1
|
Leenders F, Koole L, Slaets H, Tiane A, Hove DVD, Vanmierlo T. Navigating oligodendrocyte precursor cell aging in brain health. Mech Ageing Dev 2024; 220:111959. [PMID: 38950628 DOI: 10.1016/j.mad.2024.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Oligodendrocyte precursor cells (OPCs) comprise 5-8 % of the adult glial cell population and stand out as the most proliferative cell type in the central nervous system (CNS). OPCs are responsible for generating oligodendrocytes (OLs), the myelinating cells of the CNS. However, OPC functions decline as we age, resulting in impaired differentiation and inadequate remyelination. This review explores the cellular and molecular changes associated with OPC aging, and their impact on OPC differentiation and functionality. Furthermore, it examines the impact of OPC aging within the context of multiple sclerosis and Alzheimer's disease, both neurodegenerative conditions wherein aged OPCs exacerbate disease progression by impeding remyelination. Moreover, various pharmacological interventions targeting pathways related to senescence and differentiation are discussed as potential strategies to rejuvenate aged OPCs. Enhancing our understanding of OPC aging mechanisms holds promise for developing new therapies to improve remyelination and repair in age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Freddy Leenders
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lisa Koole
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helena Slaets
- University MS Centre (UMSC) Hasselt, Pelt, Belgium; Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Centre (UMSC) Hasselt, Pelt, Belgium
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Tim Vanmierlo
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Centre (UMSC) Hasselt, Pelt, Belgium.
| |
Collapse
|
2
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Litwiniuk A, Juszczak GR, Stankiewicz AM, Urbańska K. The role of glial autophagy in Alzheimer's disease. Mol Psychiatry 2023; 28:4528-4539. [PMID: 37679471 DOI: 10.1038/s41380-023-02242-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Although Alzheimer's disease is the most pervasive neurodegenerative disorder, the mechanism underlying its development is still not precisely understood. Available data indicate that pathophysiology of this disease may involve impaired autophagy in glial cells. The dysfunction is manifested as reduced ability of astrocytes and microglia to clear abnormal protein aggregates. Consequently, excessive accumulation of amyloid beta plaques and neurofibrillary tangles activates microglia and astrocytes leading to decreased number of mature myelinated oligodendrocytes and death of neurons. These pathologic effects of autophagy dysfunction can be rescued by pharmacological activation of autophagy. Therefore, a deeper understanding of the molecular mechanisms involved in autophagy dysfunction in glial cells in Alzheimer's disease may lead to the development of new therapeutic strategies. However, such strategies need to take into consideration differences in regulation of autophagy in different types of neuroglia.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Mazovia, Poland
| | - Grzegorz Roman Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland
| | - Adrian Mateusz Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Mazovia, Poland.
| | - Kaja Urbańska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Mazovia, Poland.
| |
Collapse
|
4
|
Wang H, Liu Y, Guo Z, Cui M, Pang P, Yang J, Wu C. Enhancement of oligodendrocyte autophagy alleviates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion in rats. Acta Pharm Sin B 2023; 13:2107-2123. [DOI: 10.1016/j.apsb.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
|
5
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Bai L, Wu Y, Wang R, Liu R, Liu M, Li Q, Ba Y, Zhang H, Zhou G, Yu F, Huang H. Prepubertal exposure to Pb alters autophagy in the brain of aging mice: A time-series based model. Brain Res Bull 2022; 189:22-33. [PMID: 35987294 DOI: 10.1016/j.brainresbull.2022.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/09/2022]
Abstract
As a ubiquitous toxic heavy metal, lead (Pb) exposure is known to be implicated in the onset and development of neurodegenerative diseases which may cause more serious health hazards with age and the accumulation of Pb in the body. Autophagy is the main degradation route for abnormal aggregated proteins and damaged cell organelles. Here, we aimed to study the effects of adolescent Pb exposure on autophagy at different life nodes. In this study, we developed a time-series model of Pb exposure in mice and randomly divided 4-week-old male C57BL/6 mice into six groups (4 C, 13 C, 16 C, 4Pb, 13Pb and 16Pb). Mice in Pb groups was consumed deionized water containing 0.2 % Pb(Ac)2 for 3 months and then reared to anticipated life nodes, while the control group consumed deionized water. Western blot and Real-time qPCR were used to assess the effects of developmental Pb exposure on individual components of the autophagy machinery and modulation of microtubule-associated protein 1 light chain 3 (LC3) at each age stage. Our results showed that Pb exposure during adolescence reduced the p-mTOR/mTOR ratios with enhanced expression of Beclin-1, Atg12 and Atg7in both the hippocampus (HPC) and prefrontal cortex (PFC) of senescent mice while upregulation of LC3II/LC3I ratios and p62 suggested that autophagy mediates degradation was interrupted. Overall, we confirm that Pb exposure during adolescence promotes autophagic processes in the aged mice brain and that autophagic degradation is hindered, ultimately leading to a failure of autophagic degradation.
Collapse
Affiliation(s)
- Lin Bai
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Guoyu Zhou
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
7
|
Wang Q, Xie C. Microglia activation linking amyloid-β drive tau spatial propagation in Alzheimer's disease. Front Neurosci 2022; 16:951128. [PMID: 36033617 PMCID: PMC9417618 DOI: 10.3389/fnins.2022.951128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- *Correspondence: Chunming Xie
| |
Collapse
|
8
|
de la Cueva M, Antequera D, Ordoñez-Gutierrez L, Wandosell F, Camins A, Carro E, Bartolome F. Amyloid-β impairs mitochondrial dynamics and autophagy in Alzheimer's disease experimental models. Sci Rep 2022; 12:10092. [PMID: 35710783 PMCID: PMC9203760 DOI: 10.1038/s41598-022-13683-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
The most accepted hypothesis in Alzheimer's disease (AD) is the amyloid cascade which establishes that Aβ accumulation may induce the disease development. This accumulation may occur years before the clinical symptoms but it has not been elucidated if this accumulation is the cause or the consequence of AD. It is however, clear that Aβ accumulation exerts toxic effects in the cerebral cells. It is important then to investigate all possible associated events that may help to design new therapeutic strategies to defeat or ameliorate the symptoms in AD. Alterations in the mitochondrial physiology have been found in AD but it is not still clear if they could be an early event in the disease progression associated to amyloidosis or other conditions. Using APP/PS1 mice, our results support published evidence and show imbalances in the mitochondrial dynamics in the cerebral cortex and hippocampus of these mice representing very early events in the disease progression. We demonstrate in cellular models that these imbalances are consequence of Aβ accumulation that ultimately induce increased mitophagy, a mechanism which selectively removes damaged mitochondria by autophagy. Along with increased mitophagy, we also found that Aβ independently increases autophagy in APP/PS1 mice. Therefore, mitochondrial dysfunction could be an early feature in AD, associated with amyloid overload.
Collapse
Affiliation(s)
- Macarena de la Cueva
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Desiree Antequera
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Lara Ordoñez-Gutierrez
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Francisco Wandosell
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Antonio Camins
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.
| | - Fernando Bartolome
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.
| |
Collapse
|
9
|
Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022; 10:1236. [PMID: 35740258 PMCID: PMC9219769 DOI: 10.3390/biomedicines10061236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer's disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1-42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1-42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1-42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1-42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.
