Genome-scale CRISPR screening for potential targets of ginsenoside compound K. Cell Death Dis 2020; 11:39. [PMID: 31959745 PMCID: PMC6971025 DOI: 10.1038/s41419-020-2234-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022]
Abstract
Ginsenosides exhibit a large variety of biological activities in maintaining physical health; however, the molecule underpinnings underlining these biological activities remain to be defined. Here, we took a cellular condition that compound K (CK) induces autophagic cell death in HeLa cells, and setup a high-throughput genetic screening using CRISPR technology. We have identified a number of CK-resistant and CK-sensitive genes, and further validated PMAIP1 as a CK-resistant gene and WASH1 as a CK-sensitive gene. Compound K treatment reduces the expression of WASH1, which further accelerates the autophagic cell death, highlighting WASH1 as an interesting downstream mediator of CK effects. Overall, our study offers an easy-to-adopt platform to study the functional mediators of ginsenosides, and provides a candidate list of genes that are potential targets of CK.
Collapse
Affiliation(s)
- Yuanyuan Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuda Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yan Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| |
Collapse
|
13
|
Chen H, Yang H, Fan D, Deng J. The Anticancer Activity and Mechanisms of Ginsenosides: An Updated Review. EFOOD 2020. [DOI: 10.2991/efood.k.200512.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Sun ZH, Chen J, Song YQ, Dou TY, Zou LW, Hao DC, Liu HB, Ge GB, Yang L. Inhibition of human carboxylesterases by ginsenosides: structure-activity relationships and inhibitory mechanism. Chin Med 2019; 14:56. [PMID: 31889992 PMCID: PMC6915887 DOI: 10.1186/s13020-019-0279-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human carboxylesterases (hCES) are key serine hydrolases responsible for the hydrolysis of a wide range of endogenous and xenobiotic esters. Although it has been reported that some ginsenosides can modulate the activities of various enzymes, the inhibitory effects of ginsenosides on hCES have not been well-investigated. METHODS In this study, more than 20 ginsenosides were collected and their inhibitory effects on hCES1A and hCES2A were assayed using the highly specific fluorescent probe substrates for each isoenzyme. Molecular docking simulations were also performed to investigate the interactions between ginsenosides and hCES. RESULTS Among all tested ginsenosides, Dammarenediol II (DM) and 20S-O-β-(d-glucosyl)-dammarenediol II (DMG) displayed potent inhibition against both hCES1A and hCES2A, while protopanaxadiol (PPD) and protopanaxatriol (PPT) exhibited strong inhibition on hCES2A and high selectivity over hCES1A. Introduction of O-glycosyl groups at the core skeleton decreased hCES inhibition activity, while the hydroxyl groups at different sites might also effect hCES inhibition. Inhibition kinetic analyses demonstrated that DM and DMG functioned as competitive inhibitors against hCES1A-mediated d-luciferin methyl ester (DME) hydrolysis. In contrast, DM, DMG, PPD and PPT inhibit hCES2A-mediated fluorescein diacetate (FD) hydrolysis via a mixed manner. CONCLUSION The structure-inhibition relationships of ginsenosides as hCES inhibitors was investigated for the first time. Our results revealed that DM and DMG were potent inhibitors against both hCES1A and hCES2A, while PPD and PPT were selective and strong inhibitors against hCES2A.
