1
|
Campos IC, Saraiva MMS, Benevides VP, Ferreira TS, Ferreira VA, Almeida AM, Berchieri Junior A. Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Braz J Microbiol 2024; 55:711-717. [PMID: 38191970 PMCID: PMC10920582 DOI: 10.1007/s42770-023-01230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine.
Collapse
Affiliation(s)
- Isabella C Campos
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil.
| | - Valdinete P Benevides
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Taísa S Ferreira
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Viviane A Ferreira
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Adriana M Almeida
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
2
|
Alfifi A, Christensen JP, Hounmanou YMG, Sandberg M, Dalsgaard A. Characterization of Escherichia coli and other bacteria isolated from condemned broilers at a Danish abattoir. Front Microbiol 2022; 13:1020586. [PMID: 36439808 PMCID: PMC9686377 DOI: 10.3389/fmicb.2022.1020586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 10/17/2023] Open
Abstract
Meat inspection is important to ensure food safety and protect public health. Visual inspection of slaughtered carcasses for pathological changes should be supported by bacteriological analysis to determine whether the entire carcass or parts of it should be condemned. The aim of this study was to determine the bacterial species present in different sample types from condemned broiler carcasses. Furthermore, we investigated the genetic characteristics, zoonotic potential, and relatedness of Escherichia coli, the predominant bacterial species isolated from the carcasses. A total of 400 broiler carcasses condemned because of cellulitis (100), scratches (100), hepatitis (100), and healthy control carcasses (100) were selected. Samples of meat, pathological lesion, and bone marrow of each carcass were obtained for microbial analysis. From the analyzed samples, 469 bacterial isolates were recovered with E. coli accounting for 45.8%, followed by Aeromonas spp. (27.9%), in particular A. veronii. The highest rate of bacterial isolation was observed in carcasses condemned with cellulitis, whereas carcasses with hepatitis had the lowest rate of bacterial isolation. Forty-four E. coli isolates originating from different sample types were selected for whole genome sequencing. A clonal relationship was shown between E. coli from different sample types of the same carcass condemned with cellulitis and scratches. A major clade of E. coli was found in carcasses condemned with cellulitis with isolates containing mdf(A), tet(A), and bla TEM-1B genes that confer resistance to macrolides, tetracycline, and ampicillin, respectively. E. coli in this clade all belonged to ST117 and clustered with E. coli isolates previously collected from dead chickens and carcasses condemned due to cellulitis in Denmark, Finland, and the United Kingdom. Bacterial evaluation results of carcasses condemned with cellulitis, scratches (moderate to severe skin lesion), and acute hepatitis confirmed the need for total condemnation of carcasses with these pathological findings. A similar evaluation should be done for carcasses affected with chronic hepatitis, and minor scratches lesions.
Collapse
Affiliation(s)
- Ahmed Alfifi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jens P. Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne Sandberg
- National Food Institute, Danish Technical University, Lyngby, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Kerek Á, Sasvári M, Jerzsele Á, Somogyi Z, Janovák L, Abonyi-Tóth Z, Dékány I. Photoreactive Coating Material as an Effective and Durable Antimicrobial Composite in Reducing Bacterial Load on Surfaces in Livestock. Biomedicines 2022; 10:biomedicines10092312. [PMID: 36140413 PMCID: PMC9496029 DOI: 10.3390/biomedicines10092312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Titanium dioxide (TiO2) is a well-known photocatalytic compound that can be used to effectively reduce the presence of pathogens in human and animal hospitals via ROS release. The aim of this study was to investigate the efficacy of a polymer-based composite layer containing TiO2 and zinc oxide (ZnO) against Escherichia coli (E. coli) of animal origin. We showed that the photocatalyst coating caused a significant (p < 0.001) reduction in pathogen numbers compared to the control with an average reduction of 94% over 30 min. We used six light sources of different wattages (4 W, 7 W, 9 W, 12 W, 18 W, 36 W) at six distances (35 cm, 100 cm, 150 cm, 200 cm, 250 cm, 300 cm). Samples (n = 2160) were taken in the 36 settings and showed no significant difference in efficacy between light intensity and distance. We also investigated the influence of organic contaminant that resulted in lower activity as well as the effect of a water jet and a high-pressure device on the antibacterial activity. We found that the latter completely removed the coating from the surface, which significantly (p < 0.0001) reduced its antibacterial potential. As a conclusion, light intensity and distance does not reduce the efficacy of the polymer, but the presence of organic contaminants does.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
- Correspondence: (Á.K.); (I.D.)
| | - Mátyás Sasvári
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Zsolt Abonyi-Tóth
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- Correspondence: (Á.K.); (I.D.)
