1
|
Lim CX, Redl A, Kleissl L, Pandey RV, Mayerhofer C, El Jammal T, Mazic M, Gonzales K, Sukhbaatar N, Krausgruber T, Bock C, Hengstschläger M, Calender A, Pacheco Y, Stary G, Weichhart T. Aberrant Lipid Metabolism in Macrophages Is Associated with Granuloma Formation in Sarcoidosis. Am J Respir Crit Care Med 2024; 209:1152-1164. [PMID: 38353578 DOI: 10.1164/rccm.202307-1273oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024] Open
Abstract
Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.
Collapse
Affiliation(s)
- Clarice X Lim
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | - Anna Redl
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Thomas El Jammal
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
| | - Mario Mazic
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | - Karine Gonzales
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| | | | - Thomas Krausgruber
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Alain Calender
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
- Department of Genetics, Hospices Civils de Lyon, University Claude Bernard Lyon 1, Bron, France
| | - Yves Pacheco
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University Claude Bernard Lyon 1, IBCP, Lyon, France; and
| | - Georg Stary
- Department of Dermatology, and
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Weichhart
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics
| |
Collapse
|
2
|
Sakuma M, Khan MAS, Yasuhara S, Martyn JA, Palaniyar N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation. FASEB J 2019; 33:13602-13616. [PMID: 31577450 PMCID: PMC6894048 DOI: 10.1096/fj.201901098r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Pulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI. To test this hypothesis, we established a mouse model with intranasal LPS instillation in the presence or absence of BI (15% of body surface burn) and determined the degree of immune cell infiltration, NETosis, and the cytokine levels in the airways and blood on d 2. Presence of LPS recruited monocytes and large numbers of neutrophils to the airways and induced NETosis (citrullinated histone H3, DNA, myeloperoxidase). By contrast, BI significantly reduced LPS-mediated leukocyte recruitment and NETosis. This BI-induced immunosuppression is attributable to the reduction of chemokine (C-C motif) ligand (CCL) 2 (monocyte chemoattractant protein 1) and CCL3 (macrophage inflammatory protein 1α). BI also suppressed LPS-induced increase in IL-17A, IL-17C, and IL-17E/IL-25 levels in the airways. Therefore, BI-mediated reduction in leukocyte recruitment and NETosis in the lungs are attributable to these cytokines. Regulating the levels of some of these key cytokines represents a potential therapeutic option for mitigating BI-mediated pulmonary immunosuppression.-Sakuma, M., Khan, M. A. S., Yasuhara, S., Martyn, J. A., Palaniyar, N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammed A. S. Khan
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Shingo Yasuhara
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeevendra A. Martyn
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Nades Palaniyar
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Noguchi A, Takahashi T. Overview of symptoms and treatment for lysinuric protein intolerance. J Hum Genet 2019; 64:849-858. [PMID: 31213652 DOI: 10.1038/s10038-019-0620-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022]
Abstract
Lysinuric protein intolerance (LPI) is caused by dysfunction of the dibasic amino acid membrane transport owing to the functional abnormality of y+L amino acid transporter-1 (y+ LAT-1). LPI is associated with autosomal recessive inheritance and pathological variants in the responsible gene SLC7A7 are also observed. The pathophysiology of this disease had earlier been understood as a transport defect in polarized cells (e.g., intestinal or renal tubular epithelium); however, in recent years, transport defects in non-polarized cells such as lymphocytes and macrophages have also been recognized as important. Although the former can cause death, malnutrition, and urea cycle dysfunction (hyperammonemia), the latter can induce renal, pulmonary, and immune disorders. Furthermore, although therapeutic interventions can prevent hyperammonemic episodes to some extent, progression of pulmonary and renal complications cannot be prevented, thereby influencing prognosis. Such pathological conditions are currently being explored and further investigation would prove beneficial. In this study, we have summarized the basic pathology as revealed in recent years, along with the clinical aspects and genetic features.