Collapse
Affiliation(s)
- Zhao-Hui Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jing Chen
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221 China
| | - Yun-Qing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Tong-Yi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221 China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Da-Cheng Hao
- School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028 China
| | - Hai-Bin Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, 252201 China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
15
|
AKT1-targeted proapoptotic activity of compound K in human breast cancer cells. J Ginseng Res 2019; 43:692-698. [PMID: 31695573 PMCID: PMC6823769 DOI: 10.1016/j.jgr.2019.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/29/2019] [Accepted: 07/19/2019] [Indexed: 01/04/2023] Open
Abstract
Background Breast cancer is a severe disease and the second leading cause of cancer death in women worldwide. To surmount this, various diagnosis and treatment options for breast cancer have been developed. One of the most effective strategies for cancer treatment is to induce apoptosis using naturally occurring compounds. Compound K (CK) is a ginseng saponin metabolite generated by human intestinal bacteria. CK has been studied for its cardioprotective, antiinflammatory, and liver-protective effects; however, the role of CK in breast cancer is not fully understood. Methods To investigate the anticancer effects of CK in SKBR3 and MDA-MB-231 cells, cell viability assays and flow cytometry analysis were used. In addition, the direct targets of CK anticancer activity were identified using immunoblotting analysis and overexpression experiments. Invasion, migration, and clonogenic assays were carried out to determine the effects of CK on cancer metastasis. Results CK-induced cell apoptosis in SKBR3 cells as determined through 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assays, propidium iodide (PI) and annexin V staining, and morphological changes. CK increased the cleaved forms of caspase-7, caspase-8, and caspase-9, whereas the expression of Bcl-2 was reduced by CK. In assays probing the cell survival pathway, CK activated only AKT1 and not AKT2. Moreover, CK inhibited breast cancer cell invasion, migration, and colony formation. Through regulation of AKT1 activity, CK exerts anticancer effects by inducing apoptosis. Conclusion Our results suggest that CK could be used as a therapeutic compound for breast cancer.
Collapse
|
16
|
Enhancing Immunomodulatory Function of Red Ginseng Through Fermentation Using Bifidobacterium animalis Subsp. lactis LT 19-2. Nutrients 2019; 11:nu11071481. [PMID: 31261829 PMCID: PMC6682942 DOI: 10.3390/nu11071481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/19/2023] Open
Abstract
Removal of sugar moieties from ginsenosides has been proposed to increase their biological effects in various disease models. In order to identify strains that can increase aglycone contents, we performed a screening using bacteria isolated from the feces of infants focusing on acid tolerance and β-glucosidase activity. We isolated 565 bacteria and selected Bifidobacterium animalis subsp. lactis LT 19-2 (LT 19-2), which exhibited the highest β-glucosidase activity with strong acid tolerance. As red ginseng (RG) has been known to exert immunomodulatory functions, we fermented RG using LT 19-2 (FRG) and investigated whether this could alter the aglycone profile of ginsenosides and improve its immunomodulatory effect. FRG increased macrophage activity more potently compared to RG, demonstrated by higher TNF-α and IL-6 production. More importantly, the FRG treatment stimulated the proliferation of mouse splenocytes and increased TNF-α levels in bone marrow-derived macrophages, confirming that the enhanced immunomodulatory function can be recapitulated in primary immune cells. Examination of the molecular mechanism revealed that F-RG could induce phosphorylations of ERK, p38, JNK, and NF-κB. Analysis of the ginsenoside composition showed a decrease in Rb1, Re, Rc, and Rb3, accompanied by an increase in Rd, Rh1, F2, and Rg3, the corresponding aglycone metabolites, in FRG compared to RG. Collectively, LT 19-2 maybe used as a probiotic strain to improve the bioactivity of functional foods through modifying the aglycone/glycoside profile.
Collapse
|
17
|
Metwaly AM, Lianlian Z, Luqi H, Deqiang D. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects. Molecules 2019; 24:E1856. [PMID: 31091790 PMCID: PMC6572638 DOI: 10.3390/molecules24101856] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
Black ginseng is a type of processed ginseng that is prepared from white or red ginseng by steaming and drying several times. This process causes extensive changes in types and amounts of secondary metabolites. The chief secondary metabolites in ginseng are ginsenosides (dammarane-type triterpene saponins), which transform into less polar ginsenosides in black ginseng by steaming. In addition, apparent changes happen to other secondary metabolites such as the increase in the contents of phenolic compounds, reducing sugars and acidic polysaccharides in addition to the decrease in concentrations of free amino acids and total polysaccharides. Furthermore, the presence of some Maillard reaction products like maltol was also engaged. These obvious chemical changes were associated with a noticeable superiority for black ginseng over white and red ginseng in most of the comparative biological studies. This review article is an attempt to illustrate different methods of preparation of black ginseng, major chemical changes of saponins and other constituents after steaming as well as the reported biological activities of black ginseng, its major saponins and other metabolites.
Collapse
Affiliation(s)
- Ahmed M Metwaly
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Zhu Lianlian
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| | - Huang Luqi
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Mennei South street, Dong-Cheng District, Beijing 100700, China.