| |
Collapse
|
4
|
Ferraresso J, Apostolakos I, Fasolato L, Piccirillo A. Third-generation cephalosporin (3GC) resistance and its association with Extra-intestinal pathogenic Escherichia coli (ExPEC). Focus on broiler carcasses. Food Microbiol 2022; 103:103936. [DOI: 10.1016/j.fm.2021.103936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/04/2022]
|
5
|
Lu W, Tan J, Lu H, Wang G, Dong W, Wang C, Li X, Tan C. Function of Rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033. J Microbiol 2021; 59:854-860. [PMID: 34382147 DOI: 10.1007/s12275-021-1189-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important zoonotic pathogen that places severe burdens on public health and animal husbandry. There are many pathogenic factors in E. coli. The type VI secretion system (T6SS) is a nano-microbial weapon that can assemble quickly and inject toxic effectors into recipient cells when danger is encountered. T6SSs are encoded in the genomes of approximately 25% of sequenced Gram-negative bacteria. When these bacteria come into contact with eukaryotic cells or prokaryotic microbes, the T6SS assembles and secretes associated effectors. In the porcine ExPEC strain PCN033, we identified four classic rearrangement hotspot (Rhs) genes. We determined the functions of the four Rhs proteins through mutant construction and protein expression. Animal infection experiments showed that the Δrhs-1CT, Δrhs-2CT, Δrhs-3CT, and Δrhs-4CT caused a significant decrease in the multiplication ability of PCN033 in vivo. Cell infection experiments showed that the Rhs protein is involved in anti-phagocytosis activities and bacterial adhesion and invasion abilities. The results of this study demonstrated that rhs1, rhs3, and rh4 plays an important role in the interaction between PCN033 and host cell. Rhs2 has contribution to cell and mice infection. This study helps to elucidate the pathogenic mechanism governing PCN033 and may help to establish a foundation for further research seeking to identify potential T6SS effectors.
Collapse
Affiliation(s)
- Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Jia Tan
- Jiangxi Academy of Agricultural Science, Jiangxi, 333104, P.R. China
| | - Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Gaoyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Wenqi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Xiaodan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430040, P. R. China.
| |
Collapse
|
6
|
Antimicrobial Resistance Profile and ExPEC Virulence Potential in Commensal Escherichia coli of Multiple Sources. Antibiotics (Basel) 2021; 10:antibiotics10040351. [PMID: 33810387 PMCID: PMC8067153 DOI: 10.3390/antibiotics10040351] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
We recently described the genetic antimicrobial resistance and virulence profile of a collection of 279 commensal E. coli of food-producing animal (FPA), pet, wildlife and human origin. Phenotypic antimicrobial resistance (AMR) and the role of commensal E. coli as reservoir of extra-intestinal pathogenic Escherichia coli (ExPEC) virulence-associated genes (VAGs) or as potential ExPEC pathogens were evaluated. The most common phenotypic resistance was to tetracycline (76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), streptomycin and sulfisoxazole (71/279, 25.45% both) among the overall collection. Poultry and rabbit were the sources mostly associated to AMR, with a significant resistance rate (p > 0.01) to quinolones, streptomycin, sulphonamides, tetracycline and, only for poultry, to ampicillin and chloramphenicol. Finally, rabbit was the source mostly associated to colistin resistance. Different pandemic (ST69/69*, ST95, ST131) and emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648) ExPEC sequence types (STs) were identified among the collection, especially in poultry source. Both ST groups carried high number of ExPEC VAGs (pandemic ExPEC STs, mean = 8.92; emerging ExPEC STs, mean = 6.43) and showed phenotypic resistance to different antimicrobials (pandemic ExPEC STs, mean = 2.23; emerging ExPEC STs, mean = 2.43), suggesting their role as potential ExPEC pathogens. Variable phenotypic resistance and ExPEC VAG distribution was also observed in uncommon ExPEC lineages, suggesting commensal flora as a potential reservoir of virulence (mean = 3.80) and antimicrobial resistance (mean = 1.69) determinants.
Collapse
|
7
|
Mandakini R, Roychoudhury P, Subudhi PK, Kylla H, Samanta I, Bandyopadhayay S, Dutta TK. Higher prevalence of multidrug-resistant extended-spectrum β-lactamases producing Escherichia coli in unorganized pig farms compared to organized pig farms in Mizoram, India. Vet World 2020; 13:2752-2758. [PMID: 33487994 PMCID: PMC7811539 DOI: 10.14202/vetworld.2020.2752-2758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Aim The present study was conducted to record the prevalence of multidrug-resistant (MDR), extended-spectrum β-lactamases (ESBLs) producing Escherichia coli from pig population of organized and unorganized farms of Mizoram and to record the presence of ESBLs, non-ESBLs, and integrons. Materials and Methods Fecal samples were collected from pigs under organized (n=40) and unorganized (n=58) farms of Mizoram. Samples were processed for isolation and identification of E. coli by conventional techniques, BD Phoenix™ automated bacterial system, and polymerase chain reaction (PCR) based confirmatory test. All the isolates were subjected to antimicrobial sensitivity test by disk diffusion assay and ESBLs production by double-disk synergy test (DDST). The ESBLs producing isolates were subjected to PCR for determination of ESBLs genes and all the isolates were screened for non-ESBLs genes and integrons by PCR. Results A total of 258 E. coli was isolated and identified from organized (n=120) and unorganized farms (n=138). Majority of the E. coli isolates exhibited high level of resistance against amoxicillin (Ax) (81.78%), cefalexin (85.42%), co-trimoxazole (50.78%), sulfafurazole (69.38%), tetracycline (65.89%), and trimethoprim (TR) (51.94%). Statistically highly significant (p<0.01) variations in resistance among the isolates from organized and unorganized farms were recorded in case of Ax, ampicillin, cephalexin, ciprofloxacin, co-trimoxazole, gentamicin, piperacillin, and TR. By DDST, 65.89% isolates were recorded as ESBLs producer, of which 82/120 (68.33%) and 88/138 (63.77%) were from organized and unorganized farms, respectively. A total of 29/258 (11.24%) isolates were positive for at least one ESBLs gene. blaTEM was most frequently (9.69%) gene, followed by blaCTX -M (5.04%) and blaCMY (0.78%). Altogether, 6 (5.00%), 4 (3.33%), and 2 (1.67%) isolates from the organized farms were positive for blaCTX-M , blaTEM , and blaCMY genes, respectively. Similarly, 21 (15.22%) and 7 (5.07%) isolates from the unorganized farms were positive for blaTEM and blaCTX-M genes, respectively. None of them were positive for blaSHV genes. Altogether 57 (22.09%), 9 (3.49%), 66 (25.58%), 78 (30.23%), 21 (8.14%), and 18 (6.98%) isolates were positive for tetA, tetB, sul1, sul2, aadA, and dfrla genes, respectively. The prevalence of non-ESBLs genes was higher in the E. coli isolates from the unorganized farms than organized farms. Conclusion MDR and ESBLs producing E. coli are circulating among the pigs and their environment in Mizoram. Pigs under unorganized farms exhibited higher level of resistance against majority of the antimicrobials, including third-generation cephalosporins, which might be an indication of overuse or misuse of antibiotics under the unorganized piggery sectors in Mizoram.
Collapse
Affiliation(s)
- R Mandakini
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| | - P Roychoudhury
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| | - P K Subudhi
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| | - H Kylla
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| | - I Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - S Bandyopadhayay
- ICAR-Eastern Regional Station of IVRI, Kolkata, West Bengal, India
| | - T K Dutta
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Aizawl, Mizoram, India
| |
Collapse
|
8
|
Genomic Investigation into the Virulome, Pathogenicity, Stress Response Factors, Clonal Lineages, and Phylogenetic Relationship of Escherichia coli Strains Isolated from Meat Sources in Ghana. Genes (Basel) 2020; 11:genes11121504. [PMID: 33327465 PMCID: PMC7764966 DOI: 10.3390/genes11121504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli are among the most common foodborne pathogens associated with infections reported from meat sources. This study investigated the virulome, pathogenicity, stress response factors, clonal lineages, and the phylogenomic relationship of E. coli isolated from different meat sources in Ghana using whole-genome sequencing. Isolates were screened from five meat sources (beef, chevon, guinea fowl, local chicken, and mutton) and five areas (Aboabo, Central market, Nyorni, Victory cinema, and Tishegu) based in the Tamale Metropolis, Ghana. Following microbial identification, the E. coli strains were subjected to whole-genome sequencing. Comparative visualisation analyses showed different DNA synteny of the strains. The isolates consisted of diverse sequence types (STs) with the most common being ST155 (n = 3/14). Based Upon Related Sequence Types (eBURST) analyses of the study sequence types identified four similar clones, five single-locus variants, and two satellite clones (more distantly) with global curated E. coli STs. All the isolates possessed at least one restriction-modification (R-M) and CRISPR defence system. Further analysis revealed conserved stress response mechanisms (detoxification, osmotic, oxidative, and periplasmic stress) in the strains. Estimation of pathogenicity predicted a higher average probability score (Pscore ≈ 0.937), supporting their pathogenic potential to humans. Diverse virulence genes that were clonal-specific were identified. Phylogenomic tree analyses coupled with metadata insights depicted the high genetic diversity of the E. coli isolates with no correlation with their meat sources and areas. The findings of this bioinformatic analyses further our understanding of E. coli in meat sources and are broadly relevant to the design of contamination control strategies in meat retail settings in Ghana.
Collapse
|
9
|
Meena PR, Yadav P, Hemlata H, Tejavath KK, Singh AP. Poultry-origin extraintestinal Escherichia coli strains carrying the traits associated with urinary tract infection, sepsis, meningitis and avian colibacillosis in India. J Appl Microbiol 2020; 130:2087-2101. [PMID: 33095966 DOI: 10.1111/jam.14905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
AIM In-depth 'One Health' risk assessment of extraintestinal pathogenic Escherichia coli (ExPEC) strains carrying the traits of urinary tract infection, sepsis, meningitis and avian colibacillosis in poultry of India. METHODS AND RESULTS A total of 230 E. coli isolates were recovered from chicken samples representing the different sources (faeces vs caeca), stages (poultry farms vs retails butcher shop) or environments (rural vs urban) of poultry in India. Among all poultry-origin E. coli isolates, 49 (21·1%) strains were identified as ExPEC possessing multiple virulence determinants regardless of their association with any specific phylogenetic lineages. Of particular, potentially virulent ExPEC pathotypes, that is, uropathogenic E.coli (UPEC, 20·4%), avian pathogenic E. coli (APEC, 34·6%), septicaemia-associated E. coli (SEPEC, 47·0%) and neonatal meningitis-causing E.39 coli (NMEC, 2·0%) were also detected among all ExPEC strains. CONCLUSIONS Our study is the first to assess ExPEC strains circulating in the different settings of poultry in India and significantly demonstrates their potential ability to cause multiple extraintestinal infections both in humans and animals. SIGNIFICANCE AND IMPACT OF THE STUDY The data of our study are in favour of the possibility that poultry-origin putative virulent ExPEC pathotypes consequently constitute a threat risk to 'One Health' or for food safety and a great concern for poultry production of India.
