1
|
Lai KC, Chueh FS, Ma YS, Chou YC, Chen JC, Liao CL, Huang YP, Peng SF. Phenethyl isothiocyanate and irinotecan synergistically induce cell apoptosis in colon cancer HCT 116 cells in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:457-469. [PMID: 37792803 DOI: 10.1002/tox.23993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Irinotecan (IRI), an anticancer drug to treat colon cancer patients, causes cytotoxic effects on normal cells. Phenethyl isothiocyanate (PEITC), rich in common cruciferous plants, has anticancer activities (induction of cell apoptosis) in many human cancer cells, including colon cancer cells. However, the anticancer effects of IRI combined with PEITC on human colon cancer cells in vitro were unavailable. Herein, the aim of this study is to focus on the apoptotic effects of the combination of IRI and PEITC on human colon cancer HCT 116 cells in vitro. Propidium iodide (PI) exclusion and Annexin V/PI staining assays showed that IRI combined with PEITC decreased viable cell number and induced higher cell apoptosis than that of IRI or PEITC only in HCT 116 cells. Moreover, combined treatment induced higher levels of reactive oxygen species (ROS) and Ca2+ than that of IRI or PEITC only. Cells pre-treated with N-acetyl-l-cysteine (scavenger of ROS) and then treated with IRI, PEITC, or IRI combined with PEITC showed increased viable cell numbers than that of IRI or PEITC only. IRI combined with PEITC increased higher caspase-3, -8, and -9 activities than that of IRI or PEITC only by flow cytometer assay. IRI combined with PEITC induced higher levels of ER stress-, mitochondria-, and caspase-associated proteins than that of IRI or PEITC treatment only in HCT 116 cells. Based on these observations, PEITC potentiates IRI anticancer activity by promoting cell apoptosis in the human colon HCT 116 cells. Thus, PEITC may be a potential enhancer for IRI in humans as an anticolon cancer drug in the future.
Collapse
Affiliation(s)
- Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Surgery, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Ching-Lung Liao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
A Review on Annona muricata and Its Anticancer Activity. Cancers (Basel) 2022; 14:cancers14184539. [PMID: 36139697 PMCID: PMC9497149 DOI: 10.3390/cancers14184539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is becoming more prevalent, raising concerns regarding how well current treatments work. Cancer patients frequently seek alternative treatments to surgery, chemotherapy, and radiation therapy. The use of medicinal plants in both preventative and curative healthcare is widely acknowledged. The compounds of graviola have shown promise as possible cancer-fighting agents and could be used to treat cancer. This review discusses bioactive metabolites present in graviola and their role in affecting the growth and death of different cancer cell types and the molecular mechanism of how it works to downregulate anti-apoptotic genes and the genes involved in pro-cancer metabolic pathways. Also, it reviews how simultaneously increasing the expression of genes promotes apoptosis and causes cancer cells to die so that the active phytochemicals found in graviola could be used as a promising anti-cancer agent. Abstract The ongoing rise in the number of cancer cases raises concerns regarding the efficacy of the various treatment methods that are currently available. Consequently, patients are looking for alternatives to traditional cancer treatments such as surgery, chemotherapy, and radiotherapy as a replacement. Medicinal plants are universally acknowledged as the cornerstone of preventative medicine and therapeutic practices. Annona muricata is a member of the family Annonaceae and is familiar for its medicinal properties. A. muricata has been identified to have promising compounds that could potentially be utilized for the treatment of cancer. The most prevalent phytochemical components identified and isolated from this plant are alkaloids, phenols, and acetogenins. This review focuses on the role of A. muricata extract against various types of cancer, modulation of cellular proliferation and necrosis, and bioactive metabolites responsible for various pharmacological activities along with their ethnomedicinal uses. Additionally, this review highlights the molecular mechanism of the role of A. muricata extract in downregulating anti-apoptotic and several genes involved in the pro-cancer metabolic pathways and decreasing the expression of proteins involved in cell invasion and metastasis while upregulating proapoptotic genes and genes involved in the destruction of cancer cells. Therefore, the active phytochemicals identified in A. muricata have the potential to be employed as a promising anti-cancer agent.