Collapse
Affiliation(s)
- Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | | | - Giulia Federica Mancini
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Università Telematica Giustino Fortunato, 82100 Benevento, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| |
Collapse
|
10
|
Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, Nuñez-Diaz C, Caceres-Palomo L, Vegas-Gomez L, Sanchez-Mejias E, Trujillo-Estrada L, Garcia-Leon JA, Moreno-Gonzalez I, Vizuete M, Vitorica J, Baglietto-Vargas D, Gutierrez A. Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. Int J Mol Sci 2022; 23:5404. [PMID: 35628216 PMCID: PMC9142061 DOI: 10.3390/ijms23105404] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.
Collapse
Affiliation(s)
- Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Vegas-Gomez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Marisa Vizuete
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| |
Collapse
|
11
|
Zhang Y, Han X, Tang Y, Zhang J, Hu Z, Xu W, Yao P, Niu Q. Weakened interaction of ATG14 and the SNARE complex blocks autophagosome-lysosome fusion contributes to fluoride-induced developmental neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113108. [PMID: 34953272 DOI: 10.1016/j.ecoenv.2021.113108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Fluoride is capable of inducing developmental neurotoxicity, but the mechanisms involved remain unclear. We aimed to explore the role of autophagosome-lysosome fusion in developmental fluoride neurotoxicity, particularly focusing on the interaction between ATG14 and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. We developed in vivo models of Sprague-Dawley rats exposed to sodium fluoride (NaF) from the pregnancy of parental rats until the offspring were two months old and in vitro models of NaF and/or Ad-ATG14-treated SH-SY5Y cells. We assessed neurobehavioral changes in offspring and further investigated the effects of NaF exposure on autophagic flux, apoptosis, autophagosome-lysosome fusion, and the interaction between ATG14 and the SNARE complex. NaF exposure impaired offspring learning and memory capabilities and induced the accumulation of autophagosomes and autophagic flux blockage and apoptosis, as indicated by increased LC3-II, p62, and cleaved-caspase-3 expression in vivo and in vitro. In addition, NaF treatment downregulated the protein expression of ATG14 and the SNARE complex and induced autophagosome-lysosome fusion blockage as evidenced by decreased ATG14, STX17, SNAP29, and VAMP8 expression and diminished colocalization of autophagosomes and lysosomes in vivo and in vitro. Furthermore, ATG14 upregulation enhanced the interaction of ATG14 and the SNARE complex to facilitate autophagosome-lysosome fusion, thereby restoring autophagic flux and alleviating NaF-induced apoptosis. In conclusion, NaF exhibited developmental neurotoxicity by restraining the interaction of ATG14 with the SNARE complex and hindering autophagosome-lysosome fusion, thereby participating in the occurrence and development of fluoride neurotoxicity. Notably, ATG14 upregulation protects against developmental fluoride neurotoxicity, and ATG14 may serve as a promising biomarker for further epidemiological investigation.
Collapse
Affiliation(s)
- Yuanli Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Xie Han
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Ping Yao
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
| |
Collapse
|
12
|
Luan W, Qi X, Liang F, Zhang X, Jin Z, Shi L, Luo B, Dai X. Microglia Impede Oligodendrocyte Generation in Aged Brain. J Inflamm Res 2021; 14:6813-6831. [PMID: 34924766 PMCID: PMC8674668 DOI: 10.2147/jir.s338242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose Age-related increase in myelin loss may be responsible for brain atrophy, and the mechanism is not completely understood. We aim to comprehensively delineate oligodendrocyte heterogeneity in young and aged mice and to reveal the underlying mechanism for myelin loss during aging. Methods Diffusion tensor imaging and immunofluorescent staining were performed to verify the demyelination in the aged brains of both rodents and human. Further, the single-cell RNA sequencing data of all brain cells from young and aged mice were deeply analyzed to identify the subsets of oligodendrocyte lineage cells. Cell-to-cell interaction analysis was performed to detect the mechanism of observed changes in oligodendrocyte generation. Results Oligodendrocytes were observed to up-regulate several senescence associated genes in aged brain. Four clusters of oligodendrocyte precursor cells (OPCs) were identified in both young and aged brains. The number of those OPCs in basal state was significantly increased, while the OPCs in the procedure of differentiation were immensely decreased in aged brain. Furthermore, it was identified that activated microglia in the aged brain released inflammatory factors to suppress OPC differentiation. Stat1 might be a potential target to transform senescent microglia into tissue repair type to promote oligodendrocyte generation. Conclusion These results provided a perspective on how age activated microglia could impede remyelination and might give a new therapeutic target for age-related remyelinating diseases.
Collapse
Affiliation(s)
- Weimin Luan
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiqian Qi
- Department of Neurology, Ningbo Municipal Hospital of T.C.M., Ningbo, Zhejiang, People's Republic of China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaotao Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ziyang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuejiao Dai
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Lin JZ, Duan MR, Lin N, Zhao WJ. The emerging role of the chondroitin sulfate proteoglycan family in neurodegenerative diseases. Rev Neurosci 2021; 32:737-750. [PMID: 33655733 DOI: 10.1515/revneuro-2020-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
Chondroitin sulfate (CS) is a kind of linear polysaccharide that is covalently linked to proteins to form proteoglycans. Chondroitin sulfate proteoglycans (CSPGs) consist of a core protein, with one or more CS chains covalently attached. CSPGs are precisely regulated and they exert a variety of physiological functions by binding to adhesion molecules and growth factors. Widely distributed in the nervous system in human body, CSPGs contribute to the major component of extracellular matrix (ECM), where they play an important role in the development and maturation of the nervous system, as well as in the pathophysiological response to damage to the central nervous system (CNS). While there are more than 30 types of CSPGs, this review covers the roles of the most important ones, including versican, aggrecan, neurocan and NG2 in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. The updated reports of the treatment of neurodegenerative diseases are involving CSPGs.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ming-Rui Duan
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Nuan Lin
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
14
|
Ntsapi CM, Loos B. Neurons die with heightened but functional macro- and chaperone mediated autophagy upon increased amyloid-ß induced toxicity with region-specific protection in prolonged intermittent fasting. Exp Cell Res 2021; 408:112840. [PMID: 34624324 DOI: 10.1016/j.yexcr.2021.112840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition with significant socio-economic impact that is exacerbated by the rapid increase in population aging, particularly impacting already burdened health care systems of poorly resourced countries. Accumulation of the amyloid-β (Aβ) peptide, generated through amyloid precursor protein (APP) processing, manifesting in senile plaques, is a well-established neuropathological feature. Aβ plays a key role in driving synaptic dysfunction, neuronal cell loss, glial cell activation and oxidative stress associated with the pathogenesis of AD. Thus, the enhanced clearance of Aβ peptide though modulation of the mechanisms that regulate intracellular Aβ metabolism and clearance during AD progression have received major attention. Autophagy, a lysosome-based major proteolytic pathway, plays a crucial role in intracellular protein quality control and has been shown to contribute to the clearance of Aβ peptide. However, to what extent autophagy activity remains upregulated and functional in the process of increasing Aβ neurotoxicity is largely unclear. Here, we investigated the extent of neuronal toxicity in vitro by characterising autophagic flux, the expression profile of key amyloidogenic proteins, and proteins associated with prominent subtypes of the autophagy pathway to dissect the interplay between the engagement of proteolytic pathways and cell death onset in the context of APP overexpression. Moreover, we assessed the neuroprotective effects of a caloric restriction regime in vivo on the modulation of autophagy in specific brain regions. Our results reveal that autophagy is upregulated in the presence of high levels of APP and Aβ and remains heightened and functional despite concomitant apoptosis induction, suggestive of a mismatch between autophagy cargo generation and clearance capacity. These findings were confirmed when implementing a prolonged intermittent fasting (IF) intervention in a model of paraquat-induced neuronal toxicity, where markers of autophagic activity were increased, while apoptosis onset and lipid peroxidation were robustly decreased in brain regions associated with neurodegeneration. This work highlights that especially caloric restriction mimetics and controlled prolonged IF may indeed be a highly promising therapeutic strategy at all stages of AD-associated pathology progression, for a cell-inherent and cell specific augmentation of Aβ clearance through the powerful engagement of autophagy and thereby robustly contributing to neuronal protection.