Collapse
Affiliation(s)
- P R Meena
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Rajasthan, India
| | - P Yadav
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Rajasthan, India
| | - H Hemlata
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, India
| | - K K Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, India
| | - A P Singh
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Rajasthan, India
| |
Collapse
|
10
|
Massella E, Reid CJ, Cummins ML, Anantanawat K, Zingali T, Serraino A, Piva S, Giacometti F, Djordjevic SP. Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Antibiotics (Basel) 2020; 9:antibiotics9110782. [PMID: 33172096 PMCID: PMC7694828 DOI: 10.3390/antibiotics9110782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.
Collapse
Affiliation(s)
- Elisa Massella
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Cameron J. Reid
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Max L. Cummins
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Kay Anantanawat
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Tiziana Zingali
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Steven P. Djordjevic
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
- Correspondence:
| |
Collapse
|
11
|
PRAJAPATI BI, SOLANKI KM, DEVI SARITA, KATIRA BP, PATEL SS, RAVAL SH, MOMIN RR. Phenotypic and molecular characterization of ESBLs producing Escherichia coli in bovine faecal and milk samples of North Gujarat. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i7.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Extended-spectrum β-lactamases (ESBLs) producing E. coli seems to be emerging in veterinary science impacting major threat to public health due to resistance to golden age antibiotics. In this study a total of 109 samples (42 faecal and 67 mastitis milk) of bovines were collected from different regions of North Gujarat. The samples were cultured and identified by standard procedures. The screening for ESBLs production was performed by using Cefotaxime and Cefotaxime+Clavulanate (Combination disc screening method). A total of 71 E. coli isolates were recovered from 109 samples processed, out of which thirty (42.25%) isolates (17 from milk and 13 from faecal) were positive for ESBLs showing multiple resistance to the antibiotics used. The ESBL confirmed isolates were further processed for detection of blaCTX-M, blaTEM, and blaSHV genes. Major gene detected was blaTEM in 17 (23.94%) E. coli isolates. Antibiotic resistance pattern of E. coli isolates was studied against eleven commonly used antimicrobial drugs in the northern region of Gujarat. The results recorded resistance tofollowing antibiotics: tetracycline (100%), ampicillin/sulbactum (83.10%), amoxiclav and gentamicin (83.10%), chloramphenicol (57.74%), ceftriaxone (66.19%), cefoperazone (66.19%), ciprofloxacin (74.65%), amikacin (57.74%), enrofloxacin (74.65%) and, levofloxacin (74.65%).
Collapse
|
12
|
Chaudhry TH, Aslam B, Arshad MI, Alvi RF, Muzammil S, Yasmeen N, Aslam MA, Khurshid M, Rasool MH, Baloch Z. Emergence of bla NDM-1 Harboring Klebsiella pneumoniae ST29 and ST11 in Veterinary Settings and Waste of Pakistan. Infect Drug Resist 2020; 13:3033-3043. [PMID: 32904734 PMCID: PMC7457595 DOI: 10.2147/idr.s248091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Intense livestock farming practices enforcing the farmers to use antibiotics as food supplements on a routine basis. Aberrant use of antibiotics is associated with the emergence of antibiotics resistance and resistant superbugs. Keeping in view the current scenario, the present study was designed for the first time from Pakistan with a specific aim to estimate the prevalence of the carbapenem-resistant Klebsiella pneumoniae in veterinary settings and the waste in Pakistan. Methods A total of 138 samples from various veterinary sources were collected by employing a nonprobability sampling technique. Isolation and phenotypic identification of carbapenem-resistant K. pneumoniae were performed according to the CLSI standard. Molecular detection of various antibiotic resistance genes (ARGs) was done through PCR by using specific primers against each ARG. According to the pasture scheme, the multilocus sequence typing (MLST) was performed to characterize the K. pneumoniae sequence types (STs). Results According to the results of the study, overall 9.4% (13/138) isolates were confirmed carbapenem-resistant K. pneumoniae. Among various carbapenem ARGs particularly, the bla NDM-1 was found in 92.3% (12/13) isolates followed by bla OXA-48 84.6% (11/13). MLST results revealed that overall 3 STs were found in the study which includes ST29, ST11, and ST258. Taking together, this is the first study to our best knowledge which demonstrated the prevalence of carbapenem-resistant K. pneumoniae and its various STs prevalent in veterinary settings and the waste of Pakistan. Conclusion Based on the above-mentioned facts, we suggested that veterinary settings and waste are the potential source and reservoir of carbapenem-resistant K. pneumoniae, which may be disseminated to the environment and ultimately can affect the public and companion livestock health.