Collapse
Affiliation(s)
- Atsuko Noguchi
- Akita University Graduate School of Medicine, Pediatrics, Akita, Akita, Japan.
| | - Tsutomu Takahashi
- Akita University Graduate School of Medicine, Pediatrics, Akita, Akita, Japan
| |
Collapse
|
4
|
Cui D, Hu YH, Tang G, Shen D, Chen L, Liao JX, Chen SL. [Clinical features of children with lysinuric protein intolerance and SLC7A7 gene mutation: an analysis of 3 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:375-380. [PMID: 31014432 PMCID: PMC7389226 DOI: 10.7499/j.issn.1008-8830.2019.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 09/12/2023]
Abstract
Lysinuric protein intolerance (LPI) is an autosomal recessive disorder caused by SLC7A7 gene mutation and often involves severe lesions in multiple systems. Lung involvement is frequently seen in children with LPI and such children tend to have a poor prognosis. This article summarizes the clinical manifestations and gene mutation characteristics of three children diagnosed with LPI by SLC7A7 gene analysis. All three children had the manifestations of aversion to protein-rich food after weaning, delayed development, anemia, hepatosplenomegaly, and osteoporosis, as well as an increase in orotic acid in urine. In addition, interstitial pneumonia and diffuse pulmonary interstitial lesions were observed in two children. SLC7A7 gene detection showed three pathogenic mutations in these children, namely c.1387delG(p.V463CfsX56), c.1215G>A(p.W405X) and homozygous c.625+1G>A. After a definite diagnosis was made, all three children were given a low-protein diet and oral administration of citrulline [100 mg/(kg.d)], iron protein succinylate [4 mg/(kg.d)], calcium and zinc gluconates oral solution (10 mL/day) and vitamin D (400 IU/day). In addition, patient 3 was given prednisone acetate (5 mg/day). The children had varying degrees of improvement in symptoms and signs. It is hard to distinguish LPI from urea cycle disorder due to the features of amino acid and organic acid metabolism in LPI, and SLC7A7 gene analysis is the basis for a definite diagnosis of LPI.
Collapse
Affiliation(s)
- Dong Cui
- Department of Inherited Metabolic Diseases, Shenzhen Children's Hospital Affiliated to Medical College of Shantou University, Shenzhen 518038, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.
Collapse
|
6
|
|
7
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Djiadeu P, Farmakovski N, Azzouz D, Kotra LP, Sweezey N, Palaniyar N. Surfactant protein D regulates caspase-8-mediated cascade of the intrinsic pathway of apoptosis while promoting bleb formation. Mol Immunol 2017; 92:190-198. [PMID: 29107869 DOI: 10.1016/j.molimm.2017.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/10/2023]
Abstract
Surfactant-associated protein D (SP-D) is a soluble innate immune collectin present on many mucosal surfaces. We recently showed that SP-D suppresses the extrinsic pathway of apoptosis by downregulating caspase-8 activation. However, the effects of SP-D on the intrinsic pathway of apoptosis are not clearly understood. In the intrinsic pathway, cytochrome c is released by mitochondria into the cytoplasm. Oxidation of cytochrome c by cytochrome c oxidase activates the apoptosome and caspase-9 cascade. Both caspase-8- and caspase-9-mediated branches are activated in the intrinsic pathway of apoptosis; however, little is known about the relevance of the caspase-8 pathway in this context. Here we studied the effects of SP-D on different branches of the intrinsic pathway of apoptosis using UV-irradiated Jurkat T-cells. We found that SP-D does not inhibit the caspase-9 branch of apoptosis and the relevance of the caspase-8-related branch became apparent when the caspase-9 pathway was inhibited by blocking cytochrome c oxidase. Under these conditions, SP-D reduces the activation of caspase-8, executioner caspase-3 and exposure of phosphatidylserine (PS) on the membranes of dying cells. By contrast, SP-D increases the formation of nuclear and membrane blebs. Inhibition of caspase-8 confirms the effect of SP-D is unique to the caspase-8 pathway. Overall, SP-D suppresses certain aspects of the intrinsic pathway of apoptosis via reduction of caspase-8 activation and PS flipping while at the same time increasing membrane and nuclear bleb formation. This novel regulatory aspect of SP-D could help to regulate intrinsic pathway of apoptosis to promote effective blebbing and breakdown of dying cells.
