1
|
Zhang R, Farshadyeganeh P, Ohkawara B, Nakajima K, Takeda JI, Ito M, Zhang S, Miyasaka Y, Ohno T, Mori-Yoshimura M, Masuda A, Ohno K. Muscle-specific lack of Gfpt1 triggers ER stress to alleviate misfolded protein accumulation. Dis Model Mech 2024; 17:dmm050768. [PMID: 38903011 PMCID: PMC11554261 DOI: 10.1242/dmm.050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.
Collapse
Affiliation(s)
- Ruchen Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Paniz Farshadyeganeh
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-8775, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| |
Collapse
|
2
|
Lee MH, Lee JH, Kim WJ, Kim SH, Kim SY, Kim HS, Kim TJ. Linoleic Acid Attenuates Denervation-Induced Skeletal Muscle Atrophy in Mice through Regulation of Reactive Oxygen Species-Dependent Signaling. Int J Mol Sci 2022; 23:4778. [PMID: 35563168 PMCID: PMC9105847 DOI: 10.3390/ijms23094778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Muscle atrophy is a major muscle disease, the symptoms of which include decreased muscle volume leading to insufficient muscular support during exercise. One cause of muscle atrophy is the induction of oxidative stress by reactive oxygen species (ROS). This study aimed to identify the antioxidant mechanism of linoleic acid (LA) in muscle atrophy caused by oxidative stress. H2O2 has been used to induce oxidative stress in myoblasts in vitro. C2C12 myoblasts treated with H2O2 exhibited decreased viability and increased ROS synthesis. However, with LA treatment, the cells tended to recover from oxidative effects similar to those of the control groups. At the molecular level, the expression of superoxide dismutase 1 (SOD1), Bax, heat shock protein 70 (HSP70), and phosphorylated forkhead box protein O1 was increased by oxidative stress, causing apoptosis. LA treatment suppressed these changes. In addition, the expression of MuRF1 and Atrogin-1/MAFbx mRNA increased under oxidative stress but not in the LA-treated group. Sciatic denervation of C57BL/6 mice manifested as atrophy of the skeletal muscle in micro-computed tomography (micro-CT). The protein expression levels of SOD1, HSP70, and MuRF1 did not differ between the atrophied muscle tissues and C2C12 myoblasts under oxidative stress. With LA treatment, muscle atrophy recovered and protein expression was restored to levels similar to those in the control. Therefore, this study suggests that LA may be a candidate substance for preventing muscle atrophy.
Collapse
Affiliation(s)
- Myung-Hun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Wan-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Seo Ho Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Sun-Young Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea;
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
- Research & Development Center, Doctor TJ Co., Ltd., Wonju 26493, Korea
| |
Collapse
|
3
|
Albadrani H, Ammar T, Bader M, Renaud JM. Angiotensin 1-7 prevents the excessive force loss resulting from 14- and 28-day denervation in mouse EDL and soleus muscle. J Gen Physiol 2021; 153:212748. [PMID: 34739541 PMCID: PMC8576869 DOI: 10.1085/jgp.201912556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/30/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Denervation leads to muscle atrophy, which is described as muscle mass and force loss, the latter exceeding expectation from mass loss. The objective of this study was to determine the efficiency of angiotensin (Ang) 1–7 at reducing muscle atrophy in mouse extensor digitorum longus (EDL) and soleus following 14- and 28-d denervation periods. Some denervated mice were treated with Ang 1–7 or diminazene aceturate (DIZE), an ACE2 activator, to increase Ang 1–7 levels. Ang 1–7/DIZE treatment had little effect on muscle mass loss and fiber cross-sectional area reduction. Ang 1–7 and DIZE fully prevented the loss of tetanic force normalized to cross-sectional area and accentuated the increase in twitch force in denervated muscle. However, they did not prevent the shift of the force–frequency relationship toward lower stimulation frequencies. The Ang 1–7/DIZE effects on twitch and tetanic force were completely blocked by A779, a MasR antagonist, and were not observed in MasR−/− muscles. Ang 1–7 reduced the extent of membrane depolarization, fully prevented the loss of membrane excitability, and maintained the action potential overshoot in denervated muscles. Ang 1–7 had no effect on the changes in α-actin, myosin, or MuRF-1, atrogin-1 protein content or the content of total or phosphorylated Akt, S6, and 4EPB. This is the first study that provides evidence that Ang 1–7 maintains normal muscle function in terms of maximum force and membrane excitability during 14- and 28-d periods after denervation.