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| |
Collapse
|
18
|
LC-MS/MS determination of ginsenoside compound K and its metabolite 20 (S)-protopanaxadiol in human plasma and urine: applications in a clinical study. Bioanalysis 2019; 11:365-380. [PMID: 30873858 DOI: 10.4155/bio-2018-0185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Ginsenoside compound K (CK) is considered to be a potential therapeutic drug for rheumatoid arthritis because of its good anti-inflammatory activity. The purpose of this work was to establish a rapid, sensitive and specific method for determination of CK and its active metabolite 20(S)-protopanaxadiol (20(S)-PPD). Materials & methods: The analytes and internal standards were extracted by liquid-liquid extraction. Then, were separated by high performance liquid phase and determined by triple quadrupole mass spectrometry. RESULTS A LC-MS/MS using liquid-liquid extraction was developed for determining CK over the concentration range 1.00-1002.00 ng/ml and 0.15-54.30 ng/ml for 20(S)-PPD. The lower limits of quantification for CK and 20(S)-PPD were 1.00 and 0.15 ng/ml, respectively. CONCLUSION This method was successfully validated for detecting both CK and 20(S)-PPD in the human plasma and urine, and was proved to be suitable for the pharmacokinetic study of CK in healthy Chinese volunteers. CLINICAL TRIAL REGISTRATION NUMBER ChiCTR-TRC-14004824.
Collapse
|
19
|
Antifeedant and ovicidal activities of ginsenosides against Asian corn borer, Ostrinia furnacalis (Guenee). PLoS One 2019; 14:e0211905. [PMID: 30768606 PMCID: PMC6377112 DOI: 10.1371/journal.pone.0211905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/22/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Ginsenosides, including protopanaxdiol (PPD) and protopanaxtriol (PPT) type ginsenosides, have been identified as natural insecticidess. This study aimed to investigate the antifeedant and ovicidal activities of total ginsenosides, protopanaxdiol saponins (PDS) and protopanaxtriol saponins (PTS) against Asian corn borer, O. furnacalis (Guenee). Methods and results O. furnacalis egg masses (> 40 eggs) at 0-, 1- and 2-day-old were dipped into ginsenosides and egg hatchability was significantly inhibited by total ginsenosides, PDS, and PTS in dose and egg-age dependent manners. 100 mg/ml PDS had the strongest ovicidal activity against 0- (80.58 ± 0.95%), 1- (71.48 ± 5.70%), and 2-day-old eggs (64.31 ± 3.20%). In no-choice and choice feeding tests, we observed that the 3rd instar larvae consumed decreased area of leaves treated with ginsenosides, and the antifeedant activities of total ginsenosides, PDS, and PTS against the 3rd instar larvae were time and dose-dependent, with higher activities at 48 h. 100 mg/ml PDS had relative higher antifeedant activity (88.39 ± 3.43% in no-choice and 80.9±4.36% in choice) than total ginsenosides and PTS at all time intervals, except at 48 h in no-choice test. In further experiments, we found PPD ginsenosides (Rb1, Rb2, Rc, and Rd) had relative higher time and dose dependent antifeedant activities than PPT ginsenosides (Re and Rg1). Conclusions Our results suggested the insecticidal action of total ginsenosides, PDS, and PTS on O. furnacalis. All ginsenosides, especially PDS, showed antifeedant and ovicidal activities against O. furnacalis.
Collapse
|
20
|
Yu JS, Roh HS, Baek KH, Lee S, Kim S, So HM, Moon E, Pang C, Jang TS, Kim KH. Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J Ginseng Res 2018; 42:562-570. [PMID: 30337817 PMCID: PMC6190500 DOI: 10.1016/j.jgr.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. METHODS Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. RESULTS AND CONCLUSION Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with IC50 values ranging from 161.1 μM to 264.6 μM. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.