Collapse
|
3
|
Akbari Z, Dijojin RT, Zamani Z, Hosseini RH, Arjmand M. Aromatic amino acids play a harmonizing role in prostate cancer: A metabolomics-based cross-sectional study. Int J Reprod Biomed 2021; 19:741-750. [PMID: 34568735 PMCID: PMC8458921 DOI: 10.18502/ijrm.v19i8.9622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/19/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a common health problem worldwide. The rate of this disease is likely to grow by 2021. PCa is a heterogeneous disorder, and various biochemical factors contribute to the development of this disease. The metabolome is the complete set of metabolites in a cell or biological sample and represents the downstream end product of the omics. Hence, to model PCa by computational systems biology, a preliminary metabolomics-based study was used to compare the metabolome profile pattern between healthy and PCa men. OBJECTIVE This study was carried out to highlight energy metabolism modification and assist the prognosis and treatment of disease with unique biomarkers. MATERIALS AND METHODS In this cross-sectional research, 26 men diagnosed with stage-III PCa and 26 healthy men with normal PSA levels were enrolled. Urine was analyzed with proton nuclear magnetic resonance (1 H-NMR) spectroscopy, accompanied by the MetaboAnalyst web-based platform tool for metabolomics data analysis. Partial least squares regression discriminant analysis was applied to clarify the separation between the two groups. Outliers were documented and metabolites determined, followed by identifying biochemical pathways. RESULTS Our findings reveal that modifications in aromatic amino acid metabolism and some of their metabolites have a high potential for use as urinary PCa biomarkers. Tryptophan metabolism (p < 0.001), tyrosine metabolism (p < 0.001), phenylalanine, tyrosine and tryptophan biosynthesis (p < 0.001), phenylalanine metabolism (p = 0.01), ubiquinone and other terpenoid-quinone biosynthesis (p = 0.19), nitrogen metabolism (p = 0.21), and thiamine metabolism (p = 0.41) with Q2 (0.198) and R2 (0.583) were significantly altered. CONCLUSION The discriminated metabolites and their pathways play an essential role in PCa causes and harmony.
Collapse
Affiliation(s)
- Ziba Akbari
- Biochemistry Department, Metabolomics Lab, Pasture Institute of Iran, Tehran, Iran
| | - Roghayeh Taghipour Dijojin
- Biochemistry Department, Metabolomics Lab, Pasture Institute of Iran, Tehran, Iran
- Biology Department, Payame Noor University, Tehran, Iran
| | - Zahra Zamani
- Biochemistry Department, Metabolomics Lab, Pasture Institute of Iran, Tehran, Iran
| | | | - Mohammad Arjmand
- Biochemistry Department, Metabolomics Lab, Pasture Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Diab T, Mohamed TM, Hamed A, Gaber M. Induction of Apoptosis by Nano-Synthesized Complexes of H2L and its Cu(II) Complex in Human Hepatocellular Carcinoma Cells. Anticancer Agents Med Chem 2021; 21:1151-1159. [PMID: 32013853 DOI: 10.2174/1871520620666200204103756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chemotherapy is currently the most utilized treatment for cancer. Therapeutic potential of metal complexes in cancer therapy has attracted a lot of interest. The mechanisms of action of most organometallic complexes are poorly understood. OBJECTIVE This study was designed to explore the mechanisms governing the anti-proliferative effect of the free ligand N1,N6-bis((2-hydroxynaphthalin-1-yl)methinyl)) adipohydrazone (H2L) and its complexes of Mn(II), Co(II), Ni(II) and Cu(II). METHODS Cells were exposed to H2L or its metal complexes where cell viability determined by MTT assay. Cell cycle was analysed by flow cytometry. In addition, qRT-PCR was used to monitor the expression of Bax and Bcl-2. Moreover, molecular docking was carried out to find the potentiality of Cu(II) complex as an inhibitor of Adenosine Deaminase (ADA). ADA, Superoxide Dismutase (SOD) and reduced Glutathione (GSH) levels were measured in the most affected cancer cell line. RESULTS The obtained results demonstrated that H2L and its Cu(II) complex exhibited a strong cytotoxic activity compared to other complexes against HepG2 cells (IC50=4.14±0.036μM/ml and 3.2±0.02μM/ml), respectively. Both H2L and its Cu(II) complex induced G2/M phase cell cycle arrest in HepG2 cells. Additionally, they induced apoptosis in HepG2 cells via upregulation of Bax and downregulation of Bcl-2. Interestingly, the activity of ADA was decreased by 2.8 fold in HepG2 cells treated with Cu(II) complex compared to untreated cells. An increase of SOD activity and GSH level in HepG2 cells compared to control was observed. CONCLUSION The results concluded that Cu(II) complex of H2L induced apoptosis in HepG2 cells. Further studies are needed to confirm its anti-cancer effect in vivo.