Collapse
Affiliation(s)
- Tamoor Hamid Chaudhry
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, People's Republic of China.,Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bilal Aslam
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, People's Republic of China.,Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Roman Farooq Alvi
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Zulqarnain Baloch
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| |
Collapse
|
13
|
Lee SI, Choi J, Daeschel DZ, Park SH. Microbiome characterization of poultry products based on the poultry part and production label. FEMS Microbiol Lett 2020; 366:5479881. [PMID: 31123750 DOI: 10.1093/femsle/fnz092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 12/27/2022] Open
Abstract
Poultry is one of the most consumed meats worldwide and there are many different types of poultry products available on the market for consumers. Many poultry producers provide a variety of labeled meats based on rearing system such as organic, free-range and antibiotic-free. However, these labels often can be misleading by implying organic products are better in safety and quality compared to poultry products without additional labels. In this study, the microbiological profiles of commercial poultry products were characterized via a next generation sequencing. A variety of poultry products including whole carcass, leg, breast and thigh were purchased from local markets and subdivided by labels indicating organic, non-antibiotic, free range and no-label. According to the microbiome analysis based on the 16S rRNA gene, similar level of species richness were observed in comparison by labels, however, different parts and producers exhibited significant differences. Also, microbial similarities among groups were measured and most samples showed relatively close clustering based on the poultry part and the producer. The results emphasize potential contamination routes and the importance of the control strategy during the pre-harvest step of poultry products. The results also envision potential opportunities to improve current production procedure being utilized by industries.
Collapse
Affiliation(s)
- Sang In Lee
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis OR 97331, USA
| | - Jungmin Choi
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis OR 97331, USA
| | - Devin Z Daeschel
- Department of Microbiology, Oregon State University, 2820 SW Campus Way, Corvallis OR 97331, USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis OR 97331, USA
| |
Collapse
|
14
|
Caruso G, Giammanco A, Cardamone C, Oliveri G, Mascarella C, Capra G, Fasciana T. Extra-Intestinal Fluoroquinolone-Resistant Escherichia coli Strains Isolated from Meat. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8714975. [PMID: 30581870 PMCID: PMC6276482 DOI: 10.1155/2018/8714975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/17/2018] [Accepted: 10/28/2018] [Indexed: 01/01/2023]
Abstract
Extra-intestinal E. coli are emerging as a global threat due to their diffusion as opportunistic pathogens and, above all, to their wide set of antibiotic resistance determinants. There are still many gaps in our knowledge of their origin and spread pathways, although food animals have been adjudicated vehicles for passing mult-drug resistant bacteria to humans. This study analyzed 46 samples of meat purchased from retail stores in Palermo in order to obtain quinolone-resistant E. coli isolates. Strains were screened for their phylogenetic groups, ST131-associated single nucleotide polymorphisms (SNPs), and then typed by ERIC-PCR. Their set of virulence factors, namely, kpsMII, papA, sfaS, focG, iutA, papC, hlyD, and afa genes, were investigated and their fluoroquinolone-resistance determinants evaluated. The data obtained show a dramatically high prevalence of multidrug resistance patterns in the Palermo area, with 28% of the isolates having virulence factor genes typical of ExPEC strains. No B2 group or ST131 strains were detected. Moreover, 20% of our isolates showed positivity to all the plasmid-mediated quinolone resistance (PMQR) determinants, showing a potential to transfer these genes among other bacteria. Therefore, these data underline the possibility that food animals and, specifically, poultry in particular may be a significant source of resistant bacterial strains, posing a potential zoonotic risk.
Collapse
Affiliation(s)
- Giorgia Caruso
- Department of Sciences for Health Promotion and Mother & Child Care, University of Palermo, Italy
| | - Anna Giammanco
- Department of Sciences for Health Promotion and Mother & Child Care, University of Palermo, Italy
| | - Cinzia Cardamone
- Institute for Experimental Veterinary Medicine of Sicily, Palermo, Italy
| | - Giuseppa Oliveri
- Institute for Experimental Veterinary Medicine of Sicily, Palermo, Italy
| | - Chiara Mascarella
- Department of Sciences for Health Promotion and Mother & Child Care, University of Palermo, Italy
| | - Giuseppina Capra
- Department of Sciences for Health Promotion and Mother & Child Care, University of Palermo, Italy
| | - Teresa Fasciana
- Department of Sciences for Health Promotion and Mother & Child Care, University of Palermo, Italy
| |
Collapse
|
15
|
Li B, Huang Q, Cui A, Liu X, Hou B, Zhang L, Liu M, Meng X, Li S. Overexpression of Outer Membrane Protein X (OmpX) Compensates for the Effect of TolC Inactivation on Biofilm Formation and Curli Production in Extraintestinal Pathogenic Escherichia coli (ExPEC). Front Cell Infect Microbiol 2018; 8:208. [PMID: 29988395 PMCID: PMC6024092 DOI: 10.3389/fcimb.2018.00208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022] Open
Abstract
Our previous study showed that the inactivation of the efflux pump TolC could abolish biofilm formation and curli production of extraintestinal pathogenic Escherichia coli (ExPEC) strain PPECC42 under hyper-osmotic conditions. In this study we investigated the role of OmpX in biofilm formation and curli production of ExPEC PPECC42. Our data showed that OmpX disruption or overexpression didn't significantly affect the biofilm formation and curli production of the wild-type strain. However, in the tolC-deleted mutant, overexpressing OmpX suppressed the effect of TolC inactivation on ExPEC biofilm formation and curli production under hyper-osmotic growth conditions. Real-time qRT-PCR confirmed that OmpX overexpression affected curli production by regulating the transcription of the curli biosynthesis-related genes in the ΔtolC strain. Our findings suggest that OmpX is involved in biofilm formation and curli production.