Collapse
Affiliation(s)
- Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seul Lee
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sil Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunjung Moon
- Charmzone R&D Center, Charmzone Co. LTD., Seoul, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae Su Jang
- Institute of Green Bio Science & Technology, Seoul National University, Pyeong Chang, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
21
|
Choi JH, Shin KC, Oh DK. An L213A variant of β-glycosidase from Sulfolobus solfataricus with increased α-L-arabinofuranosidase activity converts ginsenoside Rc to compound K. PLoS One 2018; 13:e0191018. [PMID: 29324789 PMCID: PMC5764348 DOI: 10.1371/journal.pone.0191018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Compound K (C-K) is a crucial pharmaceutical and cosmetic component because of disease prevention and skin anti-aging effects. For industrial application of this active compound, the protopanaxadiol (PPD)-type ginsenosides should be transformed to C-K. β-Glycosidase from Sulfolobus solfataricus has been reported as an efficient C-K-producing enzyme, using glycosylated PPD-type ginsenosides as substrates. β-Glycosidase from S. solfataricus can hydrolyze β-d-glucopyranoside in ginsenosides Rc, C-Mc1, and C-Mc, but not α-l-arabinofuranoside in these ginsenosides. To determine candidate residues involved in α-l-arabinofuranosidase activity, compound Mc (C-Mc) was docking to β-glycosidase from S. solfataricus in homology model and sequence was aligned with β-glycosidase from Pyrococcus furiosus that has α-l-arabinofuranosidase activity. A L213A variant β-glycosidase with increased α-l-arabinofuranosidase activity was selected by substitution of other amino acids for candidate residues. The increased α-l-arabinofuranosidase activity of the L213A variant was confirmed through the determination of substrate specificity, change in binding energy, transformation pathway, and C-K production from ginsenosides Rc and C-Mc. The L213A variant β-glycosidase catalyzed the conversion of Rc to Rd by hydrolyzing α-l-arabinofuranoside linked to Rc, whereas the wild-type β-glycosidase did not. The variant enzyme converted ginsenosides Rc and C-Mc into C-K with molar conversions of 97%, which were 1.5- and 2-fold higher, respectively, than those of the wild-type enzyme. Therefore, protein engineering is a useful tool for enhancing the hydrolytic activity on specific glycoside linked to ginsenosides.
Collapse
Affiliation(s)
- Ji-Hyeon Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
22
|
Wang W, Li J, Wen Q, Luo J, Chu S, Chen L, Qing Z, Xie G, Xu L, Alnemah MM, Li M, Fan S, Zhang H. 4EGI-1 induces apoptosis and enhances radiotherapy sensitivity in nasopharyngeal carcinoma cells via DR5 induction on 4E-BP1 dephosphorylation. Oncotarget 2017; 7:21728-41. [PMID: 26942880 PMCID: PMC5008318 DOI: 10.18632/oncotarget.7824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022] Open
Abstract
The eIF4F complex regulated by a various group of eIF4E-binding proteins (4E-BPs) can initial the protein synthesis. Small molecule compound 4EGI-1, an inhibitor of the cap-dependent translation initiation through disturbing the interaction between eIF4E and eIF4G which are main elements of the eIF4E complex, has been reported to suppress cell proliferation by inducing apoptosis in many types of cancer. And death receptor 5 (DR5) is a major component in the extrinsic apoptotic pathway. However, the correlation among 4EGI-1, DR5 and 4E-BPs have not been discovered in NPC now. Therefore, we intend to find out the effect of 4EGI-1 on the apoptosis process of NPC and the relationship among 4EGI-1, DR5 and 4E-BPs. Our results revealed a significant down regulation of DR5 expression in NPC tissues, which inversely correlated with lymph node metastasis status and clinical stages. Depressed DR5 expression was an independent biomarker for poor prognosis in NPC, and elevated DR5 expression showed longer overall survival time in 174 NPC patients. Besides, 4EGI-1 induced apoptosis in NPC cells through the DR5-caspase-8 axis on 4E-BP1 and eIF4E dephosphorylation exerting positive influence on their anti-tumor activities. The induction of DR5 also sensitized NPC cells to radiotherapy, and the SER was 1.195. These results establish the death receptor pathway as a novel anticancer mechanism of eIF4E/eIF4G interaction inhibitor in NPC.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuzhou Chu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingjiao Chen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenzhen Qing
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lina Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mohannad Ma Alnemah