Collapse
Affiliation(s)
- Thoria Diab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Alaa Hamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Indrianingsih AW, Wulanjati MP, Windarsih A, Bhattacharjya DK, Suzuki T, Katayama T. In vitro studies of antioxidant, antidiabetic, and antibacterial activities of Theobroma cacao, Anonna muricata and Clitoria ternatea. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Optimising Tropical Fruit Juice Quality Using Thermosonication-Assisted Extraction via Blocked Face-Centered Composite Design. Processes (Basel) 2020. [DOI: 10.3390/pr9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extraction of tropical fruit juice using simple, efficient, and environmentally friendly technologies is gaining importance to produce high quality juices. Juice from pink-fleshed guava, pink-fleshed pomelo, and soursop was extracted using direct and indirect thermosonication methods by varying intensity, time, and temperature, and compared to those extracted using water bath incubation. Improvised models of juice yield, ascorbic acid, and total soluble solids responses were generated by eliminating insignificant model terms of the factors in full quadratic model using backward eliminating procedure. Main effects, 3D, or 4D plots for each response were developed based on factors that influenced the response. Results showed that the best extraction method for guava and pomelo juices were within indirect thermosonication method of 1 kW, 55 °C and 30 min, and 2.5 kW, 54 °C and 23 min, respectively. Direct thermosonication method at 10% amplitude, 55 °C for 2 to 10 min was more suitable for soursop juice. Thermosonicated extraction of tropical fruit juice can improve its juice yield, ascorbic acid content, and total soluble solids content.
Collapse
|
7
|
Foster K, Oyenihi O, Rademan S, Erhabor J, Matsabisa M, Barker J, Langat MK, Kendal-Smith A, Asemota H, Delgoda R. Selective cytotoxic and anti-metastatic activity in DU-145 prostate cancer cells induced by Annona muricata L. bark extract and phytochemical, annonacin. BMC Complement Med Ther 2020; 20:375. [PMID: 33302945 PMCID: PMC7727144 DOI: 10.1186/s12906-020-03130-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Annona muricata L. was identified as a popular medicinal plant in treatment regimens among cancer patients in Jamaica by a previously conducted structured questionnaire. Ethnomedically used plant parts, were examined in this study against human prostate cancer cells for the first time and mechanisms of action elucidated for the most potent of them, along with the active phytochemical, annonacin. METHODS Nine extracts of varying polarity from the leaves and bark of A. muricata were assessed initially for cytotoxicity using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on PC-3 prostate cancer cells and the ethyl acetate bark (EAB) extract was identified as the most potent. EAB extract was then standardized for annonacin content using High-performance Liquid Chromatography - Mass Spectrometry (HPLC-MS) and shown to be effective against a second prostate cancer cell line (DU-145) also. The mode of cell death in DU-145 cells were assessed via several apoptotic assays including induction of increased reactive oxygen species (ROS) production, reduction of mitochondrial membrane potential, activation of caspases and annexin V externalization combined with morphological observations using confocal microscopy. In addition, the potential to prevent metastasis was examined via inhibition of cell migration, vascular endothelial growth factor (VEGF) and angiogenesis using the chorioallantoic membrane assay (CAM). RESULTS Annonacin and EAB extract displayed selective and potent cytotoxicity against the DU-145 prostate carcinoma cells with IC50 values of 0.1 ± 0.07 μM and 55.501 ± 0.55 μg/mL respectively, without impacting RWPE-1 normal prostate cells, in stark contrast to chemotherapeutic docetaxel which lacked such selectivity. Docetaxel's impact on the cancerous DU-145 was improved by 50% when used in combination with EAB extract. Insignificant levels of intracellular ROS content, depolarization of mitochondrial membrane, Caspase 3/7 activation, annexin V content, along with stained morphological evaluations, pointed to a non-apoptotic mode of cell death. The extract at 50 μg/mL deterred cell migration in the wound-healing assay, while inhibition of angiogenesis was displayed in the CAM and VEGF inhibition assays for both EAB (100 μg /mL) and annonacin (0.5 μM). CONCLUSIONS Taken together, the standardized EAB extract and annonacin appear to induce selective and potent cell death via a necrotic pathway in DU-145 cells, while also preventing cell migration and angiogenesis, which warrant further examinations for mechanistic insights and validity in-vivo.
