1
|
Tilden EI, Maduskar A, Oldenborg A, Sabatini BL, Chen Y. A Cre-dependent reporter mouse for quantitative real-time imaging of protein kinase A activity dynamics. Sci Rep 2024; 14:3054. [PMID: 38321128 PMCID: PMC10847463 DOI: 10.1038/s41598-024-53313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular signaling dynamics play a crucial role in cell function. Protein kinase A (PKA) is a key signaling molecule that has diverse functions, from regulating metabolism and brain activity to guiding development and cancer progression. We previously developed an optical reporter, FLIM-AKAR, that allows for quantitative imaging of PKA activity via fluorescence lifetime imaging microscopy and photometry. However, using viral infection or electroporation for the delivery of FLIM-AKAR is invasive and results in variable expression. Here, we developed a reporter mouse, FL-AK, which expresses FLIM-AKAR in a Cre-dependent manner from the ROSA26 locus. FL-AK provides robust and consistent expression of FLIM-AKAR over time. Functionally, the mouse line reports an increase in PKA activity in response to activation of both Gαs and Gαq-coupled receptors in brain slices. In vivo, FL-AK reports PKA phosphorylation in response to neuromodulator receptor activation. Thus, FL-AK provides a quantitative, robust, and flexible method to reveal the dynamics of PKA activity in diverse cell types.
Collapse
Affiliation(s)
- Elizabeth I Tilden
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
- Ph.D. Program in Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Aditi Maduskar
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Tilden EI, Maduskar A, Oldenborg A, Sabatini BL, Chen Y. A Cre-dependent reporter mouse for quantitative real-time imaging of Protein Kinase A activity dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565028. [PMID: 37961214 PMCID: PMC10635033 DOI: 10.1101/2023.10.31.565028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intracellular signaling dynamics play a crucial role in cell function. Protein kinase A (PKA) is a key signaling molecule that has diverse functions, from regulating metabolism and brain activity to guiding development and cancer progression. We previously developed an optical reporter, FLIM-AKAR, that allows for quantitative imaging of PKA activity via fluorescence lifetime imaging microscopy and photometry. However, using viral infection or electroporation for the delivery of FLIM-AKAR is invasive, cannot easily target sparse or hard-to-transfect/infect cell types, and results in variable expression. Here, we developed a reporter mouse, FL-AK, which expresses FLIM-AKAR in a Cre-dependent manner from the ROSA26 locus. FL-AK provides robust and consistent expression of FLIM-AKAR over time. Functionally, the mouse line reports an increase in PKA activity in response to activation of both Gαs and Gαq-coupled receptors in brain slices. In vivo, FL-AK reports PKA phosphorylation in response to neuromodulator receptor activation. Thus, FL-AK provides a quantitative, robust, and flexible method to reveal the dynamics of PKA activity in diverse cell types.