Collapse
Affiliation(s)
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
15
|
Guo X, Bao X, Wang X, Liu D, Liu P, Chi T, Ji X, Zheng Z, Chen G, Zou L. OAB-14 Effectively Ameliorates the Dysfunction of the Endosomal-Autophagic-Lysosomal Pathway in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2021; 12:3985-3993. [PMID: 34652916 DOI: 10.1021/acschemneuro.1c00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Alzheimer's disease (AD), damaged Aβ clearance contributes to elevated levels of Aβ that cause a series of cytotoxic cascade reactions. Thus, targeting Aβ clearance has now been considered a valid therapeutic approach for AD. Cellular uptake and degradation are important mechanisms for Aβ clearance, which are mainly performed by the endosomal-autophagic-lysosomal (EAL) pathway. Our previous study showed that OAB-14, a novel small molecule designed with bexarotene as the lead compound, treatment for 3 months significantly alleviated cognitive disorders and remarkably reduced the deposition of Aβ without affecting its production in APP/PS1 transgenic mice. Here, we further revealed that enhancement of the EAL activity is one of the mechanisms that increases Aβ clearance after OAB-14 administration for 3 months. OAB-14 facilitates receptor-mediated endocytosis and restores autophagy flux via the AMPK/mTOR pathway. Meanwhile, OAB-14 enhances the lysosomal activity, and reduced Aβ accumulation in lysosomes was observed in OAB-14-treated AD mice. These results suggest that OAB-14 may promote Aβ clearance in lysosomes by alleviating the EAL dysfunction in AD mice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xiaojuan Wang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Tianyan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xuefei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Zhonghui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd., Zibo, Shandong 255086, P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Libo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
16
|
Bandyopadhyay S. Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Front Aging Neurosci 2021; 13:653334. [PMID: 34211387 PMCID: PMC8239194 DOI: 10.3389/fnagi.2021.653334] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloidogenicity and vascular dysfunction are the key players in the pathogenesis of Alzheimer’s disease (AD), involving dysregulated cellular interactions. An intricate balance between neurons, astrocytes, microglia, oligodendrocytes and vascular cells sustains the normal neuronal circuits. Conversely, cerebrovascular diseases overlap neuropathologically with AD, and glial dyshomeostasis promotes AD-associated neurodegenerative cascade. While pathological hallmarks of AD primarily include amyloid-β (Aβ) plaques and neurofibrillary tangles, microvascular disorders, altered cerebral blood flow (CBF), and blood-brain barrier (BBB) permeability induce neuronal loss and synaptic atrophy. Accordingly, microglia-mediated inflammation and astrogliosis disrupt the homeostasis of the neuro-vascular unit and stimulate infiltration of circulating leukocytes into the brain. Large-scale genetic and epidemiological studies demonstrate a critical role of cellular crosstalk for altered immune response, metabolism, and vasculature in AD. The glia associated genetic risk factors include APOE, TREM2, CD33, PGRN, CR1, and NLRP3, which correlate with the deposition and altered phagocytosis of Aβ. Moreover, aging-dependent downregulation of astrocyte and microglial Aβ-degrading enzymes limits the neurotrophic and neurogenic role of glial cells and inhibits lysosomal degradation and clearance of Aβ. Microglial cells secrete IGF-1, and neurons show a reduced responsiveness to the neurotrophic IGF-1R/IRS-2/PI3K signaling pathway, generating amyloidogenic and vascular dyshomeostasis in AD. Glial signals connect to neural stem cells, and a shift in glial phenotype over the AD trajectory even affects adult neurogenesis and the neurovascular niche. Overall, the current review informs about the interaction of neuronal and glial cell types in AD pathogenesis and its critical association with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Chacon-De-La-Rocha I, Fryatt GL, Rivera AD, Restani L, Caleo M, Gomez-Nicola D, Butt AM. The synaptic blocker botulinum toxin A decreases the density and complexity of oligodendrocyte precursor cells in the adult mouse hippocampus. J Neurosci Res 2021; 99:2216-2227. [PMID: 34051113 DOI: 10.1002/jnr.24856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/05/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates their behavior. To examine this in the adult, we performed unilateral injection of the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of adult mice. We confirm BoNT/A cleaves SNAP-25 in the CA1 are of the hippocampus, which has been proven to block neurotransmission. Notably, BoNT/A significantly decreased OPC density and caused their shrinkage, as determined by immunolabeling for the OPC marker NG2. Furthermore, BoNT/A resulted in an overall decrease in the number of OPC processes, as well as a decrease in their lengths and branching frequency. These data indicate that synaptic activity is important for maintaining adult OPC numbers and cellular integrity, which is relevant to pathophysiological scenarios characterized by dysregulation of synaptic activity, such as age-related cognitive decline, Multiple Sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Chacon-De-La-Rocha
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Gemma L Fryatt
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Andrea D Rivera
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Laura Restani
- National Research Council, Neuroscience Institute, Pisa, Italy
| | - Matteo Caleo
- National Research Council, Neuroscience Institute, Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
18
|
Chacon-De-La-Rocha I, Fryatt G, Rivera AD, Verkhratsky A, Raineteau O, Gomez-Nicola D, Butt AM. Accelerated Dystrophy and Decay of Oligodendrocyte Precursor Cells in the APP/PS1 Model of Alzheimer's-Like Pathology. Front Cell Neurosci 2020; 14:575082. [PMID: 33343301 PMCID: PMC7744306 DOI: 10.3389/fncel.2020.575082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Myelin disruption is a feature of natural aging and Alzheimer's disease (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Here, we examined age-related changes in OPCs in APP/PS1 mice, a model for AD-like pathology, compared with non-transgenic (Tg) age-matched controls. The analysis was performed in the CA1 area of the hippocampus following immunolabeling for NG2 with the nuclear dye Hoescht, to identify OPC and OPC sister cells, a measure of OPC replication. The results indicate a significant decrease in the number of OPCs at 9 months in APP/PS1 mice, compared to age-matched controls, without further decline at 14 months. Also, the number of OPC sister cells declined significantly at 14 months in APP/PS1 mice, which was not observed in age-matched controls. Notably, OPCs also displayed marked morphological changes at 14 months in APP/PS1 mice, characterized by an overall shrinkage of OPC process domains and increased process branching. The results indicate that OPC disruption is a pathological sign in the APP/PS1 mouse model of AD.