Collapse
Affiliation(s)
- Kimberley Foster
- Natural Products Institute, University of the West Indies, Mona, Kingston 7, Jamaica
- Biotechnolgy Centre, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Omolola Oyenihi
- Pharmacology Department, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Sunelle Rademan
- Pharmacology Department, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Joseph Erhabor
- Pharmacology Department, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Motlalepula Matsabisa
- Pharmacology Department, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, UK
| | - Moses K Langat
- Jodrell Laboratory, Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
| | - Amy Kendal-Smith
- Jodrell Laboratory, Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, England
| | - Helen Asemota
- Biotechnolgy Centre, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Rupika Delgoda
- Natural Products Institute, University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
8
|
Yilmaz‐Oral D, Onder A, Gur S, Carbonell‐Barrachina ÁA, Kaya‐Sezginer E, Oztekin CV, Zor M. The beneficial effect of clove essential oil and its major component, eugenol, on erectile function in diabetic rats. Andrologia 2020; 52:e13606. [DOI: 10.1111/and.13606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Didem Yilmaz‐Oral
- Department of Pharmacology Faculty of Pharmacy Cukurova University Adana Turkey
| | - Alev Onder
- Department of Pharmacognosy Faculty of Pharmacy Ankara University Ankara Turkey
| | - Serap Gur
- Department of Pharmacology Faculty of Pharmacy Ankara University Ankara Turkey
| | - Ángel A. Carbonell‐Barrachina
- Department of Agro‐Food Technology Research Group ‘Food Quality and Safety’Universidad Miguel Hernández de Elche Alicante Spain
| | - Ecem Kaya‐Sezginer
- Department of Biochemistry Faculty of Pharmacy Ankara University Ankara Turkey
| | - Cetin Volkan Oztekin
- Department of Urology Faculty of Medicine University of Kyrenia Girne‐TRNC, Mersin 10 Turkey
| | - Murat Zor
- Department of Pharmacognosy Faculty of Pharmacy Lokman Hekim University Ankara Turkey
| |
Collapse
|
9
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
10
|
Nwidu LL, Alikwe PCN, Elmorsy E, Carter WG. An Investigation of Potential Sources of Nutraceuticals from the Niger Delta Areas, Nigeria for Attenuating Oxidative Stress. MEDICINES 2019; 6:medicines6010015. [PMID: 30669529 PMCID: PMC6473651 DOI: 10.3390/medicines6010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Background: Diets rich in fruits, vegetables, and medicinal plants possess antioxidants potentially capable of mitigating cellular oxidative stress. This study investigated the antioxidant, anti-acetylcholinesterase (AChE), and total phenolic and flavonoids contents (TPC/TFC) of dietary sources traditionally used for memory enhancing in Niger Delta, Nigeria. Methods:Dacroydes edulis methanolic seed extract (DEMSE), Cola lepidota methanolic seed extract (CLMSE), Terminalia catappa methanolic seed extract (TeCMSE), Tricosanthes cucumerina methanolic seed extract (TrCMSE), Tetrapleura tetraptera methanolic seed extract (TTMSE), and defatted Moringa oleifera methanolic seed extract (DMOMSE); Dennettia tripetala methanolic fruit extract (DTMFE), Artocarpus communis methanolic fruit extract (ACMFE), Gnetum africana methanolic leaf extract (GAMLE), Musa paradisiaca methanolic stembark extract (MPMSE), and Mangifera indica methanolic stembark extract (MIMSE) were evaluated for free radical scavenging antioxidant ability using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), reducing power capacity (reduction of ferric iron to ferrous iron), AChE inhibitory potential by Ellman assay, and then TPC/TFC contents determined by estimating milli-equivalents of Gallic acid and Quercetin per gram, respectively. Results: The radical scavenging percentages were as follows: MIMSE (58%), MPMSE (50%), TrCMSE (42%), GAMLE (40%), CLMSE (40%), DMOMSE (38%), and DEMFE (37%) relative to β-tocopherol (98%). The highest iron reducing (antioxidant) capacity was by TrCMSE (52%), MIMSE (40%) and GAMLE (38%). Extracts of MIMSE, TrCMSE, DTMFE, TTMSE, and CLMSE exhibited concentration-dependent AChE inhibitory activity (p < 0.05–0.001). At a concentration of 200 µg/mL, the AChE inhibitory activity and IC50 (µg/mL) exhibited by the most potent extracts were: MIMSE (≈50%/111.9), TrCMSE (≈47%/201.2), DTMFE (≈32%/529.9), TTMSE (≈26%/495.4), and CLMSE (≈25%/438.4). The highest TPC were from MIMSE (156.2), TrCMSE (132.65), GAMLE (123.26), and CLMSE (119.63) in mg gallic acid equivalents/g, and for TFC were: MISME (87.35), GAMLE (73.26), ACMFE (69.54), CLMSE (68.35), and TCMSE2 (64.34) mg quercetin equivalents/gram. Conclusions: The results suggest that certain inedible and edible foodstuffs, most notably MIMSE, MPMSE, TrCMSE, GAMLE, and CLMSE may be beneficial to ameliorate the potentially damaging effects of redox stress.
Collapse
Affiliation(s)
- Lucky Legbosi Nwidu
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, Port Harcourt PMB 5323, Rivers State, Nigeria.
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Philip Cheriose Nzien Alikwe
- Department of Animal Science, Niger Delta University, Wilberforce Island, Yenegoa PMB 071, Bayelsa State, Nigeria.