Collapse
Affiliation(s)
- Elizabeth I. Tilden
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Ph. D. Program in Neuroscience, Washington University in St. Louis
| | - Aditi Maduskar
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Anna Oldenborg
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
3
|
Hu X, Lei X, Guo J, Fu W, Sun W, Lu Q, Su W, Xu Q, Tu K. The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Front Oncol 2022; 12:927640. [PMID: 35936737 PMCID: PMC9354683 DOI: 10.3389/fonc.2022.927640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant cancers, ranking the seventh highest causes of cancer-related deaths globally. Recently, RNA N6-methyladenosine (m6A) is emerging as one of the most abundant RNA modifications in eukaryote cells, involved in multiple RNA processes including RNA translocation, alternative splicing, maturation, stability, and degradation. As reported, m6A was dynamically and reversibly regulated by its “writers”, “erasers”, and “readers”, Increasing evidence has revealed the vital role of m6A modification in the development of multiple types of cancers including PC. Currently, aberrant m6A modification level has been found in both PC tissues and cell lines. Moreover, abnormal expressions of m6A regulators and m6A-modified genes have been reported to contribute to the malignant development of PC. Here in this review, we will focus on the function and molecular mechanism of m6A-modulated RNAs including coding RNAs as well as non-coding RNAs. Then the m6A regulators will be summarized to reveal their potential applications in the clinical diagnosis, prognosis, and therapeutics of PC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangxiang Lei
- Institute of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| |
Collapse
|
4
|
Zeng J, Zhang H, Tan Y, Wang Z, Li Y, Yang X. m6A demethylase FTO suppresses pancreatic cancer tumorigenesis by demethylating PJA2 and inhibiting Wnt signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:277-292. [PMID: 34484859 PMCID: PMC8385122 DOI: 10.1016/j.omtn.2021.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the deadliest malignancy of the digestive system and is the seventh most common cause of cancer-related deaths worldwide. The incidence and mortality of pancreatic cancer continue to increase, and its 5-year survival rate remains the lowest among all cancers. N6-methyladenine (m6A) is the most abundant reversible RNA modification in various eukaryotic messenger and long noncoding RNAs and plays crucial roles in the occurrence and development of cancers. However, the role of m6A in pancreatic cancer remains unclear. The present study aimed to explore the role of m6A and its regulators in pancreatic cancer and assess its underlying molecular mechanism associated with pancreatic cancer cell proliferation, invasion, and metastasis. Reduced expression of the m6A demethylase, fat mass and obesity-associated protein (FTO), was responsible for the high levels of m6A RNA modification in pancreatic cancer. Moreover, FTO demethylated the m6A modification of praja ring finger ubiquitin ligase 2 (PJA2), thereby reducing its mRNA decay, suppressing Wnt signaling, and ultimately restraining the proliferation, invasion, and metastasis of pancreatic cancer cells. Altogether, this study describes new, potential molecular therapeutic targets for pancreatic cancer that could pave the way to improve patient outcome.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang Liaoning 110004, China
| | - Heying Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang Liaoning 110004, China
| | - Yonggang Tan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang Liaoning 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang Liaoning 110004, China
| | - Yunwei Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang Liaoning 110004, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang Liaoning 110004, China
| |
Collapse
|
5
|
Glucose deprivation affects the expression of genes encoding cAMP-activated protein kinase and related proteins in U87 glioma cells in ERN1 dependent manner. Endocr Regul 2020; 54:244-254. [PMID: 33885249 DOI: 10.2478/enr-2020-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective. The aim of this investigation was to study the expression of genes encoding cAMP-activated protein kinase catalytic and regulatory A subunits (PRKACA and PRKAR1A) and related proteins such as cAMP-dependent protein kinase inhibitors A and G (PKIA and PKIG), catalytic subunit A of protein phosphatase 3 (PPP3CA), A-kinase anchoring protein 12 (AKAP12), and praja ring finger ubiquitin ligase 2 (PJA2) in U87 glioma cells in response to glucose deprivation in both control U87 glioma cells and cells with ERN1 (endoplasmic reticulum to nucleus signaling 1) knockdown, the major pathway of the endoplasmic reticulum stress signaling, for evaluation of possible significance of glucose deprivation in ERN1 dependent regulation of glioma growth.Methods. The expression level of PRKA related genes was studied in control (transfected by vector) and ERN1 knockdown U87 glioma cells under glucose deprivation by real-time quantitative polymerase chain reaction.Results. It was shown that the expression level of PRKACA and PKIA genes was down-regulated in control glioma cells treated by glucose deprivation, but PJA2 gene was up-regulated. At the same time, the expression of four other genes (PRKAR1A, PKIG, AKAP12, and PPP3CA) was resistant to this experimental condition. Furthermore, ERN1 knockdown of glioma cells significantly modified the effect glucose deprivation on the expression almost all studied genes. Thus, treatment of glioma cells with inhibited ERN1 enzymatic activity by glucose deprivation lead to a more significant down-regulation of the expression level of PKIA and to suppression PRKAR1A gene expressions. Moreover, the ERN1 knockdown introduced up-regulation of PKIG and AKAP12 gene expressions in glioma cells treated by glucose deprivation and eliminated the sensitivity of PJA2 gene to this experimental condition.Conclusions. Results of this investigation demonstrated that ERN1 knockdown significantly modified the sensitivity of most studied PRKA related gene expressions to glucose deprivation and that these changes are a result of complex interactions of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to the suppression of glioma cell proliferation and their possibly chemoresistance.