Collapse
Affiliation(s)
- Pascal Djiadeu
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Nicole Farmakovski
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Dhia Azzouz
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Lakshmi P Kotra
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada; Center for Molecular Design and Preformulations, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Neil Sweezey
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Departments of Paediatrics, Physiology and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Nades Palaniyar
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Departments of Laboratory Medicine and Pathobiology and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
9
|
Inhaled Sargramostim Induces Resolution of Pulmonary Alveolar Proteinosis in Lysinuric Protein Intolerance. JIMD Rep 2016; 34:97-104. [PMID: 27783330 DOI: 10.1007/8904_2016_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a potentially fatal complication of lysinuric protein intolerance (LPI), an inherited disorder of cationic amino acid transport. The patients often present with mild respiratory symptoms, which may rapidly progress to acute respiratory failure responding poorly to conventional treatment with steroids and bronchoalveolar lavations (BALs). The pathogenesis of PAP in LPI is still largely unclear. In previous studies, we have shown disturbances in the function and activity of alveolar macrophages of these patients, suggesting that increasing the activity and the number of macrophages by recombinant human GM-CSF (rhuGM-CSF) might be beneficial in this patient group.Two LPI patients with complicated PAP were treated with experimental inhaled rhuGM-CSF (sargramostim) after poor response to maximal conventional therapy. BAL fluid and cell samples from one patient were studied with light microscopy and transmission electron microscopy.Excellent response to therapy was observed in patient 1 with no compliance problems or side effects. Macrophages with myelin figure-like structures were seen in her BAL sample. Slight improvement of the pulmonary function was evident also in patient 2, but the role of sargramostim could not be properly evaluated due to the complicated clinical situation.In conclusion, inhaled rhuGM-CSF might be of benefit in patients with LPI-associated PAP.
Collapse
|
10
|
Valimahamed-Mitha S, Berteloot L, Ducoin H, Ottolenghi C, de Lonlay P, de Blic J. Lung involvement in children with lysinuric protein intolerance. J Inherit Metab Dis 2015; 38:257-63. [PMID: 25335805 DOI: 10.1007/s10545-014-9777-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/21/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Lysinuric protein intolerance (LPI) is a rare multisystemic metabolic disease. The objective of the study was to describe presentation and course of lung involvement in a cohort of ten children. PATIENTS AND METHODS Retrospective review of patients followed at Necker-Enfants Malades University Hospital between 1980 and 2012 for a LPI. In patients with lung involvement, clinical data, chest radiographs, pulmonary function tests, bronchoalveolar lavages, and lung biopsies were analyzed. The first and last high-resolution computed tomography (HRCT) were also reviewed. RESULTS Lung involvement was observed in ten of 14 patients (71 %). Five patients had an acute onset of respiratory symptoms, three had a progressive onset and two were free of symptoms. During the period studied, six patients (60 %) died, all in a context of respiratory failure. Clinical presentation and course were highly variable, even in the same family. HRCT were performed in seven cases, showing in all cases an interstitial pattern and fibrosis in four. All ten patients had pulmonary alveolar proteinosis (PAP) confirmed by histopathological analysis. Five patients had pulmonary fibrosis (at biopsy and/or HRCT scan). Two patients underwent whole lung lavages, without efficiency. CONCLUSION PAP is a constant feature in children with LPI and lung involvement. Pulmonary fibrosis is frequent and these two pathologies may develop independently. This study shows the heterogeneity of presentation and outcome. Lung injury could be secondary to impaired phagocytic function and abnormal inflammatory and immune responses intrinsic to the SLC7A7 mutant phenotype. HRCT is recommended to detect lung involvement.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Metabolism, Inborn Errors/complications
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/mortality
- Amino Acid Metabolism, Inborn Errors/therapy
- Amino Acid Transport System y+L