| | - Ekramy Elmorsy
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Wayne Grant Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| |
Collapse
|
11
|
Rezaei A, Khanamani Falahati-Pour S, Mohammadizadeh F, Hajizadeh MR, Mirzaei MR, Khoshdel A, Fahmidehkar MA, Mahmoodi M. Effect of a Copper (II) Complex on The Induction of Apoptosis in Human Hepatocellular Carcinoma Cells. Asian Pac J Cancer Prev 2018; 19:2877-2884. [PMID: 30362316 PMCID: PMC6291042 DOI: 10.22034/apjcp.2018.19.10.2877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives: In the present study, we aimed to identify the anti-proliferative potential of [Cu(L)(2imi)] complex [L = 2-(((5-chloro-2-oxyphenyl)imino)methyl)phenolato) and 2imi = 2-methyl imidazole] against HepG2 cells as an in vitro model of human hepatocellular carcinoma and normal mouse fibroblast L929 cells. Methods: The cytotoxic and apoptotic effects of [Cu(L)(2imi)] complex on HepG2 cells and normal fibroblasts (L929) were examined by MTT assay and flow cytometry, respectively. Results: Cytotoxicity induced by [Cu(L)(2imi)] complex was time dependent. Also, there was a positive correlation between cytotoxicity and an increase in Cu complex concentration. For HepG2 cells, the cell viability percentage was 50% at 58 μg/mL after 24 h treatment, whereas in the same concentration and conditions, the viability percentage was surprisingly higher (about 100%) for L929 cells. Also, after 48 h treatment, the viability percentage of HepG2 cells at 55 μg/mL concentration was 50% in contrast with 89.3% for L929 cells in the same conditions. Flow cytometry findings suggest that [Cu(L)(2imi)] complex is capable of decreasing cancer cell viability through apoptosis and did not efficiently activate the necrosis process. Conclusions: Finally, we found that [Cu(L)(2imi)] complex possess the potential for development as an anti-cancer drug for human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Azadeh Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2016.01.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Abdul Wahab SM, Jantan I, Haque MA, Arshad L. Exploring the Leaves of Annona muricata L. as a Source of Potential Anti-inflammatory and Anticancer Agents. Front Pharmacol 2018; 9:661. [PMID: 29973884 PMCID: PMC6019487 DOI: 10.3389/fphar.2018.00661] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/01/2018] [Indexed: 01/16/2023] Open
Abstract
The use of anti-inflammatory natural products to treat inflammatory disorders for cancer prevention and therapy is an appealing area of interest in the last decades. Annona muricata L. is one of the many plant extracts that have been explored owing to their anti-inflammatory and anticancer effects. Different parts of A. muricata especially the leaves have been used for various ethnomedicinal purposes by traditional healers to treat several diseases including cancer, inflammation, diabetes, liver diseases, and abscesses. Some of these experience-based claims on the use of the plant have been transformed into evidence-based information by scientific investigations. The leaves of the plant have been extensively investigated for its diverse pharmacological aspects and found eminent for anti-inflammatory and anticancer properties. However, most studies were not on the bioactive isolates which were responsible for the activities but were based on crude extracts of the plant. In this comprehensive review, all significant findings from previous investigations till date on the leaves of A. muricata, specifically on their anti-inflammatory and anticancer activities have been compiled. The toxicology of the plant which has been shown to be due to the presence of neurotoxic annaceous acetogenins and benzyltetrahydro-isoquinoline alkaloids has also been updated to provide recent information on its safety aspects. The present knowledge of the plant has been critically assessed, aimed at providing direction toward improving its prospect as a source of potential anti-inflammatory and anticancer agents. The analysis will provide a new path for ensuring research on this plant to discover new agents to treat inflammatory diseases and cancer. Further in vitro and in vivo studies should be carried out to explore the molecular mechanisms underlying their anti-inflammatory responses in relation to anticancer activity and more detail toxicity study to ensure they are safe for human consumption. Sufficient preclinical data and safety data generated will allow clinical trials to be pursued on this plant and its bioactive compounds.
Collapse
Affiliation(s)
- Siti Mariam Abdul Wahab
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Md Areeful Haque
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Laiba Arshad
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Gavamukulya Y, Wamunyokoli F, El-Shemy HA. Annona muricata : Is the natural therapy to most disease conditions including cancer growing in our backyard? A systematic review of its research history and future prospects. ASIAN PAC J TROP MED 2017; 10:835-848. [DOI: 10.1016/j.apjtm.2017.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/17/2017] [Accepted: 08/19/2017] [Indexed: 11/26/2022] Open
|
15
|
Vanillic acid attenuates testosterone-induced benign prostatic hyperplasia in rats and inhibits proliferation of prostatic epithelial cells. Oncotarget 2017; 8:87194-87208. [PMID: 29152074 PMCID: PMC5675626 DOI: 10.18632/oncotarget.19909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in the male population, especially in elderly men. Vanillic acid (VA), a dihydroxybenzoic derivative used as a flavoring agent, is reported to have an anti-inflammatory effect. However, there are no reports of its effects on BPH to date. BPH was induced with a pre-4-week treatment of daily subcutaneous injections of testosterone propionate (TP), and the normal control group received injections of ethanol with corn oil instead. Six weeks of further injections were done with (a) ethanol with corn oil, (b) TP only, (c) TP + finasteride, and (d) TP + VA. Finasteride was used as a positive control group. VA had protective effects on the TP-induced BPH. In the VA treatment group, the prostate weight was reduced, and the histological changes including the epithelial thickness and lumen area were restored like in the normal control group. Furthermore, in the VA treatment group, two proliferation related factors, high molecular weight cytokeratin 34βE12 and α smooth muscle actin, were significantly down-regulated compared to the TP-induced BPH group. The expressions of dihydrotestosterone and 5α-reductase, the most crucial factors in BPH development, were suppressed by VA treatment. Expressions of the androgen receptor, estrogen receptor α and steroid receptor coactivator 1 were also significantly inhibited by VA compared to the TP-induced BPH group. In addition, we established an in vitro model for BPH by treating a normal human prostatic epithelial cell line RWPE-1 with TP. VA successfully inhibited proliferation and BPH-related factors in a concentration-dependent manner in this newly established model. These results suggest a new and potential pharmaceutical therapy of VA in the treatment of BPH.