Collapse
|
6
|
Gong M, Ye S, Li WX, Zhang J, Liu Y, Zhu J, Lv W, Zhang H, Wang J, Lu A, He K. Regulatory function of praja ring finger ubiquitin ligase 2 mediated by the P2rx3/P2rx7 axis in mouse hippocampal neuronal cells. Am J Physiol Cell Physiol 2020; 318:C1123-C1135. [PMID: 32267716 DOI: 10.1152/ajpcell.00070.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Praja2 (Pja2), a member of the growing family of mammalian RING E3 ubiquitin ligases, is reportedly involved in not only several types of cancer but also neurological diseases and disorders, but the genetic mechanism underlying the regulation of Pja2 in the nervous system remains unclear. To study the cellular and molecular functions of Pja2 in mouse hippocampal neuronal cells (MHNCs), we used gain- and loss-of-function manipulations of Pja2 in HT-22 cells and tested their regulatory effects on three Alzheimer's disease (AD) genes and cell proliferation. The results revealed that the expression of AD markers, including amyloid beta precursor protein (App), microtubule-associated protein tau (Mapt), and gamma-secretase activating protein (Gsap), could be inhibited by Pja2 overexpression and activated by Pja2 knockdown. In addition, HT-22 cell proliferation was enhanced by Pja2 upregulation and suppressed by its downregulation. We also evaluated and quantified the targets that responded to the enforced expression of Pja2 by RNA-Seq, and the results showed that purinergic receptor P2X, ligand-gated ion channel 3 and 7 (P2rx3 and P2rx7), which show different expression patterns in the critical calcium signaling pathway, mediated the regulatory effect of Pja2 in HT-22 cells. Functional studies indicated that Pja2 regulated HT-22 cells development and AD marker genes by inhibiting P2rx3 but promoting P2rx7, a gene downstream of P2rx3. In conclusion, our results provide new insights into the regulatory function of the Pja2 gene in MHNCs and thus underscore the potential relevance of this molecule to the pathophysiology of AD.
Collapse
Affiliation(s)
- Mengting Gong
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jian Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yanjun Liu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jie Zhu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenwen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jing Wang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China.,School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
7
|
Leiphrakpam PD, Brattain MG, Black JD, Wang J. TGFβ and IGF1R signaling activates protein kinase A through differential regulation of ezrin phosphorylation in colon cancer cells. J Biol Chem 2018; 293:8242-8254. [PMID: 29599290 DOI: 10.1074/jbc.ra117.001299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/14/2018] [Indexed: 01/30/2023] Open
Abstract
Aberrant cell survival plays a critical role in cancer progression and metastasis. We have previously shown that ezrin, a cAMP-dependent protein kinase A-anchoring protein (AKAP), is up-regulated in colorectal cancer (CRC) liver metastasis. Phosphorylation of ezrin at Thr-567 activates ezrin and plays an important role in CRC cell survival associated with XIAP and survivin up-regulation. In this study, we demonstrate that in FET and GEO colon cancer cells, knockdown of ezrin expression or inhibition of ezrin phosphorylation at Thr-567 increases apoptosis through protein kinase A (PKA) activation in a cAMP-independent manner. Transforming growth factor (TGF) β signaling inhibits ezrin phosphorylation in a Smad3-dependent and Smad2-independent manner and regulates pro-apoptotic function through ezrin-mediated PKA activation. On the other hand, ezrin phosphorylation at Thr-567 by insulin-like growth factor 1 receptor (IGF1R) signaling leads to cAMP-dependent PKA activation and enhances cell survival. Further studies indicate that phosphorylated ezrin forms a complex with PKA RII, and dephosphorylated ezrin dissociates from the complex and facilitates the association of PKA RII with AKAP149, both of which activate PKA yet lead to either cell survival or apoptosis. Thus, our studies reveal a novel mechanism of differential PKA activation mediated by TGFβ and IGF1R signaling through regulation of ezrin phosphorylation in CRC, resulting in different cell fates. This is of significance because TGFβ and IGF1R signaling pathways are well-characterized tumor suppressor and oncogenic pathways, respectively, with important roles in CRC tumorigenesis and metastasis. Our studies indicate that they cross-talk and antagonize each other's function through regulation of ezrin activation. Therefore, ezrin may be a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Michael G Brattain
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jing Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