Collapse
Affiliation(s)
- Irene Chacon-De-La-Rocha
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gemma Fryatt
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Portsmouth, United Kingdom
| | - Andrea D. Rivera
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Olivier Raineteau
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Diego Gomez-Nicola
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Portsmouth, United Kingdom
| | - Arthur M. Butt
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
19
|
Disruption of oligodendrocyte progenitor cells is an early sign of pathology in the triple transgenic mouse model of Alzheimer's disease. Neurobiol Aging 2020; 94:130-139. [PMID: 32619874 PMCID: PMC7453384 DOI: 10.1016/j.neurobiolaging.2020.05.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023]
Abstract
There is increasing evidence that myelin disruption is related to cognitive decline in Alzheimer's disease (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by adult oligodendrocyte progenitor cells (OPCs), also known as NG2-glia. To address whether alterations in myelination are related to age-dependent changes in OPCs, we analyzed NG2 and myelin basic protein (MBP) immunolabelling in the hippocampus of 3×Tg-AD mice at 6 and 24 months of age, compared with non-Tg age-matched controls. There was an age-related decrease in MBP immunostaining and OPC density, together with a decline in the number of OPC sister cells, a measure of OPC replication. Notably, the loss of myelin and OPC sister cells occurred earlier at 6 months in 3xTg-AD, suggesting accelerated aging, although there was not a concomitant decline in OPC numbers at this age, suggesting the observed changes in myelin were not a consequence of replicative exhaustion, but possibly of OPC disruption or senescence. In line with this, a key finding is that compared to age-match controls, OPC displayed marked morphological atrophy at 6 months in 3xTg-AD followed by morphological hypertrophy at 24 months, as deduced from significant changes in total cell surface area, total cell volume, somata volume and branching of main processes. Moreover, we show that hypertrophic OPCs surround and infiltrate amyloid-β (Aβ) plaques, a key pathological hallmark of AD. The results indicate that OPCs undergo complex age-related remodeling in the hippocampus of the 3xTg-AD mouse model. We conclude that OPC disruption is an early pathological sign in AD and is a potential factor in accelerated myelin loss and cognitive decline. Life-long generation of myelin is the function of adult oligodendrocyte progenitor cells (OPCs). Age-related loss of myelin is accelerated in the 3xTg-AD mouse model of Alzheimer's disease (AD). OPCs are disrupted at an early stage of 3xTg-AD. Dysregulation of OPC and myelin loss are important biomarkers for AD-like pathology.
Collapse
|
20
|
Liang F, Yang S, Zhang Y, Hao T. Social housing promotes cognitive function through enhancing synaptic plasticity in APP/PS1 mice. Behav Brain Res 2020; 368:111910. [PMID: 31034995 DOI: 10.1016/j.bbr.2019.111910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that loneliness increases the risk of AD (Alzheimer's disease) onset, while active and frequent social housing delays the onset of cognitive impairment. The mechanism of how this occurs remains unclear. In this study, we investigated how social interaction affected cognitive function and AD pathology in APP/PS1 (amyloid precursor protein/presenilin-1) mice. APP/PS1 mice were divided into either a social isolation (SI) group, a social contact with one mouse (SCO) group, or a social contact with five mice (SCF) group. Our results demonstrated that social housing improved the behavioral performance of APP/PS1 mice in Morris Water Maze testing, without significantly altering the rates of amyloid plaque deposition or amyloidogenic APP processes. Furthermore, the synaptic function, dendritic spine density, and complexity of neuronal network were notably increased in the SCF group, as compared to the SI and SCO groups. Additional protein and mRNA analyses of isolated astrocyte and microglia revealed that several glial genes related to regulation and anti-inflammatory progression were significantly upregulated, while pro-inflammatory markers were decreased. These findings highlight the important role of quality social communication (five mice not one mice) on maintaining neuronal function during AD pathogenesis and provide evidence to place great emphasis of family care of AD patients.
Collapse
Affiliation(s)
- Feiyu Liang
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shen Yang
- Departments of Neurology, Tai'an City Central Hospital, Tai'an, Shandong, 271000, China
| | - Yang Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tianpao Hao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
21
|
Kuang H, Tan C, Tian H, Liu L, Yang M, Hong F, Yang S. Exploring the bi-directional relationship between autophagy and Alzheimer's disease. CNS Neurosci Ther 2020; 26:155-166. [PMID: 31503421 PMCID: PMC6978262 DOI: 10.1111/cns.13216] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) deposition and Tau phosphorylation, in which its pathogenesis has not been cleared so far. The metabolism of Aβ and Tau is critically affected by the autophagy. Abnormal autophagy is thought to be involved in the pathogenesis of AD, regulating autophagy may become a new strategy for AD treatment. In the early stage of AD, the presence of Aβ and Tau can induce autophagy to promote their clearance by means of mTOR-dependent and independent manners. As AD progress, the autophagy goes aberrant. As a result, Aβ and Tau generate continually, which aggravates both autophagy dysfunction and AD. Besides, several related genes and proteins of AD can also adapt autophagy to make an effect on the AD development. There seems to be a bi-directional relationship between AD pathology and autophagy. At present, this article reviews this relationship from these aspects: (a) the signaling pathways of regulating autophagy; (b) the relationships between the autophagy and the processing of Aβ; (c) Aβ and Tau cause autophagy dysfunction; (d) normal autophagy promotes the clearance of Aβ and Tau; (e) the relationships between the autophagy and both genes and proteins related to AD: TFEB, miRNAs, Beclin-1, Presenilin, and Nrf2; and (f) the small molecules regulating autophagy on AD therapy. All of the above may help to further elucidate the pathogenesis of AD and provide a theoretical basis for clinical treatment of AD.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Cheng‐Yong Tan
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Hui‐Zhen Tian
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Li‐Hua Liu
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Mei‐Wen Yang
- Department of NurseNanchang University HospitalNanchangChina
| | - Fen‐Fang Hong
- Department of Experimental Teaching CenterNanchang UniversityNanchangChina
| | - Shu‐Long Yang
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| |
Collapse
|
22
|
Papuć E, Rejdak K. The role of myelin damage in Alzheimer's disease pathology. Arch Med Sci 2020; 16:345-351. [PMID: 32190145 PMCID: PMC7069444 DOI: 10.5114/aoms.2018.76863] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Although Alois Alzheimer described myelin disruption in Alzheimer's disease (AD) as early as in 1911, his observation has escaped the attention of researchers since that time. Alzheimer's disease has been mainly considered as a grey matter disorder; nevertheless, recent evidence suggests that myelin impairment may play an important role in AD pathology. Classical neuropathological changes in AD, e.g. the accumulation of aggregated Aβ 42 and the presence of neurofibrillary tangles, are responsible for neuronal loss, but they may also induce death of oligodendrocytes and myelin damage. There is also evidence that myelin pathology may even precede Aβ and tau pathologies in AD. The state of the art does not allow us to determine whether myelin damage is a primary or a secondary injury in AD subjects. The article presents an overview of current knowledge on the role of myelin in AD pathology and its interactions with Aβ and tau pathologies.