- Autoimmune Diseases/diagnosis
- Autoimmune Diseases/etiology
- Autoimmune Diseases/mortality
- Autoimmune Diseases/physiopathology
- Autoimmune Diseases/therapy
- Biopsy
- Bronchoalveolar Lavage
- Child
- Child, Preschool
- Disease Progression
- Female
- Fusion Regulatory Protein 1, Light Chains/genetics
- Genetic Predisposition to Disease
- Hospitals, Pediatric
- Hospitals, University
- Humans
- Infant
- Infant, Newborn
- Lung/diagnostic imaging
- Lung/pathology
- Lung/physiopathology
- Male
- Mutation
- Paris
- Predictive Value of Tests
- Pulmonary Alveolar Proteinosis/diagnosis
- Pulmonary Alveolar Proteinosis/etiology
- Pulmonary Alveolar Proteinosis/mortality
- Pulmonary Alveolar Proteinosis/physiopathology
- Pulmonary Alveolar Proteinosis/therapy
- Pulmonary Fibrosis/diagnosis
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/mortality
- Pulmonary Fibrosis/physiopathology
- Pulmonary Fibrosis/therapy
- Respiratory Function Tests
- Respiratory Insufficiency/diagnosis
- Respiratory Insufficiency/etiology
- Retrospective Studies
- Time Factors
- Tomography, X-Ray Computed
- Young Adult
Collapse
Affiliation(s)
- Sarah Valimahamed-Mitha
- Service de Pneumologie pédiatrique, Hôpital Jeanne de Flandre, CHRU de Lille, Paris, France,
| | | | | | | | | | | |
Collapse
|
11
|
Carpentieri D, Barnhart MF, Aleck K, Miloh T, deMello D. Lysinuric protein intolerance in a family of Mexican ancestry with a novel SLC7A7 gene deletion. Case report and review of the literature. Mol Genet Metab Rep 2015. [PMID: 28649527 PMCID: PMC5471162 DOI: 10.1016/j.ymgmr.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is a rare autosomal recessive disorder caused by mutations in the SLC7A7 located on the chromosome 14q11.2. LPI is most prevalent in Finland (1:50,000), Northern Japan (1:60,000) and Italy. Cases have also been reported in Spain and the United States. Here we report two siblings of Mexican descent. The older child was diagnosed at the age of three with severe chronic respiratory insufficiency leading to her demise. In contrast, the younger child was diagnosed soon after birth and dietary therapy has led to a stable life. Genetic analysis revealed a previously unreported deletion in the SLC7A7 gene. Additional research is needed to clarify the role of lysine in the pathophysiology of pulmonary proteinosis and herpes infections.
Collapse
Affiliation(s)
- David Carpentieri
- Pathology Division, Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ 85016, United States
- Corresponding author.
| | - Margaret F. Barnhart
- Anethesiology Dept., Loma Linda University Medical Center, 11234 Anderson St., Loma Linda, CA 92354
| | - Kyrieckos Aleck
- Genetic Division, Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ 85016, United States
| | - Tamir Miloh
- Gastroenterology Division, Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ 85016, United States
| | - Daphne deMello
- Pathology Division, Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ 85016, United States
| |
Collapse
|
12
|
Radhakrishnan D, Yamashita C, Gillio-Meina C, Fraser DD. Translational research in pediatrics III: bronchoalveolar lavage. Pediatrics 2014; 134:135-54. [PMID: 24982109 DOI: 10.1542/peds.2013-1911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of flexible bronchoscopy and bronchoalveolar lavage (BAL) for the care of children with airway and pulmonary diseases is well established, with collected BAL fluid most often used clinically for microbiologic pathogen identification and cellular analyses. More recently, powerful analytic research methods have been used to investigate BAL samples to better understand the pathophysiological basis of pediatric respiratory disease. Investigations have focused on the cellular components contained in BAL fluid, such as macrophages, lymphocytes, neutrophils, eosinophils, and mast cells, as well as the noncellular components such as serum molecules, inflammatory proteins, and surfactant. Molecular techniques are frequently used to investigate BAL fluid for the presence of infectious pathologies and for cellular gene expression. Recent advances in proteomics allow identification of multiple protein expression patterns linked to specific respiratory diseases, whereas newer analytic techniques allow for investigations on surfactant quantification and function. These translational research studies on BAL fluid have aided our understanding of pulmonary inflammation and the injury/repair responses in children. We review the ethics and practices for the execution of BAL in children for translational research purposes, with an emphasis on the optimal handling and processing of BAL samples.