Collapse
|
16
|
D'souza SL, Deshmukh B, Bhamore JR, Rawat KA, Lenka N, Kailasa SK. Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system. RSC Adv 2016. [DOI: 10.1039/c5ra24621k] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fluorescent N-doped carbon dots were synthesized using dried shrimps as precursors and rationally fabricated as a traceable drug delivery system for the targeted delivery of boldine to human breast cancer cells (MCF-7 cells).
Collapse
Affiliation(s)
| | - Balaji Deshmukh
- National Center for Cell Science
- NCCS Complex
- Pune University Campus
- Pune-411 007
- India
| | - Jigna R. Bhamore
- Department of Chemistry
- S. V. National Institute of Technology
- Surat–395007
- India
| | - Karuna A. Rawat
- Department of Chemistry
- S. V. National Institute of Technology
- Surat–395007
- India
| | - Nibedita Lenka
- National Center for Cell Science
- NCCS Complex
- Pune University Campus
- Pune-411 007
- India
| | | |
Collapse
|
17
|
Ni L, Wang J, Liu C, Fan J, Sun Y, Zhou Z, Diao G. An asymmetric binuclear zinc(ii) complex with mixed iminodiacetate and phenanthroline ligands: synthesis, characterization, structural conversion and anticancer properties. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00072j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-soluble asymmetric binuclear zinc(ii) complex with mixed iminodiacetate and 1,10-phenanthroline ligands exhibited promising anticancer activity and low toxicity, suggesting potential as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Lubin Ni
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Juan Wang
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Chang Liu
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Jinhong Fan
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Yun Sun
- College of Medicine
- Yangzhou University
- Yangzhou 225001
- People's Republic of China
| | - Zhaohui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Guowang Diao
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| |
Collapse
|
18
|
Shang YX, Zhao Y, Qiu HY, Chang JJ, Chen YZ, Zhang HY. Effects of a Food Ingredient Group on Oxidative Stress in Lead-Poisoned Mice. ACTA ACUST UNITED AC 2015. [DOI: 10.1159/000433469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Hajrezaie M, Shams K, Moghadamtousi SZ, Karimian H, Hassandarvish P, Emtyazjoo M, Zahedifard M, Majid NA, Ali HM, Abdulla MA. Chemoprevention of Colonic Aberrant Crypt Foci by Novel Schiff Based Dichlorido(4-Methoxy-2-{[2-(Piperazin-4-Ium-1-Yl)Ethyl]Iminomethyl}Phenolate)Cd Complex in Azoxymethane-Induced Colorectal Cancer in Rats. Sci Rep 2015; 5:12379. [PMID: 26201720 PMCID: PMC4511874 DOI: 10.1038/srep12379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022] Open
Abstract
Schiff-based complexes as a source of cancer chemotherapeutic compounds have been subjected to the variety of anticancer studies. The in-vitro analysis confirmed the CdCl2(C14H21N3O2) complex possess cytotoxicity and apoptosis induction properties in colon cancer cells, so lead to investigate the inhibitory efficiency of the compound on colonic aberrant crypt foci (ACF). Five groups of adult male rats were used in this study: Vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of complex for 10 weeks. The rats in vehicle group were injected subcutaneously with 15 mg/kg of sterile normal saline once a week for 2 weeks and orally administered with 5% Tween-20 (5 ml/kg) for 10 weeks, other groups were injected subcutaneously with 15 mg/kg azoxymethane once a week for 2 weeks. The rats in positive groups were injected intra-peritoneally with 35 mg/kg 5-Flourouracil four times in a month. Administration of the complex suppressed total colonic ACF formation up to 73.4% (P < 0.05). The results also showed that treatment with the complex significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining.