Collapse
Affiliation(s)
- Ewa Papuć
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
- Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Wani A, Gupta M, Ahmad M, Shah AM, Ahsan AU, Qazi PH, Malik F, Singh G, Sharma PR, Kaddoumi A, Bharate SB, Vishwakarma RA, Kumar A. Alborixin clears amyloid-β by inducing autophagy through PTEN-mediated inhibition of the AKT pathway. Autophagy 2019; 15:1810-1828. [PMID: 30894052 DOI: 10.1080/15548627.2019.1596476] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Imbalance in production and clearance of amyloid beta (Aβ) is the primary reason for its deposition in Alzheimer disease. Macroautophagy/autophagy is one of the important mechanisms for clearance of both intracellular and extracellular Aβ. Here, through screening, we identified alborixin, an ionophore, as a potent inducer of autophagy. We found that autophagy induced by alborixin substantially cleared Aβ in microglia and primary neuronal cells. Induction of autophagy was accompanied by up regulation of autophagy proteins BECN1/Beclin 1, ATG5, ATG7 and increased lysosomal activities. Autophagy induced by alborixin was associated with inhibition of the phosphoinositide 3-kinase (PI3K)-AKT pathway. A knock down of PTEN and consistent, constitutive activation of AKT inhibited alborixin-induced autophagy and consequent clearance of Aβ. Furthermore, clearance of Aβ by alborixin led to significant reduction of Aβ-mediated cytotoxicity in primary neurons and differentiated N2a cells. Thus, our findings put forward alborixin as a potential anti-Alzheimer therapeutic lead. Abbreviations: Aβ: amyloid beta; ALB: alborixin; ATG: autophagy-related; BECN1: beclin 1; DAPI: 4, 6-diamidino-2-phenylindole; DCFH-DA: 2,7-dichlorodihydrofluorescein diacetate; fAβ: fibrillary form of amyloid beta; GFAP: glial fibrillary acidic protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2: microtubule-associated protein 2; MTOR: mechanistic target of rapamycin kinase; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species; SQSTM1: sequestosome 1; TMRE: tetramethylrhodamine, ethyl ester.
Collapse
Affiliation(s)
- Abubakar Wani
- Division of PK-PD-Toxicology and Formulation, CSIR-Indian Institute of Integrative Medicine , Jammu , India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India
| | - Mehak Gupta
- Division of PK-PD-Toxicology and Formulation, CSIR-Indian Institute of Integrative Medicine , Jammu , India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India
| | - Masroor Ahmad
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Aabid M Shah
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,Division of Microbial biotechnology, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Aitizaz Ul Ahsan
- Cytogenetics Laboratory, Department of Zoology, Panjab University , Chandigarh , India
| | - Parvaiz H Qazi
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,Division of Microbial biotechnology, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Fayaz Malik
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Gurdarshan Singh
- Division of PK-PD-Toxicology and Formulation, CSIR-Indian Institute of Integrative Medicine , Jammu , India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India
| | - Parduman R Sharma
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, 720 S. Donahue Dr., Auburn University , Auburn , AL , USA
| | - Sandip B Bharate
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,Division of Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Ram A Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,Division of Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Ajay Kumar
- Division of PK-PD-Toxicology and Formulation, CSIR-Indian Institute of Integrative Medicine , Jammu , India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India
| |
Collapse
|
24
|
Butt AM, De La Rocha IC, Rivera A. Oligodendroglial Cells in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:325-333. [PMID: 31583593 DOI: 10.1007/978-981-13-9913-8_12] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligodendrocytes form the myelin that ensheaths CNS axons, which is essential for rapid neuronal signalling and underpins the massive computing power of the human brain. Oligodendrocytes and myelin also provide metabolic and trophic support for axons and their disruption results in axonal demise and neurodegeneration, which are key features of Alzheimer's disease (AD). Notably, the brain has a remarkable capacity for regenerating oligodendrocytes, which is the function of adult oligodendrocyte progenitor cells (OPCs) or NG2-glia. White matter loss is often among the earliest brain changes in AD, preceding the tangles and plaques that characterize neuronal deficits. The underlying causes of myelin loss include oxidative stress, neuroinflammation and excitotoxicity, associated with accumulation of Aβ and tau hyperphosphorylation, pathological hallmarks of AD. Moreover, there is evidence that NG2-glia are disrupted in AD, which may be associated with disruption of synaptic signalling. This has led to the hypothesis that a vicious cycle of myelin loss and failure of regeneration from NG2-glia plays a key role in AD. Therapies that target NG2-glia are likely to have positive effects on myelination and neuroprotection in AD.
Collapse
Affiliation(s)
- Arthur M Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK.
| | - Irene Chacon De La Rocha
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK
| | - Andrea Rivera
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
25
|
Uddin MS, Mamun AA, Labu ZK, Hidalgo-Lanussa O, Barreto GE, Ashraf GM. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis. J Cell Physiol 2018; 234:8094-8112. [PMID: 30362531 DOI: 10.1002/jcp.27588] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Autophagy is a preserved cytoplasmic self-degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy-related genes and alterations of autophagic flux. Alzheimer's disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer's pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Zubair Khalid Labu
- Department of Pharmacy, World University of Bangladesh, Dhaka, Bangladesh
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
de la Torre C, Ceña V. The Delivery Challenge in Neurodegenerative Disorders: The Nanoparticles Role in Alzheimer's Disease Therapeutics and Diagnostics. Pharmaceutics 2018; 10:pharmaceutics10040190. [PMID: 30336640 PMCID: PMC6321229 DOI: 10.3390/pharmaceutics10040190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/17/2018] [Accepted: 10/13/2018] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the main causes of disability and dependency among elderly people. AD is a neurodegenerative disorder characterized by a progressive and irreversible cognitive impairment, whose etiology is unclear because of the complex molecular mechanisms involved in its pathophysiology. A global view of the AD pathophysiology is described in order to understand the need for an effective treatment and why nanoparticles (NPs) could be an important weapon against neurodegenerative diseases by solving the general problem of poor delivery into the central nervous system (CNS) for many drugs. Drug delivery into the CNS is one of the most challenging objectives in pharmaceutical design, due to the limited access to the CNS imposed by the blood-brain barrier (BBB). The purpose of this review is to present a comprehensive overview of the use of NPs as delivery systems for therapeutic and diagnostic purposes in models of AD.
Collapse
Affiliation(s)
- Cristina de la Torre
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Almansa, 14, 02006 Albacete, Spain.
- CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain.
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Almansa, 14, 02006 Albacete, Spain.
- CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain.
| |
Collapse
|
27
|
Chen ZS, Li L, Peng S, Chen FM, Zhang Q, An Y, Lin X, Li W, Koon AC, Chan TF, Lau KF, Ngo JCK, Wong WT, Kwan KM, Chan HYE. Planar cell polarity gene Fuz triggers apoptosis in neurodegenerative disease models. EMBO Rep 2018; 19:embr.201745409. [PMID: 30026307 DOI: 10.15252/embr.201745409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023] Open
Abstract
Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Li Li
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shaohong Peng
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Francis M Chen
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qian Zhang
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xiao Lin
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wen Li
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ting-Fung Chan
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wing Tak Wong
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kin Ming Kwan
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Partner State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China .,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
28
|
Sun J, Zhou H, Bai F, Zhang Z, Ren Q. Remyelination: A Potential Therapeutic Strategy for Alzheimer's Disease? J Alzheimers Dis 2018; 58:597-612. [PMID: 28453483 DOI: 10.3233/jad-170036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is a lipid-rich multilamellar membrane that wraps around long segments of neuronal axons and it increases the conduction of action potentials, transports the necessary trophic support to the neuronal axons, and reduces the energy consumed by the neuronal axons. Together with axons, myelin is a prerequisite for the higher functions of the central nervous system and complex forms of network integration. Myelin impairments have been suggested to lead to neuronal dysfunction and cognitive decline. Accumulating evidence, including brain imaging and postmortem and genetic association studies, has implicated myelin impairments in Alzheimer's disease (AD). Increasing data link myelin impairments with amyloid-β (Aβ) plaques and tau hyperphosphorylation, which are both present in patients with AD. Moreover, aging and apolipoprotein E (ApoE) may be involved in the myelin impairments observed in patients with AD. Decreased neuronal activity, increased Aβ levels, and inflammation further damage myelin in patients with AD. Furthermore, treatments that promote myelination contribute to the recovery of neuronal function and improve cognition. Therefore, strategies targeting myelin impairment may provide therapeutic opportunities for patients with AD.
Collapse
|
29
|
Pharmacodynamics in Alzheimer's disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomater 2018; 65:327-338. [PMID: 29111371 DOI: 10.1016/j.actbio.2017.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
The accumulation of the extracellular β-amyloid (Aβ) aggregates with metal ions in conjunction with reactive oxygen species (ROS) is closely related to the pathogenesis of Alzheimer's disease (AD). Accounting on Cu ions chelating of our previously designed bifunctional peptide GGHRYYAAFFARR (GR) as well as Aβ-Cu fibrils (fAβ-Cu) dissociation potentials, we report herein an efficient route to synthetically minimize ROS toxicity and degrade fAβ-Cu. It is worth mentioning that GR combines the metal chelating agent GGH and β-sheet breaker RYYAAFFARR (RR). The in vitro results have showed that GR disassociates fAβ-Cu into smaller fragments (sAβ-Cu, 150-200 nm), easily assimilated by PC12 cell and subsequently degraded in the lysosomes; GR can also suppress the ROS generated by fAβ-Cu. The viability of PC12 cell treated with fAβ-Cu has increased, from 38% to about 70% after administration of GR, overwhelming the GGH chelator (46%) and single functional peptide RR (48%). The in vivo results indicated that GR has efficiently reduced Aβ deposition, ameliorated neurologic changes and rescued memory loss, thus, enhancing the cognitive and spatial memory in a AD rat model. This study confirms the superior effect of GR and paves the way toward its future employment in large scale AD treatment. STATEMENT OF SIGNIFICANCE We have focused on accelerating the degradation of fAβ-Cu as well as synthetically reducing the ROS toxicity by GR, and, consequently, its benefits in vivo. The bifunctional peptide GR can not only disaggregate fAβ-Cu into smaller fragments to facilitate uptake and degradation by PC12 cell, but also suppresses the ROS generated by fAβ-Cu. Thus, the viability of PC12 cell treated with fAβ-Cu has increased from 38% to 70% after GR administration, overwhelming GGH (46%) and RR (48%). The in vivo studies have revealed that GR improves the spatial memory ability and reduce the amount of senile plaques within brain of AD model rats. Thus, we suppose the bifunctional inhibitor GR has good application prospects in the treatment of AD treatment.
Collapse
|
30
|
Victoria GS, Zurzolo C. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases. J Cell Biol 2017; 216:2633-2644. [PMID: 28724527 PMCID: PMC5584166 DOI: 10.1083/jcb.201701047] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/03/2017] [Accepted: 07/05/2017] [Indexed: 11/22/2022] Open
Abstract
Victoria and Zurzolo discuss current evidence for the emerging role of lysosomal damage and tunneling nanotubes in the intercellular propagation of prion and prion-like proteins in neurodegenerative disease. Progression of pathology in neurodegenerative diseases is hypothesized to be a non–cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a “donor cell” that is the source of misfolded aggregates to an “acceptor cell” in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer’s, Huntington’s, and Parkinson’s diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| |
Collapse
|
31
|
Kuang X, Zhou HJ, Thorne AH, Chen XN, Li LJ, Du JR. Neuroprotective Effect of Ligustilide through Induction of α-Secretase Processing of Both APP and Klotho in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2017; 9:353. [PMID: 29163135 PMCID: PMC5673635 DOI: 10.3389/fnagi.2017.00353] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence suggests that alpha-processing single transmembrane proteins, amyloid precursor protein (APP) and anti-aging protein Klotho, are likely to be involved in the progression of Alzheimer's disease (AD). The natural phthalide Ligustilide (LIG) has been demonstrated to protect against aging- and amyloid-β (Aβ)-induced brain dysfunction in animal models. The present study is to investigate the effects of LIG on cognitive deficits and metabolism of both APP and Klotho and its underlying mechanism in AD double-transgenic (APP/PS1) mice and cultured human cells. Our results show that treatment with LIG significantly ameliorated memory impairment and Aβ levels and plaques burden. Specifically, LIG might act as a potent enhancer of α-secretase, disintegrin, and metalloprotease 10 (ADAM10), leading to upregulation of alpha-processing of both APP and Klotho and subsequent increases in the levels of both soluble APP fragment (sAPPα) and soluble Klotho (sKL) with inhibition of IGF-1/Akt/mTOR signaling in AD mice and cultured cells. Moreover, the specific ADAM10 inhibitor (G1254023X) effectively reversed LIG-induced alpha-processing of both APP and Klotho in vitro, while Klotho gene knockdown by small interfering RNA significantly blunted LIG-mediated inhibition of IGF-1/Akt/mTOR signaling in vitro. Taken together with the reported neuroprotective effects of both sAPPα and sKL as well as autophagy induction by Akt/mTOR pathway inhibition, our findings suggest that neuroprotection of LIG against AD is associated with induction alpha-processing of APP and Klotho and potential Aβ clearance. Whether LIG might induce Aβ autophagic clearance and the underlying mechanisms need to be further studied.