Collapse
Affiliation(s)
- Hind Albadrani
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Majmaah University, Department of Medical Laboratory Sciences, Al Majma'ah, Saudi Arabia
| | - T Ammar
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.,University of Lübeck, Institute for Biology, Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Jean-Marc Renaud
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Yue L, Talukder MAH, Gurjar A, Lee JI, Noble M, Dirksen RT, Chakkalakal J, Elfar JC. 4-Aminopyridine attenuates muscle atrophy after sciatic nerve crush injury in mice. Muscle Nerve 2019; 60:192-201. [PMID: 31093982 DOI: 10.1002/mus.26516] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION We recently demonstrated the beneficial effects of 4-aminopyridine (4-AP), a potassium channel blocker, in enhancing remyelination and recovery of nerve conduction velocity and motor function after sciatic nerve crush injury in mice. Although muscle atrophy occurs very rapidly after nerve injury, the effect of 4-AP on muscle atrophy and intrinsic muscle contractile function is largely unknown. METHODS Mice were assigned to sciatic nerve crush injury and no-injury groups and were followed for 3, 7, and 14 days with/without 4-AP or saline treatment. Morphological, functional, and transcriptional properties of skeletal muscle were assessed. RESULTS In addition to improving in vivo function, 4-AP significantly reduced muscle atrophy with increased muscle fiber diameter and contractile force. Reduced muscle atrophy was associated with attenuated expression of atrophy-related genes and increased expression of proliferating stem cells. DISCUSSION These findings provide new insights into the potential therapeutic benefits of 4-AP against nerve injury-induced muscle atrophy and dysfunction. Muscle Nerve 60: 192-201, 2019.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, Pennsylvania, 17033, USA
| | - Anagha Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, Pennsylvania, 17033, USA
| | - Jung Il Lee
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, South Korea
| | - Mark Noble
- Department of Biomedical Genetics, The University of Rochester Medical Center Rochester, New York, USA
| | - Robert T Dirksen
- Department of Pharmacology & Physiology, The University of Rochester Medical Center Rochester, New York, USA
| | - Joe Chakkalakal
- Department of Pharmacology and Physiology and Biomedical Engineering, The University of Rochester Medical Center Rochester, New York, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, Pennsylvania, 17033, USA
| |
Collapse
|
5
|
Otsuka Y, Egawa K, Kanzaki N, Izumo T, Rogi T, Shibata H. Quercetin glycosides prevent dexamethasone-induced muscle atrophy in mice. Biochem Biophys Rep 2019; 18:100618. [PMID: 30805562 PMCID: PMC6372881 DOI: 10.1016/j.bbrep.2019.100618] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 02/04/2023] Open
Abstract
Although quercetin has numerous biological benefits, including preventing muscle atrophy due to disuse, no reports have been published to date about the preventive effects and molecular mechanisms underlying drug-induced muscle atrophy. Highly soluble and bioavailable quercetin glycosides (QGs) were used to examine the inhibition of dexamethasone (DEX)-induced muscle atrophy in vivo. Male BALB/cCrSlc mice were treated with or without QGs for 7 days ad libitum, followed by addition of DEX to their drinking water for a further 7 days. The weight of gastrocnemius (GM) adjusted by body weight was significantly decreased on day 7 after DEX treatment. DEX-induced decrease of GM weight was improved by QG co-administration on day 7. The mRNA levels of muscle atrophy-related genes in the gastrocnemius were significantly lowered by QGs on day 1. In particular, the expression of myostatin, a master regulator of muscle mass homeostasis, was suppressed to that of the control level. In murine C2C12 myotubes, quercetin elevated the phosphorylation of Akt, which are downstream of the myostatin pathway, as well as expression of atrogenes. We demonstrated the protective effect of QGs in DEX-induced muscle atrophy, which might depend on the suppression of myostatin signaling.