Collapse
Affiliation(s)
- Binyou Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ailian Cui
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueling Liu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Hou
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liyuan Zhang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mei Liu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xianrong Meng
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Sheen S, Huang CY, Ramos R, Chien SY, Scullen OJ, Sommers C. Lethality Prediction for Escherichia Coli O157:H7 and Uropathogenic E. coli in Ground Chicken Treated with High Pressure Processing and Trans-Cinnamaldehyde. J Food Sci 2018; 83:740-749. [PMID: 29411883 DOI: 10.1111/1750-3841.14059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/28/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023]
Abstract
UNLABELLED Pathogenic Escherichia coli, intestinal (O157:H7) as well as extraintestinal types (for example, Uropathogenic E. coli [UPEC]) are commonly found in many foods including raw chicken meat. The resistance of E. coli O157:H7 to UPEC in chicken meat under the stresses of high hydrostatic Pressure (HHP, also known as HPP-high pressure processing) and trans-cinnamaldehyde (an essential oil) was investigated and compared. UPEC was found slightly less resistant than O157:H7 in our test parameter ranges. With the addition of trans-cinnamaldehyde as an antimicrobial to meat, HPP lethality enhanced both O157:H7 and UPEC inactivation. To facilitate the predictive model development, a central composite design (CCD) was used to assess the 3-parameter effects, that is, pressure (300 to 400 MPa), trans-cinnamaldehyde dose (0.2 to 0.5%, w/w), and pressure-holding time (15 to 25 min), on the inactivation of E. coli O157:H7 and UPEC in ground chicken. Linear models were developed to estimate the lethality of E. coli O157:H7 (R2 = 0.86) and UPEC (R2 = 0.85), as well as dimensionless nonlinear models. All models were validated with data obtained from separated CCD combinations. Because linear models of O157:H7 and UPEC had similar R2 and the significant lethality difference of CCD points was only 9 in 20; all data were combined to generate models to include both O157:H7 and UPEC. The results provide useful information/tool to predict how pathogenic E. coli may survive HPP in the presence of trans-cinnamaldehyde and to achieve a great than 5 log CFU/g reduction in chicken meat. The models may be used for process optimization, product development and to assist the microbial risk assessment. PRACTICAL APPLICATION The study provided an effective means to reduce the high hydrostatic pressure level with incorporation of antimicrobial compound to achieve a 5-log reduction of pathogenic E. coli without damaging the raw meat quality. The developed models may be used to predict the high pressure processing lethality (and process optimization), product development (ingredient selection), and to assist the microbial risk assessment.
Collapse
Affiliation(s)
- Shiowshuh Sheen
- Eastern Regional Research Center, Agricultural Research Service, U.S. Dept. of Agriculture, Wyndmoor, PA 19038, U.S.A
| | - Chi-Yun Huang
- Eastern Regional Research Center, Agricultural Research Service, U.S. Dept. of Agriculture, Wyndmoor, PA 19038, U.S.A
- Inst. of Food Science and Technology, Natl. Taiwan Univ., Taiwan
| | - Rommel Ramos
- Eastern Regional Research Center, Agricultural Research Service, U.S. Dept. of Agriculture, Wyndmoor, PA 19038, U.S.A
| | - Shih-Yung Chien
- Inst. of Food Science and Technology, Natl. Taiwan Univ., Taiwan
| | - O Joseph Scullen
- Eastern Regional Research Center, Agricultural Research Service, U.S. Dept. of Agriculture, Wyndmoor, PA 19038, U.S.A
| | - Christopher Sommers
- Eastern Regional Research Center, Agricultural Research Service, U.S. Dept. of Agriculture, Wyndmoor, PA 19038, U.S.A
| |
Collapse
|
17
|
Mellata M, Johnson JR, Curtiss R. Escherichia coliisolates from commercial chicken meat and eggs cause sepsis, meningitis and urinary tract infection in rodent models of human infections. Zoonoses Public Health 2017; 65:103-113. [DOI: 10.1111/zph.12376] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 01/06/2023]
Affiliation(s)
- M. Mellata
- The Biodesign Institute; Arizona State University; Tempe AZ USA
| | - J. R. Johnson
- Veterans Affairs Medical Center; University of Minnesota; Minneapolis MN USA
| | - R. Curtiss
- The Biodesign Institute; Arizona State University; Tempe AZ USA
- School of Life Sciences; Arizona State University; Tempe AZ USA
| |
Collapse
|
18
|
Abstract