8
|
Kjällquist U, Erlandsson R, Tobin NP, Alkodsi A, Ullah I, Stålhammar G, Karlsson E, Hatschek T, Hartman J, Linnarsson S, Bergh J. Exome sequencing of primary breast cancers with paired metastatic lesions reveals metastasis-enriched mutations in the A-kinase anchoring protein family (AKAPs). BMC Cancer 2018; 18:174. [PMID: 29433456 PMCID: PMC5810006 DOI: 10.1186/s12885-018-4021-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background Tumor heterogeneity in breast cancer tumors is today widely recognized. Most of the available knowledge in genetic variation however, relates to the primary tumor while metastatic lesions are much less studied. Many studies have revealed marked alterations of standard prognostic and predictive factors during tumor progression. Characterization of paired primary- and metastatic tissues should therefore be fundamental in order to understand mechanisms of tumor progression, clonal relationship to tumor evolution as well as the therapeutic aspects of systemic disease. Methods We performed full exome sequencing of primary breast cancers and their metastases in a cohort of ten patients and further confirmed our findings in an additional cohort of 20 patients with paired primary and metastatic tumors. Furthermore, we used gene expression from the metastatic lesions and a primary breast cancer data set to study the gene expression of the AKAP gene family. Results We report that somatic mutations in A-kinase anchoring proteins are enriched in metastatic lesions. The frequency of mutation in the AKAP gene family was 10% in the primary tumors and 40% in metastatic lesions. Several copy number variations, including deletions in regions containing AKAP genes were detected and showed consistent patterns in both investigated cohorts. In a second cohort containing 20 patients with paired primary and metastatic lesions, AKAP mutations showed an increasing variant allele frequency after multiple relapses. Furthermore, gene expression profiles from the metastatic lesions (n = 120) revealed differential expression patterns of AKAPs relative to the tumor PAM50 intrinsic subtype, which were most apparent in the basal-like subtype. This pattern was confirmed in primary tumors from TCGA (n = 522) and in a third independent cohort (n = 182). Conclusion Several studies from primary cancers have reported individual AKAP genes to be associated with cancer risk and metastatic relapses as well as direct involvement in cellular invasion and migration processes. Our findings reveal an enrichment of mutations in AKAP genes in metastatic breast cancers and suggest the involvement of AKAPs in the metastatic process. In addition, we report an AKAP gene expression pattern that consistently follows the tumor intrinsic subtype, further suggesting AKAP family members as relevant players in breast cancer biology. Electronic supplementary material The online version of this article (10.1186/s12885-018-4021-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Una Kjällquist
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden. .,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Rikard Erlandsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Amjad Alkodsi
- Research Programs Unit, Genome-Scale Biology and Medicum, University of Helsinki, Helsinki, Finland
| | - Ikram Ullah
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Gustav Stålhammar
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eva Karlsson
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Thomas Hatschek
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Zhong J, Wang H, Chen W, Sun Z, Chen J, Xu Y, Weng M, Shi Q, Ma D, Miao C. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death Dis 2017; 8:e2763. [PMID: 28471450 PMCID: PMC5520684 DOI: 10.1038/cddis.2017.102] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023]
Abstract
Sepsis is a systemic inflammation caused by infection. The balance between M1–M2 macrophage polarization has an essential role in the pathogenesis of sepsis. However, the exact mechanism underlying macrophage polarization is unclear. We previously showed that levels of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) were significantly elevated in septic patients compared with those in nonseptic patients, and involved in the activation of Toll-like receptor (TLR) 2/c-Jun N-terminal kinase (JNK)/nuclear factor (NF)-κB pathway. In the present study, we explored whether MFHAS1 was involved in macrophage polarization and determined the effect of MFHAS1 on inflammation. We performed in vitro pulldown assays and in vivo co-immunoprecipitation assays and found that E3 ubiquitin ligase praja2 could directly bind to MFHAS1. In situ immunostaining analysis confirmed the colocalization of endogenous praja2 with MFHAS1. We first reported that praja2 promotes the accumulation of ubiquitylated MFHAS1 but does not degrade it. Moreover, our results indicate that MFHAS1 ubiquitylation by praja2 positively regulates TLR2-mediated JNK/p38 pathway and promotes M1 macrophage polarization, M2 to M1 macrophage transformation and inflammation.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huihui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Wankun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhirong Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yajun Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meilin Weng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiqing Shi