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meirong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Gwak YS, Han JY, Adhikari PB, Ahn CH, Choi YE. Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth. PLANTA 2017; 245:1105-1119. [PMID: 28243734 DOI: 10.1007/s00425-017-2668-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/21/2017] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION Production of compound K (a ginsenoside saponin) and its precursors in transgenic tobacco resulted in stunted growth and seed set failure, which may be caused by strong autotoxicity of heterologously produced phytochemicals against the tobacco itself. Panax ginseng roots contain various saponins (ginsenosides), which are major bioactive compounds. A monoglucosylated saponin, compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol), has high medicinal and cosmetic values but is present in undetectable amounts in naturally grown ginseng roots. The production of compound K (CK) requires complicated deglycosylation of ginsenosides using physicochemical and/or enzymatic degradation. In this work, we report the production of CK in transgenic tobacco by co-overexpressing three genes (PgDDS, CYP716A47 and UGT71A28) isolated from P. ginseng. Introduction and expression of the transgenes in tobacco lines were confirmed by genomic PCR and RT-PCR. All the lines of transgenic tobacco produced CK including its precursors, protopanaxadiol and dammarenediol-II (DD). The concentrations of CK in the leaves ranged from 1.55 to 2.64 µg/g dry weight, depending on the transgenic line. Interestingly, production of CK in tobacco brought stunted plant growth and gave rise to seed set failure. This seed set failure was caused by both long-styled flowers and abnormal pollen development in transgenic tobacco. Both CK and DD treatments highly suppressed in vitro germination and tube growth in wild-type pollens. Based on these results, metabolic engineering for CK production in transgenic tobacco was successfully achieved, but the production of CK and its precursors in tobacco severely affects vegetative and reproductive growth due to the cytotoxicity of phytochemicals that are heterologously produced in transgenic tobacco.
Collapse
Affiliation(s)
- Yu Shin Gwak
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Prakash Babu Adhikari
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Chang Ho Ahn
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
24
|
Nishanth Kumar S, Aravind SR, Jacob J, Gopinath G, Lankalapalli RS, Sreelekha T, Dileep Kumar B. Pseudopyronine B: A Potent Antimicrobial and Anticancer Molecule Isolated from a Pseudomonas mosselii. Front Microbiol 2016; 7:1307. [PMID: 27617005 PMCID: PMC5000868 DOI: 10.3389/fmicb.2016.01307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
In continuation of our search for new bioactive compounds from soil microbes, a fluorescent Pseudomonas strain isolated from paddy field soil of Kuttanad, Kerala, India was screened for the production of bioactive secondary metabolites. This strain was identified as Pseudomonas mosselii through 16S rDNA gene sequencing followed by BLAST analysis and the bioactive metabolites produced were purified by column chromatography (silica gel) and a pure bioactive secondary metabolite was isolated. This bioactive compound was identified as Pseudopyronine B by NMR and HR-ESI-MS. Pseudopyronine B recorded significant antimicrobial activity especially against Gram-positive bacteria and agriculturally important fungi. MTT assay was used for finding cell proliferation inhibition, and Pseudopyronine B recorded significant antitumor activity against non-small cell lung cancer cell (A549), and mouse melanoma cell (B16F10). The preliminary MTT assay results revealed that Pseudopyronine B recorded both dose- and time-dependent inhibition of the growth of test cancer cell lines. Pseudopyronine B induced apoptotic cell death in cancer cells as evidenced by Acridine orange/ethidium bromide and Hoechst staining, and this was further confirmed by flow cytometry analysis using Annexin V. Cell cycle analysis also supports apoptosis by inducing G2/M accumulation in both A549 and B16F10 cells. Pseudopyronine B treated cells recorded significant up-regulation of caspase 3 activity. Moreover, this compound recorded immunomodulatory activity by enhancing the proliferation of lymphocytes. The production of Pseudopyronine B by P. mosselii and its anticancer activity in A549 and B16F10 cell lines is reported here for the first time. The present study has a substantial influence on the information of Pseudopyronine B from P. mosselii as potential sources of novel drug molecule for the pharmaceutical companies, especially as potent antimicrobial and anticancer agent.