For several billion years, bacteria have developed mechanisms to resist antibacterial substances. In modern time, antibiotics are frequently used in veterinary and human medicine for prevention and treatment of diseases, globally still also for their growth promoting effects as feed additives. This complex situation has evolved in accelerating development and prevalence of multi-drug resistant bacteria in livestock and people. Extended-spectrum beta-lactamase (ESBL) producing bacteria are resistant to a wide range of ß-lactam antibiotics. They are currently considered as one of the main threats for the treatment of infections in humans and animals. In livestock and animal products, poultry and poultry products show the highest prevalence of ESBL-producers with CTX-M-1, TEM-52 and SHV-12 being the most common ESBL-types in poultry. Escherichia coli and Salmonella spp. are the bacteria in poultry, which carry ESBL-genes most frequently. ESBL-producing bacteria are present at every level of the poultry production pyramid and can be detected even in the meconium of newly hatched chicks. The environment close to poultry barns shows high prevalence rates of these bacteria and contributes to an ongoing infection pressure with further ESBL-types. Probiotics have been shown to successfully reduce ESBL-producers in chicken, as well as ESBL-gene transfer. Other feed additives, such as zinc and copper, increase the prevalence of ESBL-producing bacteria when fed to animals. To our best knowledge, this is the first publication presenting a comparative overview of the prevalence of ESBL-types using data from different countries. To reduce the hazard for public health from poultry carrying high numbers of ESBL-producers, preventive measurements must include the surrounding environment and avoidance of antibiotic usage at all levels of the production pyramid. The first results, of the research on the impact of feed additives on the spread of ESBL-genes, indicate the diet as a further, possible magnitude of influence.
Collapse
|
19
|
Klimienė I, Virgailis M, Kerzienė S, Šiugždinienė R, Mockeliūnas R, Ružauskas M. Evaluation of genotypical antimicrobial resistance in
ESBL
producing
Escherichia coli
phylogenetic groups isolated from retail poultry meat. J Food Saf 2017. [DOI: 10.1111/jfs.12370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Irena Klimienė
- Institute of Microbiology and Virology, Lithuanian University of Health SciencesTilžes str. 18, Kaunas, LT‐47181 Lithuania
| | - Marius Virgailis
- Institute of Microbiology and Virology, Lithuanian University of Health SciencesTilžes str. 18, Kaunas, LT‐47181 Lithuania
| | - Sigita Kerzienė
- Department of Physics, Mathematics and BiophysicsLithuanian University of Health SciencesTilžes str. 18, Kaunas, LT‐47181 Lithuania
| | - Rita Šiugždinienė
- Institute of Microbiology and Virology, Lithuanian University of Health SciencesTilžes str. 18, Kaunas, LT‐47181 Lithuania
| | - Raimundas Mockeliūnas
- Institute of Microbiology and Virology, Lithuanian University of Health SciencesTilžes str. 18, Kaunas, LT‐47181 Lithuania
| | - Modestas Ružauskas
- Institute of Microbiology and Virology, Lithuanian University of Health SciencesTilžes str. 18, Kaunas, LT‐47181 Lithuania
| |
Collapse
|
20
|
Meng X, Liu X, Zhang L, Hou B, Li B, Tan C, Li Z, Zhou R, Li S. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X. J Vet Med Sci 2016; 78:1261-7. [PMID: 27149893 PMCID: PMC5053926 DOI: 10.1292/jvms.16-0071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to
the virulence in various bacterial species. But, their role in virulence of
extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be
determined. This study evaluates the role of OmpX in ExPEC virulence in
vitro and in vivo using a clinical strain PPECC42 of porcine
origin. The ompX deletion mutant exhibited increased swimming motility
and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the
wild-type strain. A mild increase in LD50 and distinct decrease in bacterial
load in such organs as heart, liver, spleen, lung and kidney were observed in mice
infected with the ompX mutant. Complementation of the complete
ompX gene in trans restored the virulence of mutant
strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC
virulence, but may be not an indispensable virulence determinant.
Collapse
Affiliation(s)
- Xianrong Meng
- State Key Lab of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Meng X, Zhang L, Hou B, Liu X, Li S. Oxygen-Free Condition Inhibited Biofilm Formation in Extraintestinal Pathogenic Escherichia coli Strain PPECC42 Through Preventing Curli Production. Curr Microbiol 2016; 73:153-8. [PMID: 27094999 DOI: 10.1007/s00284-016-1037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/01/2016] [Indexed: 10/21/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important zoonotic and foodborne pathogen. Biofilms are specially structured communities for bacteria to survive in different hostile environments and can protect the bacteria from eradication by the host and external factors. In this study, we found that oxygen is definitely required for biofilm formation in ExPEC strain PPECC42. Aerobically growing ExPEC showed a bdar (brown, dry, and rough) morphotype, whereas anaerobically growing ExPEC showed a saw (smooth and white) morphotype. Under anaerobic condition, curli fimbriae did not accumulate and the expression levels of curli biosynthesis-related genes including csgB, csgD, and rpoS decreased significantly; in contrast, the expression level of h-ns, of which the encoding protein is a repressor for csgD transcription, increased significantly. Taken together, the results suggested that oxygen-free condition limited ExPEC strain PPECC42 biofilm formation mainly through preventing curli accumulation by affecting the transcriptional levels of curli biosynthesis-related genes.