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
10
|
Colombo M, Mirandola L, Reidy A, Suvorava N, Konala V, Chiaramonte R, Grizzi F, Rahman RL, Jenkins MR, Nugyen DD, Dalhbeck S, Cobos E, Figueroa JA, Chiriva-Internati M. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis. Int Rev Immunol 2016; 34:188-99. [PMID: 25901861 DOI: 10.3109/08830185.2015.1027629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano , Milano , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chae YK, Chung SY, Davis AA, Carneiro BA, Chandra S, Kaplan J, Kalyan A, Giles FJ. Adenoid cystic carcinoma: current therapy and potential therapeutic advances based on genomic profiling. Oncotarget 2015; 6:37117-34. [PMID: 26359351 PMCID: PMC4741919 DOI: 10.18632/oncotarget.5076] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a rare cancer with high potential for recurrence and metastasis. Efficacy of current treatment options, particularly for advanced disease, is very limited. Recent whole genome and exome sequencing has dramatically improved our understanding of ACC pathogenesis. A balanced translocation resulting in the MYB-NFIB fusion gene appears to be a fundamental signature of ACC. In addition, sequencing has identified a number of other driver genes mutated in downstream pathways common to other well-studied cancers. Overexpression of oncogenic proteins involved in cell growth, adhesion, cell cycle regulation, and angiogenesis are also present in ACC. Collectively, studies have identified genes and proteins for targeted, mechanism-based, therapies based on tumor phenotypes, as opposed to nonspecific cytotoxic agents. In addition, although few studies in ACC currently exist, immunotherapy may also hold promise. Better genetic understanding will enable treatment with novel targeted agents and initial exploration of immune-based therapies with the goal of improving outcomes for patients with ACC.
Collapse
Affiliation(s)
- Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Su Yun Chung
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew A. Davis
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benedito A. Carneiro
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunandana Chandra
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aparna Kalyan
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis J. Giles
- Northwestern Medicine Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Esmaeili R, Majidzadeh-A K, Farahmand L, Ghasemi M, Salehi M, Khoshdel AR. AKAP3 correlates with triple negative status and disease free survival in breast cancer. BMC Cancer 2015; 15:681. [PMID: 26458542 PMCID: PMC4603348 DOI: 10.1186/s12885-015-1668-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/01/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer-testis antigens are among the new promising biomarkers, especially for targeted therapy. Aberrant and specific expression of these proteins has been reported in some tumor tissues. Also understanding their differential role in normal and cancer tissues may introduce them as new candidates for biomarker in cancer. METHODS AKAP3 expression was investigated in 162 tumors, normal adjacent and normal tissues of the breast with Real-Time PCR. Also the correlation between the gene expression and clinico-pathologic features of the tumors and treatment regimen was evaluated. RESULTS There was an association between lack of AKAP3 expression in tumor tissues and triple negative status (p=. 03). There was also a correlation between lack of this marker and tumor size (p = .01) and stage (p = .04). Lack of AKAP3 in normal adjacent tissues was associated with poor prognosis. Kaplan Meier plot demonstrated a remarkable better 5-year disease free survival in AKAP3 positive normal adjacent group. CONCLUSIONS It was found that this relationship is originated from the difference in AKAP3 expression, not therapy distribution between two groups of patients. Thus, it may be a proper biomarker candidate for triple negative breast cancer patients. Also, testing AKAP3 in normal tissue of the patients may be used to predict the outcome of the treatment.