Collapse
Affiliation(s)
- Xi Kuang
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hong-Jing Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Amy H. Thorne
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, United States
| | - Xi-Nan Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lin-Jiao Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jun-Rong Du
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Jun-Rong Du,
| |
Collapse
|
32
|
Zhdanov VP. Mathematical aspects of the kinetics of formation and degradation of linear peptide or protein aggregates. Math Biosci 2016; 278:5-10. [PMID: 27132946 DOI: 10.1016/j.mbs.2016.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/19/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
In cells, peptides and proteins are sometimes prone to aggregation. In neurons, for example, amyloid β peptides form plaques related to Alzheimer's disease (AD). The corresponding kinetic models either ignore or do not pay attention to degradation of these species. Here, the author proposes a generic kinetic model describing formation and degradation of linear aggregates. The process is assumed to occur via reversible association of monomers and attachment of monomers to or detachment from terminal parts of aggregates. Degradation of monomers is described as a first-order process. Degradation of aggregates is considered to occur at their terminal and internal parts with different rates and these steps are described by first-order equations as well. Irrespective of the choice of the values of the rate constants, the model predicts that eventually the system reaches a stable steady state with the aggregate populations rapidly decreasing with increasing size at large sizes. The corresponding steady-state size distributions of aggregates are illustrated in detail. The transient kinetics are also shown. The observation of AD appears, however, to indicate that the peptide production becomes eventually unstable, i.e., the growth of the peptide population is not properly limited. This is expected to be related to the specifics of the genetic networks controlling the peptide production. Following this line, two likely general networks with, respectively, global negative and positive feedbacks in the peptide production are briefly discussed.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
33
|
Eugenín-von Bernhardi J, Dimou L. NG2-glia, More Than Progenitor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:27-45. [PMID: 27714683 DOI: 10.1007/978-3-319-40764-7_2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NG2-glia are a mysterious and ubiquitous glial population with a highly branched morphology. Initial studies suggested that their unique function is the generation and maintenance of oligodendrocytes in the central nervous system (CNS), important for proper myelination and therefore for axonal support and fast conduction velocity. Over the last years this simplistic notion has been dramatically changed: the wide and homogeneous distribution of NG2-glia within all areas of the developing CNS that is maintained during the whole lifespan, their potential to also differentiate into other cell types in a spatiotemporal manner, their active capability of maintaining their population and their dynamic behavior in altered conditions have raised the question: are NG2-glia simple progenitor cells or do they play further major roles in the normal function of the CNS? In this chapter, we will discuss some important features of NG2-glia like their homeostatic distribution in the CNS and their potential to differentiate into diverse cell types. Additionally, we will give some further insights into the properties that these cells have, like the ability to form synapses with neurons and their plastic behavior triggered by neuronal activity, suggesting that they may play a role specifically in myelin and more generally in brain plasticity. Finally, we will briefly review their behavior in disease models suggesting that their function is extended to repair the brain after insult.
Collapse
Affiliation(s)
- Jaime Eugenín-von Bernhardi
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany. .,Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany.
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
34
|
Asadi F, Jamshidi AH, Khodagholi F, Yans A, Azimi L, Faizi M, Vali L, Abdollahi M, Ghahremani MH, Sharifzadeh M. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 2015; 139:47-58. [DOI: 10.1016/j.pbb.2015.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/25/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022]
|
35
|
Liang P, Le W. Role of autophagy in the pathogenesis of multiple sclerosis. Neurosci Bull 2015; 31:435-44. [PMID: 26254059 DOI: 10.1007/s12264-015-1545-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/05/2015] [Indexed: 10/23/2022] Open
Abstract
Autophagy plays an important role in maintaining the cellular homeostasis. One of its functions is to degrade unnecessary organelles and proteins for energy recycling or amino-acids for cell survival. Ablation of autophagy leads to neurodegeneration. Multiple sclerosis (MS), a permanent neurological impairment typical of chronic inflammatory demyelinating disorder, is an auto-immune disease of the central nervous system (CNS). Autophagy is tightly linked to the innate and adaptive immune systems during the autoimmune process, and several studies have shown that autophagy directly participates in the progress of MS or experimental autoimmune encephalomyelitis (EAE, a mouse model of MS). Dysfunction of mitochondria that intensively influences the autophagy pathway is one of the important factors in the pathogenesis of MS. Autophagy-related gene (ATG) 5 and immune-related GTPase M (IRGM) 1 are increased, while ATG16L2 is decreased, in T-cells in EAE and active relapsing-remitting MS brains. Administration of rapamycin, an inhibitor of mammalian target of rapamycin ( mTOR), ameliorates relapsing-remitting EAE. Inflammation and oxidative stress are increased in MS lesions and EAE, but Lamp2 and the LC3-II/LC3-I ratio are decreased. Furthermore, autophagy in various glial cells plays important roles in regulating neuro-inflammation in the CNS, implying potential roles in MS. In this review, we discuss the role of autophagy in the peripheral immune system and the CNS in neuroinflammation associated with the pathogenesis of MS.
Collapse
Affiliation(s)
- Peizhou Liang
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | |
Collapse
|
36
|
Rubinsztein DC, Bento CF, Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 2015; 212:979-90. [PMID: 26101267 PMCID: PMC4493419 DOI: 10.1084/jem.20150956] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating.
Collapse
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge CB2 OSP, England, UK
| | - Carla F Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge CB2 OSP, England, UK
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology and Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 Department of Molecular Genetics and Microbiology and Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
37
|
Zhang Q, Liu J, Hu X, Wang W, Yuan Z. In Vitro Studies on Accelerating the Degradation and Clearance of Amyloid-β Fibrils by an Antiamyloidogenic Peptide. ACS Macro Lett 2015; 4:339-342. [PMID: 35596317 DOI: 10.1021/acsmacrolett.5b00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The clearance of overloaded amyloid-β (Aβ) species, especially the toxic aggregates, was thought to be an attractive and promising strategy for Alzheimer's disease (AD) therapy in the past decade. In this work, an active Aβ inhibitor decapeptide RR was used to transform mature Aβ fibrils (fAβ) into nanorod-like Aβ assemblies (rAβ) as well as loosen the β-structure of rAβ. Compared with fAβ, rAβ could be engulfed by PC12 cells more efficiently and showed a 1.46-fold difference. More importantly, the rAβ was colocated with lysosomes after endocytosis, and in vitro study illustrated that rAβ were easily degraded by lysosome protease cathepsin B when compared with the fibrils. Thus, our study indicated the potential application of RR in Aβ fibrils clearance by a cell-participated and enzyme-mediated pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Jing Liu
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Xiaoyu Hu
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, Schröter F, Nuernberg P, Kroll H, Makrantonaki E, Zouboulis CC, Zoubouliss CC, Adjaye J. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 2015; 16:84. [PMID: 25765079 PMCID: PMC4344782 DOI: 10.1186/s12864-015-1262-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish. Results In this study, employing iPS technology, we derived and characterized iPSCs from dermal fibroblasts of an 82-year-old female patient affected by sporadic AD. The AD-iPSCs were differentiated into neuronal cells, in order to generate disease-specific protein association networks modeling the molecular pathology on the transcriptome level of AD, to analyse the reflection of the disease phenotype in gene expression in AD-iPS neuronal cells, in particular in the ubiquitin-proteasome system (UPS), and to address expression of typical AD proteins. We detected the expression of p-tau and GSK3B, a physiological kinase of tau, in neuronal cells derived from AD-iPSCs. Treatment of neuronal cells differentiated from AD-iPSCs with an inhibitor of γ-secretase resulted in the down-regulation of p-tau. Transcriptome analysis of AD-iPS derived neuronal cells revealed significant changes in the expression of genes associated with AD and with the constitutive as well as the inducible subunits of the proteasome complex. The neuronal cells expressed numerous genes associated with sub-regions within the brain thus suggesting the usefulness of our in-vitro model. Moreover, an AD-related protein interaction network composed of APP and GSK3B among others could be generated using neuronal cells differentiated from two AD-iPS cell lines. Conclusions Our study demonstrates how an iPSC-based model system could represent (i) a tool to study the underlying molecular basis of sporadic AD, (ii) a platform for drug screening and toxicology studies which might unveil novel therapeutic avenues for this debilitating neuronal disorder. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1262-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany.