Collapse
Affiliation(s)
- S. Nishanth Kumar
- Agroprocessing and Natural Products Division, National Institute for Interdisciplinary Science and Technology – Council of Scientific and Industrial ResearchThiruvananthapuram, India
| | - S. R. Aravind
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer CentreThiruvananthapuram, India
| | - Jubi Jacob
- Agroprocessing and Natural Products Division, National Institute for Interdisciplinary Science and Technology – Council of Scientific and Industrial ResearchThiruvananthapuram, India
| | - Geethu Gopinath
- Agroprocessing and Natural Products Division, National Institute for Interdisciplinary Science and Technology – Council of Scientific and Industrial ResearchThiruvananthapuram, India
| | - Ravi S. Lankalapalli
- Agroprocessing and Natural Products Division, National Institute for Interdisciplinary Science and Technology – Council of Scientific and Industrial ResearchThiruvananthapuram, India
| | - T.T. Sreelekha
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer CentreThiruvananthapuram, India
| | - B.S. Dileep Kumar
- Agroprocessing and Natural Products Division, National Institute for Interdisciplinary Science and Technology – Council of Scientific and Industrial ResearchThiruvananthapuram, India
| |
Collapse
|
25
|
Oh H, Yoon G, Shin JC, Park SM, Cho SS, Cho JH, Lee MH, Liu K, Cho YS, Chae JI, Shim JH. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. Int J Oncol 2016; 48:1749-57. [PMID: 26847145 DOI: 10.3892/ijo.2016.3365] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/27/2015] [Indexed: 11/05/2022] Open
Abstract
Licochalcone B (Lico B), which belongs to the retrochalcone family, is isolated from the roots of Chinese licorice. Lico B has been reported to have several other useful pharmacological properties, such as anti-inflammatory, antibacterial, antioxidant, antiulcer, anticancer, and anti-metastasis activities. We elucidated the underlying mechanism by which Lico B can induce apoptosis in oral squamous cell carcinoma (OSCC). Our results showed that exposure of OSCC cells (HN22 and HSC4) to Lico B significantly inhibited cell proliferation in a time- and concentration-dependent manner. Lico B caused cell cycle arrest at G1 phase along with downregulation of cyclin D1 and upregulation of p21 and p27 proteins. Lico B also facilitated the diffusion of phospholipid phosphatidylserine (PS) from inner to outer leaflets of the plasma membrane with chromatin condensation, DNA fragmentation, accumulated sub-G1 population in a concentration-dependent manner. Moreover, Lico B promoted the generation of reactive oxygen species (ROS), which, in turn, can induce CHOP, death receptor (DR) 4 and DR5. Lico B treatment induced downregulation of anti-apoptotic proteins (Bid and Bcl-xl and Mcl-1), and up-regulation of pro-apoptotic protein (Bax). Lico B also led to the loss of mitochondrial membrane potential (MMP), resulting in cytochrome c release. As can be expected from the above results, the apoptotic protease activating factor-1 (Apaf-1) and survivin were oppositely expressed in favor of apoptotic cell death. This notion was supported by the fact that Lico B activated multi-caspases with cleavage of poly (ADP-ribose) polymerase (PARP) protein. Therefore, it is suggested that Lico B is a promising drug for the treatment of human oral cancer via the induction of apoptotic cell death.
Collapse
Affiliation(s)
- Hana Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Mee-Hyun Lee
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450001, P.R. China
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
26
|
Li Y, Zhou T, Ma C, Song W, Zhang J, Yu Z. Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells. J Thorac Dis 2015; 7:400-6. [PMID: 25922718 DOI: 10.3978/j.issn.2072-1439.2015.01.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/20/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To evaluate the potential of ginsenoside metabolite compound K (CK) in enhancing the anti-tumor effects of cisplatin against lung cancer cells, including cell proliferation and apoptosis, and the underlying mechanism. METHODS Western blotting and p53 reporter assay were used to assess p53 expression and activity. MTT assay and TUNEL staining were employed to investigate the drug effects on cell growth and apoptosis, respectively. Combination index (CI) was calculated to determine synergism. RESULTS We found that CK could significantly enhance cisplatin-induced p53 expression and activity in two lung cancer cell lines, H460 and A549. Consequently, synergistic inhibition of cell growth was observed when the cells were co-treated with CK and cisplatin compared to single treatment. In addition, the ability of cisplatin in apoptosis induction was similarly synergized by CK. Furthermore, by using p53-null lung cancer cells, we demonstrate that the synergy was p53 dependent. CONCLUSIONS Conventional chemotherapies are often accompanied by development of drug resistance and severe side effects. Novel discoveries of low toxicity compounds to improve the outcome or enhance the efficacy of chemotherapies are of great interest. In the present study, our data provide the first evidence that CK could be potentially used as an agent to synergize the efficacy of cisplatin in lung cancer.