Collapse
Affiliation(s)
- Dhenuka Radhakrishnan
- Departments of Pediatrics,Children's Health Research Institute, London, Ontario, Canada
| | - Cory Yamashita
- Medicine,Centre for Critical Illness Research, Western University, London, Ontario, Canada; andPhysiology and Pharmacology, and
| | | | - Douglas D Fraser
- Departments of Pediatrics,Children's Health Research Institute, London, Ontario, Canada;Centre for Critical Illness Research, Western University, London, Ontario, Canada; andPhysiology and Pharmacology, andClinical Neurologic Sciences, Western University, London, Ontario, Canada;Translational Research Centre, London, Ontario, Canada
| |
Collapse
|
13
|
Dhanju R, Min W, Ackerley C, Cimpean L, Palaniyar N, Roifman CM, Grunebaum E. Pulmonary alveolar proteinosis in adenosine deaminase-deficient mice. J Allergy Clin Immunol 2014; 133:1467-71, 1471.e1-4. [PMID: 24439080 DOI: 10.1016/j.jaci.2013.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 11/02/2013] [Accepted: 11/06/2013] [Indexed: 11/17/2022]
Affiliation(s)
- Rupreet Dhanju
- Developmental & Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada; Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Weixian Min
- Developmental & Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cameron Ackerley
- Department of Pathobiology and Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lorand Cimpean
- Division of Immunology and Allergy, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nades Palaniyar
- Physiology & Experimental Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Developmental & Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Immunology and Allergy, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Gatti R, Dionisi-Vici C, Martinelli D, Goffredo BM, Font-Llitjós M, Mariani F, Luisetti M, Dall'Asta V. Impaired phagocytosis in macrophages from patients affected by lysinuric protein intolerance. Mol Genet Metab 2012; 105:585-9. [PMID: 22325938 DOI: 10.1016/j.ymgme.2012.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 11/16/2022]
Abstract
Lysinuric Protein Intolerance (LPI, MIM 222700) is a recessive aminoaciduria caused by defective cationic amino acid transport in epithelial cells of intestine and kidney. SLC7A7, the gene mutated in LPI, codifies for the y+LAT1 subunit of system y(+)L amino acid transporter. LPI patients frequently display severe complications, such as pulmonary disease, haematological abnormalities and disorders of the immune response. The transport defect may explain only a part of the clinical aspects of the disease, while the mechanisms linking the genetic defect to the clinical features of the patients remain thus far obscure. The aim of the study is to investigate the consequences of SLC7A7 mutations on specific macrophage functions, so as to evaluate if a macrophage dysfunction may have a role in the development of pulmonary and immunological complications of LPI. The results presented 1) confirm previous data obtained in one LPI patient, demonstrating that arginine influx through system y(+)L is markedly compromised in LPI macrophages; 2) demonstrate that also system y(+)L-mediated arginine efflux is significantly lower in LPI macrophages than in normal cells and 3) demonstrate that the phagocytic activity of LPI macrophages is severely impaired. In conclusion, SLC7A7/y+LAT1 mutations lead to a defective phenotype of macrophages, supporting the pathogenetic role of these cells in the development of LPI-associated complications.
Collapse
Affiliation(s)
- Amelia Barilli
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tsakiris I, Torocsik D, Gyongyosi A, Dozsa A, Szatmari I, Szanto A, Soos G, Nemes Z, Igali L, Marton I, Takats Z, Nagy L, Dezso B. Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed selectively in tissue granulomas and foam cells. J Transl Med 2012; 92:345-61. [PMID: 22157720 PMCID: PMC3290762 DOI: 10.1038/labinvest.2011.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Granulomatous inflammations, characterized by the presence of activated macrophages (MAs) forming epithelioid cell (EPC) clusters, are usually easy to recognize. However, in ambiguous cases the use of a MA marker that expresses selectively in EPCs may be needed. Here, we report that carboxypeptidase-M (CPM), a MA-differentiation marker, is preferentially induced in EPCs of all granuloma types studied, but not in resting MAs. As CPM is not expressed constitutively in MAs, this allows utilization of CPM-immunohistochemistry in diagnostics of minute granuloma detection when dense non-granulomatous MAs are also present. Despite this rule, hardly any detectable CPM was found in advanced/active tubercle caseous disease, albeit in early tuberculosis granuloma, MAs still expressed CPM. Indeed, in vitro both the CPM-protein and -mRNA became downregulated when MAs were infected with live mycobacteria. In vitro, MA-CPM transcript is neither induced remarkably by interferon-γ, known to cause classical MA activation, nor by IL-4, an alternative MA activator. Instead, CPM is selectively expressed in lipid-laden MAs, including the foam cells of atherosclerotic plaques, xanthomatous lesions and lipid pneumonias. By using serum, rich in lipids, and low-density lipoprotein (LDL) or VLDL, CPM upregulation could be reproduced in vitro in monocyte-derived MAs both at transcriptional and protein levels, and the increase is repressed under lipid-depleted conditions. The microarray analyses support the notion that CPM induction correlates with a robust progressive increase in CPM gene expression during monocyte to MA maturation and dendritic cell (DC) differentiation mediated by granulocyte-MA-colony-stimulating factor+IL-4. M-CSF alone also induced CPM. These results collectively indicate that CPM upregulation in MAs is preferentially associated with increased lipid uptake, and exposure to CSF, features of EPCs, also. Therefore, CPM-immunohistochemistry is useful for granuloma and foam MA detections in tissue sections. Furthermore, the present data offer CPM for the first time to be a novel marker and cellular player in lipid uptake and/or metabolism of MAs by promoting foam cell formation.