Collapse
Affiliation(s)
- Rezvan Esmaeili
- Cancer Genetics Department, Breast Cancer Research Center, ACECR, No 146, South Gandhi Ave, Vanak Sq., Tehran, Iran.
| | - Keivan Majidzadeh-A
- Cancer Genetics Department, Breast Cancer Research Center, ACECR, No 146, South Gandhi Ave, Vanak Sq., Tehran, Iran.
- Tasnim Biotechnology Research Center (TBRC), School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Leila Farahmand
- Cancer Genetics Department, Breast Cancer Research Center, ACECR, No 146, South Gandhi Ave, Vanak Sq., Tehran, Iran.
| | - Maryam Ghasemi
- Tasnim Biotechnology Research Center (TBRC), School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Malihe Salehi
- Cancer Genetics Department, Breast Cancer Research Center, ACECR, No 146, South Gandhi Ave, Vanak Sq., Tehran, Iran.
| | - Ali Reza Khoshdel
- Department of epidemiology, School of Medicine, Aja University of Medical Science, Tehran, Iran.
| |
Collapse
|
13
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
14
|
Leiphrakpam PD, Rajput A, Mathiesen M, Agarwal E, Lazenby AJ, Are C, Brattain MG, Chowdhury S. Ezrin expression and cell survival regulation in colorectal cancer. Cell Signal 2014; 26:868-79. [PMID: 24462708 PMCID: PMC3974425 DOI: 10.1016/j.cellsig.2014.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the second largest cause of cancer deaths in the United States. A key barrier that prevents better outcomes for this type of cancer as well as other solid tumors is the lack of effective therapies against the metastatic disease. Thus there is an urgent need to fill this gap in cancer therapy. We utilized a 2D-DIGE proteomics approach to identify and characterize proteins that are differentially regulated between primary colon tumor and liver metastatic deposits of the IGF1R-dependent GEO human CRC xenograft, orthotopically implanted in athymic nude mice that may serve as potential therapeutic targets against CRC metastasis. We observed increased expression of ezrin in liver metastasis in comparison to the primary colonic tumor. Increased ezrin expression was further confirmed by western blot and microarray analyses. Ezrin, a cytoskeletal protein belonging to Ezrin-Radixin-Moesin (ERM) family plays important roles in cell motility, invasion and metastasis. However, its exact function in colorectal cancer is not well characterized. Establishment of advanced GEO cell lines with enhanced liver-metastasizing ability showed a significant increase in ezrin expression in liver metastasis. Increased phosphorylation of ezrin at the T567 site (termed here as p-ezrin T567) was observed in liver metastasis. IHC studies of human CRC patient specimens showed an increased expression of p-ezrin T567 in liver metastasis compared to the primary tumors of the same patient. Ezrin modulation by siRNA, inhibitors and T567A/D point mutations significantly downregulated inhibitors of apoptosis (IAP) proteins XIAP and survivin that have been linked to increased aberrant cell survival and metastasis and increased cell death. Inhibition of the IGF1R signaling pathway by humanized recombinant IGF1R monoclonal antibody MK-0646 in athymic mouse subcutaneous xenografts resulted in inhibition of p-ezrin T567 indicating ezrin signaling is downstream of the IGF1R signaling pathway. We identified increased expression of p-ezrin T567 in CRC liver metastasis in both orthotopically implanted GEO tumors as well as human patient specimens. We report for the first time that p-ezrin T567 is downstream of the IGF1R signaling and demonstrate that ezrin regulates cell survival through survivin/XIAP modulation.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Ashwani Rajput
- Department of Surgery, University of New Mexico Health Science Center, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| | - Michelle Mathiesen
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Ekta Agarwal
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Audrey J Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983515 Nebraska Medical Center, Omaha, NE 68198-3135, United States
| | - Chandrakanth Are
- Department of Surgical Oncology, University of Nebraska Medical Center, 984533 Nebraska Medical Center, Omaha, NE 68198-4533, United States
| | - Michael G Brattain
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States.