Collapse
Affiliation(s)
- Yang Li
- 1 Department of Respiration, 2 Department of Endocrinology, 3 Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China ; 4 Center of Diagnosis and Treatment of Respiratory and Allergic Diseases, The General Hospital of Shenyang Military Command, Shenyang 110015, China ; 5 Department of Pleurisy, Changchun Infectious Disease Hospital, Changchun 130031, China
| | - Tong Zhou
- 1 Department of Respiration, 2 Department of Endocrinology, 3 Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China ; 4 Center of Diagnosis and Treatment of Respiratory and Allergic Diseases, The General Hospital of Shenyang Military Command, Shenyang 110015, China ; 5 Department of Pleurisy, Changchun Infectious Disease Hospital, Changchun 130031, China
| | - Chengyuan Ma
- 1 Department of Respiration, 2 Department of Endocrinology, 3 Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China ; 4 Center of Diagnosis and Treatment of Respiratory and Allergic Diseases, The General Hospital of Shenyang Military Command, Shenyang 110015, China ; 5 Department of Pleurisy, Changchun Infectious Disease Hospital, Changchun 130031, China
| | - Weiwei Song
- 1 Department of Respiration, 2 Department of Endocrinology, 3 Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China ; 4 Center of Diagnosis and Treatment of Respiratory and Allergic Diseases, The General Hospital of Shenyang Military Command, Shenyang 110015, China ; 5 Department of Pleurisy, Changchun Infectious Disease Hospital, Changchun 130031, China
| | - Jian Zhang
- 1 Department of Respiration, 2 Department of Endocrinology, 3 Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China ; 4 Center of Diagnosis and Treatment of Respiratory and Allergic Diseases, The General Hospital of Shenyang Military Command, Shenyang 110015, China ; 5 Department of Pleurisy, Changchun Infectious Disease Hospital, Changchun 130031, China
| | - Zhenxiang Yu
- 1 Department of Respiration, 2 Department of Endocrinology, 3 Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China ; 4 Center of Diagnosis and Treatment of Respiratory and Allergic Diseases, The General Hospital of Shenyang Military Command, Shenyang 110015, China ; 5 Department of Pleurisy, Changchun Infectious Disease Hospital, Changchun 130031, China
| |
Collapse
|
27
|
Kim KH, Yoon G, Cho JJ, Cho JH, Cho YS, Chae JI, Shim JH. Licochalcone A induces apoptosis in malignant pleural mesothelioma through downregulation of Sp1 and subsequent activation of mitochondria-related apoptotic pathway. Int J Oncol 2015; 46:1385-92. [PMID: 25586190 DOI: 10.3892/ijo.2015.2839] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 11/05/2022] Open
Abstract
Licochalcone A (LCA) is a natural product derived from the roots of Glycyrrhiza inflata exhibiting a wide range of bioactivities such as antitumor, anti-oxidant and anti-bacterial effects. Malignant pleural mesothelioma (MPM) is an extremely aggressive type of cancer with a poor prognosis because of its rapid progression. However, LCA has not been investigated concerning its effects on MPM. Preliminarily, we observed that LCA negatively modulated not only cell growth, but also specificity protein 1 (Sp1) expression in MSTO-211H and H28 cell lines. It was found that IC50 values of LCA for growth inhibition of MSTO-211H and H28 cells were approximately 26 and 30 µM, respectively. Consistent with downregulation of Sp1, expression of Sp1 regulatory proteins such as Cyclin D1, Mcl-1 and Survivin was substantially diminished. Mechanistically, LCA triggered the mitochondrial apoptotic pathway by affecting the ratio of mitochondrial proapoptotic Bax to anti-apoptotic Bcl-xL. Bid induced loss of mitochondrial membrane potential, eventually leading to multi-caspase activation and increased sub-G1 population. Moreover, nuclear staining with DAPI highlighted nuclear condensation and fragmentation of apoptotic features. Flow cytometry analyses after staining cells with Annexin V and propiodium iodide corroborated LCA-mediated apoptotic cell death of MPM cells. In conclusion, these results present that LCA may be a potential bioactive material to control human MPM cells by apoptosis via the downregulation of Sp1.
Collapse
Affiliation(s)
- Ka Hwi Kim
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Goo Yoon
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung Jae Cho
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Hyoung Cho
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
28
|
Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015; 100:208-20. [DOI: 10.1016/j.fitote.2014.11.019] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022]
|