Collapse
Affiliation(s)
- Ioannis Tsakiris
- Department of Pathology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary,Department of Dental Microbiology and Oral Pathology, Dental Faculty, University of Debrecen, Debrecen, Hungary
| | - Daniel Torocsik
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary,Department of Dermatology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Adrienn Gyongyosi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Aniko Dozsa
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Istvan Szatmari
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Attila Szanto
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Gyorgyike Soos
- Department of Pathology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Zoltan Nemes
- Department of Pathology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Laszlo Igali
- Department of Cellular Pathology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Ildiko Marton
- Department of Dental Microbiology and Oral Pathology, Dental Faculty, University of Debrecen, Debrecen, Hungary
| | - Zoltan Takats
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Balazs Dezso
- Department of Pathology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary,Department of Dental Microbiology and Oral Pathology, Dental Faculty, University of Debrecen, Debrecen, Hungary,Department of Dermatology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary,Department of Pathology, University of Debrecen, Medical and Health Science Center, POB 24, Debrecen 4032, Hungary. E-mail:
| |
Collapse
|
16
|
Douda DN, Jackson R, Grasemann H, Palaniyar N. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. THE JOURNAL OF IMMUNOLOGY 2011; 187:1856-65. [PMID: 21724991 DOI: 10.4049/jimmunol.1004201] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutrophils release DNA-based extracellular traps to capture and kill bacteria. The mechanism(s) and proteins that promote neutrophil extracellular trap (NET)-mediated bacterial trapping are not clearly established. Surfactant protein D (SP-D) is an innate immune collectin present in many mucosal surfaces. We hypothesized that SP-D can bind both the pathogens and NETs to augment NET-mediated bacterial trapping. To test this hypothesis, we used LPS and Pseudomonas aeruginosa pneumonia mouse models and performed in vivo and ex vivo assays. In this study, we show that NETs are produced by the neutrophils recruited to the airways in response to the bacterial ligand. Notably, NETs are detected as short fragments of DNA-protein complexes in the airways as opposed to the long stringlike structures seen in ex vivo cultures. SP-D recognizes both the short NET fragments and the long NET DNA structures. SP-D-NET copurification studies further show that SP-D can simultaneously recognize NETs and carbohydrate ligands in vivo. Similar to the LPS model, soluble DNA-protein complexes and increased amounts of SP-D are detected in the murine model of P. aeruginosa pneumonia. We then tested the effect of SP-D on NET-mediated trapping of P. aeruginosa by means of Western blots, fluorescence microscopy, and scanning electron microscopy. Results of these experiments show that SP-D microagglutinates P. aeruginosa and allows an efficient bacterial trapping by NETs. Collectively, these findings provide a unique biological relevance for SP-D-DNA interactions and places SP-D as an important innate immune protein that promotes bacterial trapping by NETs during neutrophil-mediated host defense.