| | - Sanjib Chowdhury
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States.
| |
Collapse
|
15
|
Role of calmodulin-calmodulin kinase II, cAMP/protein kinase A and ERK 1/2 on Aeromonas hydrophila-induced apoptosis of head kidney macrophages. PLoS Pathog 2014; 10:e1004018. [PMID: 24763432 PMCID: PMC3999153 DOI: 10.1371/journal.ppat.1004018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/05/2014] [Indexed: 01/06/2023] Open
Abstract
The role of calcium (Ca2+) and its dependent protease calpain in Aeromonas hydrophila-induced head kidney macrophage (HKM) apoptosis has been reported. Here, we report the pro-apoptotic involvement of calmodulin (CaM) and calmodulin kinase II gamma (CaMKIIg) in the process. We observed significant increase in CaM levels in A. hydrophila-infected HKM and the inhibitory role of BAPTA/AM, EGTA, nifedipine and verapamil suggested CaM elevation to be Ca2+-dependent. Our studies with CaM-specific siRNA and the CaM inhibitor calmidazolium chloride demonstrated CaM to be pro-apoptotic that initiated the downstream expression of CaMKIIg. Using the CaMKIIg-targeted siRNA, specific inhibitor KN-93 and its inactive structural analogue KN-92 we report CaM-CaMKIIg signalling to be critical for apoptosis of A. hydrophila-infected HKM. Inhibitor studies further suggested the role of calpain-2 in CaMKIIg expression. CaMK Kinase (CaMKK), the other CaM dependent kinase exhibited no role in A. hydrophila-induced HKM apoptosis. We report increased production of intracellular cAMP in infected HKM and our results with KN-93 or KN-92 implicate the role of CaMKIIg in cAMP production. Using siRNA to PKACA, the catalytic subunit of PKA, anti-PKACA antibody and H-89, the specific inhibitor for PKA we prove the pro-apoptotic involvement of cAMP/PKA pathway in the pathogenicity of A. hydrophila. Our inhibitor studies coupled with siRNA approach further implicated the role of cAMP/PKA in activation of extracellular signal-regulated kinase 1 and 2 (ERK 1/2). We conclude that the alteration in intracellular Ca2+ levels initiated by A. hydrophila activates CaM and calpain-2; both pathways converge on CaMKIIg which in turn induces cAMP/PKA mediated ERK 1/2 phosphorylation leading to caspase-3 mediated apoptosis of infected HKM. Aeromonas hydrophila is a natural fish pathogen and is known to induce apoptosis of HKM. Head kidney is an important immune-organ in fish and HKM are critical for immunity against the invading pathogen. The mechanisms of cell death induced by A. hydrophila are incompletely characterized. We have studied the role of Ca2+-dependent signalling pathways in the induction of A. hydrophila-induced HKM apoptosis. We observed that A. hydrophila infection led to increased CaM expression in infected HKM which was Ca2+-dependent. The inhibitor and siRNA studies suggested CaM to be pro-apoptotic and triggered CaMKIIg expression in the infected HKM. Calpain-2 appeared to influence CaMKIIg expression. However, further studies are needed to understand the process. We report that the CaM-CaMKIIg pathway is important for initiating cAMP production within the infected HKM. The pro-apoptotic activation of cAMP dependent PKA was quite evident. The activation of ERK 1/2 was observed in the HKM and results clearly suggested the pro-active role of cAMP/PKA in the process. Thus we conclude that CaM-CaMKIIg initiates the cAMP/PKA pathway that induces ERK 1/2 phosphorylation to promote caspase-3 mediated apoptosis of the A. hydrophila-infected HKM.
Collapse
|