Collapse
Affiliation(s)
- Maryam Hajrezaie
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Shams
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Hamed Karimian
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mozhgan Emtyazjoo
- Department of Biology, Islamic Azad University North Tehran Branch, 1841914497 Tehran, Iran
| | - Maryam Zahedifard
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Merkle W. Prostatakarzinomprophylaxe durch Nahrungsergänzungsmittel. Urologe A 2014; 53:1610-9. [DOI: 10.1007/s00120-014-3614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Gavamukulya Y, Abou-Elella F, Wamunyokoli F, AEl-Shemy H. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). ASIAN PAC J TROP MED 2014; 7S1:S355-63. [PMID: 25312150 DOI: 10.1016/s1995-7645(14)60258-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/29/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE To determine the phytochemical composition, antioxidant and anticancer activities of ethanolic and water leaves extracts of Annona muricata (A. muricata) from the Eastern Uganda. METHODS Phytochemical screening was conducted using standard qualitative methods and a Chi-square goodness of fit test was used to assign the relative abundance of the different phytochemicals. The antioxidant activity was determined using the 2, 2-diphenyl-2-picrylhydrazyl and reducing power methods whereas the in vitro anticancer activity was determined using three different cell lines. RESULTS Phytochemical screening of the extracts revealed that they were rich in secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols. Total phenolics in the water extract were (683.69±0.09) μg/mL gallic acid equivalents (GAE) while it was (372.92±0.15) μg/mL GAE in the ethanolic extract. The reducing power was 216.41 μg/mL in the water extract and 470.51 μg/mL GAE in the ethanolic extract. In vitro antioxidant activity IC50 was 2.0456 mg/mL and 0.9077 mg/mL for ethanolic and water leaves extracts of A. muricata respectively. The ethanolic leaves extract was found to be selectively cytotoxic in vitro to tumor cell lines (EACC, MDA and SKBR3) with IC50 values of 335.85 μg/mL, 248.77 μg/mL, 202.33 μg/mL respectively, while it had no cytotoxic effect on normal spleen cells. The data also showed that water leaves extract of A. muricata had no anticancer effect at all tested concentrations. CONCLUSIONS The results showed that A. muricata was a promising new antioxidant and anticancer agent.
Collapse
Affiliation(s)
- Yahaya Gavamukulya
- Molecular Biology and Biotechnology Department, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUISTI - JKUAT), Nairobi, Kenya
| | - Faten Abou-Elella
- Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Fred Wamunyokoli
- Molecular Biology and Biotechnology Department, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUISTI - JKUAT), Nairobi, Kenya; Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Hany AEl-Shemy
- Molecular Biology and Biotechnology Department, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUISTI - JKUAT), Nairobi, Kenya; Faculty of Agriculture Research Park (FARP) and Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
22
|
Paydar M, Kamalidehghan B, Wong YL, Wong WF, Looi CY, Mustafa MR. Evaluation of cytotoxic and chemotherapeutic properties of boldine in breast cancer using in vitro and in vivo models. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:719-33. [PMID: 24944509 PMCID: PMC4057328 DOI: 10.2147/dddt.s58178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
To date, plants have been the major source of anticancer drugs. Boldine is a natural alkaloid commonly found in the leaves and bark of Peumus boldus. In this study, we found that boldine potently inhibited the viability of the human invasive breast cancer cell lines, MDA-MB-231 (48-hour IC50 46.5±3.1 μg/mL) and MDA-MB-468 (48-hour IC50 50.8±2.7 μg/mL). Boldine had a cytotoxic effect and induced apoptosis in breast cancer cells as indicated by a higher amount of lactate dehydrogenase released, membrane permeability, and DNA fragmentation. In addition, we demonstrated that boldine induced cell cycle arrest at G2/M phase. The anticancer mechanism is associated with disruption of the mitochondrial membrane potential and release of cytochrome c in MDA-MB-231. Boldine selectively induced activation of caspase-9 and caspase-3/7, but not caspase-8. We also found that boldine could inhibit nuclear factor kappa B activation, a key molecule in tumor progression and metastasis. In addition, protein array and Western blotting analysis showed that treatment with boldine resulted in downregulation of Bcl-2 and heat shock protein 70 and upregulation of Bax in the MDA-MB-231 cell line. An acute toxicity study in rats revealed that boldine at a dose of 100 mg/kg body weight was well tolerated. Moreover, intraperitoneal injection of boldine (50 or 100 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that boldine is a potentially useful agent for the treatment of breast cancer.