Collapse
Affiliation(s)
- David Nobuhiro Douda
- Program in Physiology and Experimental Medicine, SickKids Research Institute, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
17
|
Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Kadija Z, Rodi G, Mariani F, Ruzza ML, Luisetti M, Dall'Asta V. In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages. Orphanet J Rare Dis 2010; 5:32. [PMID: 21110863 PMCID: PMC2999609 DOI: 10.1186/1750-1172-5-32] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/26/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI), mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP), in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been also performed. METHODS Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL) performed on the same patient. System y+L activity was determined measuring the 1-min uptake of [3H]-arginine under discriminating conditions. Gene expression was evaluated through qRT-PCR. RESULTS We have found that: 1) system y+L activity is markedly lowered in monocytes and alveolar macrophages from the LPI patient, because of the prevailing expression of SLC7A7/y+LAT1 in these cells; 2) on the contrary, fibroblasts isolated from the same patient do not display the transport defect due to compensation by the SLC7A6/y+LAT2 isoform; 3) in both normal and LPI monocytes, GM-CSF induces the expression of SLC7A7, suggesting that the gene is a target of the cytokine; 4) GM-CSF-induced differentiation of LPI monocytes is comparable to that of normal cells, demonstrating that GM-CSF signalling is unaltered; 5) general and respiratory conditions of the patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization. CONCLUSIONS Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the defect in system y+L-mediated arginine transport. The different transport phenotypes are referable to the relative levels of expression of SLC7A7 and SLC7A6. Moreover, the expression of SLC7A7 is regulated by GM-CSF in monocytes, pointing to a role of y+LAT1 in the pathogenesis of LPI associated PAP.
Collapse
Affiliation(s)
- Amelia Barilli
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Luisetti M, Kadija Z, Mariani F, Rodi G, Campo I, Trapnell BC. Therapy options in pulmonary alveolar proteinosis. Ther Adv Respir Dis 2010; 4:239-48. [PMID: 20647242 DOI: 10.1177/1753465810378023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pulmonary alveolar proteinosis is a rare condition characterized by the accumulation of lipoproteinaceous material within the airspaces, resulting in impaired gas transfer, and clinical manifestations ranging from asymptomatic to severe respiratory failure. To the best of the authors' knowledge, there are only a few conditions whose natural history has been so dramatically changed by the influence of advances in basic science, clinical medicine, and translational research in therapeutic approaches. Whole-lung lavage is the current standard of care and it plays a critical role as a modifier factor of the natural history of proteinosis. That notwithstanding, the identification of autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor in serum and lung of patients affected by the form of proteinosis previously referred to as idiopathic, has opened the way to novel therapeutic options, such as supplementation of exogenous granulocyte-macrophage colony-stimulating factor, or strategies aimed at reducing the levels of the autoantibodies. The aim of this paper is to provide an updated review of the current therapeutic approach to proteinosis.
Collapse
Affiliation(s)
- Maurizio Luisetti
- SC Pneumologia, Fondazione IRCCS, Policlinico San Matteo, Piazza Golgi 1, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Recent advances in alveolar biology: evolution and function of alveolar proteins. Respir Physiol Neurobiol 2010; 173 Suppl:S43-54. [PMID: 20433956 DOI: 10.1016/j.resp.2010.04.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/21/2010] [Accepted: 04/21/2010] [Indexed: 12/25/2022]
Abstract
This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins - the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfactant collectins capable of inhibiting foreign pathogens. Further aiding pulmonary host defence are non-surfactant collectins and antimicrobial peptides that are expressed across the biological kingdoms. Linking to the first symposium session, which emphasised molecular structure and biophysical function of surfactant lipids and proteins, this review begins with a discussion of the role of temperature and hydrostatic pressure in shaping the evolution of SP-C in mammals. Transitioning to the role of the alveolus in innate host defence we discuss the structure, function and regulation of antimicrobial peptides, the defensins and cathelicidins. We describe the recent discovery of novel avian collectins and provide evidence for their role in preventing influenza infection. This is followed by discussions of the roles of SP-A and SP-D in mediating host defence at the alveolar surface and in mediating inflammation and the allergic response of the airways. Finally we discuss the use of animal models of lung disease including knockouts to develop an understanding of the role of these proteins in initiating and/or perpetuating disease with the aim of developing new therapeutic strategies.
Collapse
|