Collapse
Affiliation(s)
- Xianrong Meng
- State Key Lab of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street No 1, Wuhan, 430070, People's Republic of China
| | - Liyuan Zhang
- State Key Lab of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street No 1, Wuhan, 430070, People's Republic of China
| | - Bo Hou
- State Key Lab of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street No 1, Wuhan, 430070, People's Republic of China
| | - Xueling Liu
- State Key Lab of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street No 1, Wuhan, 430070, People's Republic of China
| | - Shaowen Li
- State Key Lab of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street No 1, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
22
|
Manges A. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 2016; 22:122-129. [DOI: 10.1016/j.cmi.2015.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
|
23
|
Ghodousi A, Bonura C, Di Noto AM, Mammina C. Extended-Spectrum ß-Lactamase, AmpC-Producing, and Fluoroquinolone-Resistant Escherichia coli in Retail Broiler Chicken Meat, Italy. Foodborne Pathog Dis 2015; 12:619-25. [PMID: 26135894 DOI: 10.1089/fpd.2015.1936] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Globally, antimicrobial drug-resistant Escherichia coli is among the most common etiological agents of invasive disease in humans. In Europe, increasing proportions of infections due to third-generation cephalosporins and/or fluoroquinolone-resistant extraintestinal pathogenic E. coli (ExPEC) strains are reported. E. coli from poultry are those more closely linked to human E. coli, but lack of reliable data makes it difficult to assess the attributable risk of different food sources. In the present study, our objective was to investigate the antimicrobial resistance profile, phylogenetic background, and virulence factors of E. coli isolates from broiler chicken meat sold at retail in Palermo, Italy. MATERIALS AND METHODS Isolation of multidrug resistant (MDR) E. coli was performed during April-December 2013 on a total of 163 chicken meat samples. Susceptibility to a panel of nine antimicrobial agents was determined. PCR assays were carried out to detect extended-spectrum β-lactamase (ESBL), plasmid-mediated AmpC β-lactamase, and plasmid-mediated quinolone resistance (PMQR) genes, phylogenetic group, and ExPEC-associated traits. A single nucleotide polymorphism (SNP) PCR was done to detect E. coli sequence type (ST)131. RESULTS One hundred thirty-four isolates from 109 meat samples were MDR. B1 was the most prevalent phylogenetic group (47.8%), followed by groups D (25.4%), A (22.3%), and B2 (4.5%). ESBLs and AmpC β-lactamases were detected by PCR in 132 (98.5%) and 15 (11.2%) isolates. PMQR determinants were detected in 122 (91%) isolates. Twenty-two MDR isolates met the molecular definition of ExPEC. SNP-PCR results confirmed that four B2 isolates were ST131. Enterobacterial Repetitive Intergenic Consensus sequence-PCR analysis showed a large heterogeneity with 55 unique profiles and 31 clusters including 2-4 isolates. CONCLUSIONS An alarmingly high prevalence of MDR E. coli from broiler chicken meat is evident in our geographic area. The ongoing use of antimicrobial drugs in livestock should be urgently restricted, particularly in the poultry sector.
Collapse
Affiliation(s)
- Arash Ghodousi
- 1 PhD Course in Molecular Medicine, University of Palermo , Palermo, Italy .,2 Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo , Palermo, Italy
| | - Celestino Bonura
- 2 Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo , Palermo, Italy
| | - Anna Maria Di Noto
- 3 Experimental Zooprophylactic Institute of Sicily "A. Mirri," Palermo, Italy
| | - Caterina Mammina
- 2 Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo , Palermo, Italy
| |
Collapse
|
24
|
Hemmatinezhad B, Khamesipour F, Mohammadi M, Safarpoor Dehkordi F, Mashak Z. Microbiological Investigation of O-Serogroups, Virulence Factors and Antimicrobial Resistance Properties of Shiga Toxin-Producing E
scherichia Coli
Isolated from Ostrich, Turkey and Quail Meats. J Food Saf 2015. [DOI: 10.1111/jfs.12199] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Behsan Hemmatinezhad
- Young Researchers and Elites Club; Shahrekord Branch; Islamic Azad University; Shahrekord Iran
| | - Faham Khamesipour
- Young Researchers and Elites Club; Shahrekord Branch; Islamic Azad University; Shahrekord Iran
| | - Milad Mohammadi
- Faculty of Veterinary Medicine; Shahrekord Branch; Islamic Azad University; Shahrekord Iran
| | | | - Zohreh Mashak
- Department of Food Hygiene; Karaj Branch; Islamic Azad University; Karaj Iran
| |
Collapse
|
25
|
Molecular and phylogenetic characterization of multidrug resistant extended spectrum beta-lactamase producing Escherichia coli isolated from poultry and cattle in Odisha, India. INFECTION GENETICS AND EVOLUTION 2015; 29:82-90. [DOI: 10.1016/j.meegid.2014.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/24/2014] [Accepted: 11/01/2014] [Indexed: 11/22/2022]
|