Collapse
Affiliation(s)
| | | | - Yi Li Wong
- Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Hajrezaie M, Paydar M, Zorofchian Moghadamtousi S, Hassandarvish P, Gwaram NS, Zahedifard M, Rouhollahi E, Karimian H, Looi CY, Ali HM, Abdul Majid N, Abdulla MA. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway. ScientificWorldJournal 2014; 2014:540463. [PMID: 24737979 PMCID: PMC3967396 DOI: 10.1155/2014/540463] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/16/2014] [Indexed: 11/17/2022] Open
Abstract
Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
Collapse
Affiliation(s)
- Maryam Hajrezaie
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Faculty of Science, Institute of Biological Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammadjavad Paydar
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pouya Hassandarvish
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nura Suleiman Gwaram
- Department of Chemistry, University of Malaya, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Maryam Zahedifard
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Faculty of Science, Institute of Biological Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Elham Rouhollahi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, University of Malaya, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Thang TD, Dai DN, Luong NX, Ogunwande IA. Constituents of essential oils from the leaves, stem barks and resins of Canarium parvum Leen., and Canarium tramdenanum Dai et Yakovl. (Burseracea) grown in Vietnam. Nat Prod Res 2014; 28:461-6. [PMID: 24443833 DOI: 10.1080/14786419.2013.873435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The chemical constituents of essential oils from the leaf, stem bark and resins of Canarium parvum Leen., and Canarium tramdenanum Dai et Yakovl. (Burseracea) grown in Vietnam are being reported. The hydrodistilled oils were analysed for their chemical constituents by means of gas chromatography-flame ionisation detector and gas chromatography coupled with mass spectrometry. The main compounds of C. parvum were β-caryophyllene (18.7%), (E)-β-ocimene (12.9%), (Z)-β-ocimene (11.9%), germacrene D (8.8%) and α-humulene (8.4%) in the leaf; β-caryophyllene (30.4%), α-copaene (20.5%) and (E)-β-ocimene (7.7%) in the stem. However, germacrene D (23.2%), α-amorphene (14.9%), α-copaene (9.8%) and β-elemene (8.6%) were present in the resin. The leaf of C. tramdenanum comprises β-caryophyllene (16.8%), α-phellandrene (15.9%), γ-elemene (13.1%) and limonene (11.8%), while limonene (25.7%), α-phellandrene (21.7%), α-pinene (12.3%) and β-caryophyllene (10.9%) were present in the stem. However, δ-elemene (14.6%) and bulnesol (16.0%) are the main constituents in the resin.
Collapse
Affiliation(s)
- Tran D Thang
- a Faculty of Chemistry, Vinh University , 182-Le Duan, Vinh City , Nghean Province , Vietnam
| | | | | | | |
Collapse
|
25
|
Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, Abdul Kadir H. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. ScientificWorldJournal 2014; 2014:768323. [PMID: 24526922 PMCID: PMC3910333 DOI: 10.1155/2014/768323] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/01/2013] [Indexed: 11/17/2022] Open
Abstract
Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.
Collapse
Affiliation(s)
- Soheil Zorofchian Moghadamtousi
- Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ramin Khanabdali
- Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahboubeh Razavi
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammad Firoozinia
- Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center (TIDREC), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Ottu OJ, Atawodi SE, Onyike E. Antioxidant, hepatoprotective and hypolipidemic effects of methanolic root extract of Cassia singueana in rats following acute and chronic carbon tetrachloride intoxication. ASIAN PAC J TROP MED 2013; 6:609-15. [DOI: 10.1016/s1995-7645(13)60105-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 11/17/2022] Open
|
27
|
Chong HZ, Yeap SK, Rahmat A, Akim AM, Alitheen NB, Othman F, Gwendoline-Ee CL. In vitro evaluation of Pandanus amaryllifolius ethanol extract for induction of cell death on non-hormone dependent human breast adenocarcinoma MDA-MB-231 cell via apoptosis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:134. [PMID: 22909149 PMCID: PMC3479033 DOI: 10.1186/1472-6882-12-134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/14/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND Our previous study had shown that P. amaryllifolius was able to selectively inhibit cell proliferation of hormone independent breast cancer cell line MDA-MB-231. To understand the mode of killing and mechanism of action for P. amaryllifolius, the ethanol extract was evaluated for their alteration of cell cycle progression, PS externalization, DNA fragmentation and expression of anti/pro-apoptotic related protein. RESULTS Cell cycle progression analysis, Annexin V and Tunel assays suggested that IC50 of P. amaryllifolius ethanol extract induced G0/G1 cell cycle arrest, PS externalization and DNA fragmentation. On the other hand, ELISA for cytochrome c, caspase-3/7, 8 and 9 indicated that apoptosis was contributed by mitochondrial cytochrome c release via induction of caspase 3/7, 9, and p53 was associated with the suppression of XIAP in P. amaryllifolius treated MDA-MB-231 cells. CONCLUSION Our findings suggest that P. amaryllifolius ethanol extract induced apoptosis on hormone independent breast cancer cell line MDA-MB-231.
Collapse
|
28
|
Tamura M, Ochiai K. Exploring the possible applications of catechin (gel) for oral care of the elderly and disabled individuals. JAPANESE DENTAL SCIENCE REVIEW 2012. [DOI: 10.1016/j.jdsr.2012.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|