Collapse
Affiliation(s)
- Yuta Otsuka
- Institute for Health Care Science, Suntory Wellness Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Kahori Egawa
- Institute for Health Care Science, Suntory Wellness Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Noriyuki Kanzaki
- Institute for Health Care Science, Suntory Wellness Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| |
Collapse
|
6
|
Li W, Zhang H, Qi S, Qin J, Guan H, Li J, An X, Du R. Molecular Cloning and Motif Identification of the Sheep Musclin Gene Promoter. DNA Cell Biol 2017; 36:1093-1098. [PMID: 28981327 DOI: 10.1089/dna.2017.3762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Musclin is a bioactive factor that functions in regulating the muscle growth and metabolism. To investigate the transcriptional regulatory mechanism of the gene, the 1.4 kb musclin promoter in sheep was cloned (GenBank accession: JX966391) and the sequence was analyzed to predict the motifs associated with muscle growth. Next the enhanced green fluorescent protein (EGFP) was selected as the reporter gene and various wild-type and motif-mutant vectors were constructed. The transcriptional regulatory activities were compared by observing the fluorescence strength and detecting the EGFP mRNA expression in C2C12 myoblasts transfected with the vectors. The results showed that the different lengths of promoters could drive the transcription of EGFP and the mutation of some motifs up- or downregulated the activity of the promoter. Furthermore, the electrophoresis mobility shift assay showed that these motifs regulated the musclin gene transcription through binding to the corresponding transcriptional factors in sheep muscle tissue.
Collapse
Affiliation(s)
- Weizhen Li
- 1 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Shanxi, People's Republic of China
| | - Hongqiang Zhang
- 1 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Shanxi, People's Republic of China
| | - Shuai Qi
- 1 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Shanxi, People's Republic of China
| | - Jian Qin
- 2 Centre of Experiment Teaching, Shanxi Agricultural University , Shanxi, People's Republic of China .,3 College of Life Science, Shanxi Agricultural University , Shanxi, People's Republic of China
| | - Hong Guan
- 4 State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University , Beijing, People's Republic of China
| | - Jianwei Li
- 4 State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University , Beijing, People's Republic of China
| | - Xiaorong An
- 4 State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University , Beijing, People's Republic of China
| | - Rong Du
- 1 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Shanxi, People's Republic of China
| |
Collapse
|
7
|
Kim DS, Cha HN, Jo HJ, Song IH, Baek SH, Dan JM, Kim YW, Kim JY, Lee IK, Seo JS, Park SY. TLR2 deficiency attenuates skeletal muscle atrophy in mice. Biochem Biophys Res Commun 2015; 459:534-40. [PMID: 25749338 DOI: 10.1016/j.bbrc.2015.02.144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Oxidative stress and inflammation are associated with skeletal muscle atrophy. Because the activation of toll-like receptor (TLR) 2 induces oxidative stress and inflammation, TLR2 may be directly linked to skeletal muscle atrophy. This study examined the role of TLR2 in skeletal muscle atrophy in wild-type (WT) and TLR2 knockout (KO) mice. Immobilization for 2 weeks increased the expression of cytokine genes and the levels of carbonylated proteins and nitrotyrosine in the skeletal muscle, but these increases were lower in the TLR2 KO mice. Muscle weight loss and a reduction in treadmill running times induced by immobilization were also attenuated in TLR2 KO mice. Furthermore, immobilization increased the protein levels of forkhead box O 1/3, atrogin-1 and muscle ring finger 1 in the WT mice, which was attenuated in TLR2 KO mice. In addition, immobilization-associated increases in ubiquitinated protein levels were lower in the TLR2 KO mice. Immobilization increased the phosphorylation of Akt and p70S6K similarly in WT and KO mice. Furthermore, cardiotoxin injection into the skeletal muscle increased the protein levels of atrogin-1, interleukin-6, and nitrotyrosine and increased the levels of ubiquitinated proteins, although these levels were increased to a lesser extent in TLR2 KO mice. These results suggest that TLR2 is involved in skeletal muscle atrophy, and the inhibition of TLR2 offers a potential target for preventing skeletal muscle atrophy.
Collapse
Affiliation(s)
- Dae-Sung Kim
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Hye Jun Jo
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Jin-Myoung Dan
- Department of Orthopedic Surgery, Gumi CHA University Hospital, Gumi 730-728, South Korea
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Jong-Yeon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University, Daegu 700-721, South Korea
| | - Jae-Sung Seo
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea.
| |
Collapse
|