| | - Matthias Megges
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany. .,Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| | - Alessandro Prigione
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Current address: Max Delbrueck Center for Molecular Medicine (MDC), Robert Roessle Str. 10, D-13125, Berlin, Germany.
| | - Bjoern Lichtner
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Mohammad R Toliat
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany.
| | - Wasco Wruck
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| | - Friederike Schröter
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| | - Peter Nuernberg
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany.
| | - Hartmut Kroll
- Institute for Transfusion Medicine Dessau, Red Cross Blood Transfusion Service NSTOB, 06847, Dessau, Germany.
| | - Eugenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany. .,Geriatrics Research Group, Department of Geriatric Medicine, Charité Universitätsmedizin Berlin, Reinickendorfer Str. 61, 13447, Berlin, Germany.
| | | | - Christos C Zoubouliss
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany.
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| |
Collapse
|
39
|
Gertsik N, Chiu D, Li YM. Complex regulation of γ-secretase: from obligatory to modulatory subunits. Front Aging Neurosci 2015; 6:342. [PMID: 25610395 PMCID: PMC4285130 DOI: 10.3389/fnagi.2014.00342] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 11/29/2022] Open
Abstract
γ-Secretase is a four subunit, 19-pass transmembrane enzyme that cleaves amyloid precursor protein (APP), catalyzing the formation of amyloid beta (Aβ) peptides that form amyloid plaques, which contribute to Alzheimer’s disease (AD) pathogenesis. γ-Secretase also cleaves Notch, among many other type I transmembrane substrates. Despite its seemingly promiscuous enzymatic capacity, γ-secretase activity is tightly regulated. This regulation is a function of many cellular entities, including but not limited to the essential γ-secretase subunits, nonessential (modulatory) subunits, and γ-secretase substrates. Regulation is also accomplished by an array of cellular events, such as presenilin (active subunit of γ-secretase) endoproteolysis and hypoxia. In this review we discuss how γ-secretase is regulated with the hope that an advanced understanding of these mechanisms will aid in the development of effective therapeutics for γ-secretase-associated diseases like AD and Notch-addicted cancer.
Collapse
Affiliation(s)
- Natalya Gertsik
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Biochemistry and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | - Danica Chiu
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| |
Collapse
|
40
|
Boda E, Buffo A. Beyond cell replacement: unresolved roles of NG2-expressing progenitors. Front Neurosci 2014; 8:122. [PMID: 24904264 PMCID: PMC4033196 DOI: 10.3389/fnins.2014.00122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 12/19/2022] Open
Abstract
NG2-expressing parenchymal precursors (NG2+p) serve as primary source of myelinating oligodendrocytes in both the developing and adult Central Nervous System (CNS). However, their abundance, limited differentiation potential at adult stages along with stereotypic reaction to injury independent of the extent of myelin loss suggest that NG2+p exert functions additional to myelin production. In support of this view, NG2+p express a complex battery of molecules known to exert neuromodulatory and neuroprotective functions. Further, they establish intimate physical associations with the other CNS cell types, receive functional synaptic contacts and possess ion channels apt to constantly sense the electrical activity of surrounding neurons. These latter features could endow NG2+p with the capability to affect neuronal functions with potential homeostatic outcomes. Here we summarize and discuss current evidence favoring the view that NG2+p can participate in circuit formation, modulate neuronal activity and survival in the healthy and injured CNS, and propose perspectives for studies that may complete our understanding of NG2+p roles in physiology and pathology.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin Turin, Italy
| |
Collapse
|
41
|
Jiang T, Yu JT, Zhu XC, Tan MS, Wang HF, Cao L, Zhang QQ, Shi JQ, Gao L, Qin H, Zhang YD, Tan L. Temsirolimus promotes autophagic clearance of amyloid-β and provides protective effects in cellular and animal models of Alzheimer's disease. Pharmacol Res 2014; 81:54-63. [PMID: 24602800 DOI: 10.1016/j.phrs.2014.02.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 01/25/2023]
Abstract
Accumulation of amyloid-β peptides (Aβ) within brain is a major pathogenic hallmark of Alzheimer's disease (AD). Emerging evidence suggests that autophagy, an important intracellular catabolic process, is involved in Aβ clearance. Here, we investigated whether temsirolimus, a newly developed compound approved by Food and Drug Administration and European Medicines Agency for renal cell carcinoma treatment, would promote autophagic clearance of Aβ and thus provide protective effects in cellular and animal models of AD. HEK293 cells expressing the Swedish mutant of APP695 (HEK293-APP695) were treated with vehicle or 100nM temsirolimus for 24h in the presence or absence of 3-methyladenine (5mM) or Atg5-siRNA, and intracellular Aβ levels as well as autophagy biomarkers were measured. Meanwhile, APP/PS1 mice received intraperitoneal injection of temsirolimus (20mg/kg) every 2 days for 60 days, and brain Aβ burden, autophagy biomarkers, cellular apoptosis in hippocampus, and spatial cognitive functions were assessed. Our results showed that temsirolimus enhanced Aβ clearance in HEK293-APP695 cells and in brain of APP/PS1 mice in an autophagy-dependent manner. Meanwhile, temsirolimus attenuated cellular apoptosis in hippocampus of APP/PS1 mice, which was accompanied by an improvement in spatial learning and memory abilities. In conclusion, our study provides the first evidence that temsirolimus promotes autophagic Aβ clearance and exerts protective effects in cellular and animal models of AD, suggesting that temsirolimus administration may represent a new therapeutic strategy for AD treatment. Meanwhile, these findings emphasize the notion that many therapeutic agents possess pleiotropic actions aside from their main applications.
Collapse
Affiliation(s)
- Teng Jiang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China; Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, China.
| | - Xi-Chen Zhu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China
| | - Lei Cao
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China
| | - Qiao-Quan Zhang
- Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China
| | - Li Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China
| | - Hao Qin
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China; Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, China.
| |
Collapse
|
42
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|