1
|
Bullock ME, Hogan T, Williams C, Morris S, Nowicka M, Sharjeel M, van Dorp C, Yates AJ, Seddon B. The dynamics and longevity of circulating CD4+ memory T cells depend on cell age and not the chronological age of the host. PLoS Biol 2024; 22:e3002380. [PMID: 39137219 PMCID: PMC11321570 DOI: 10.1371/journal.pbio.3002380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Quantifying the kinetics with which memory T cell populations are generated and maintained is essential for identifying the determinants of the duration of immunity. The quality and persistence of circulating CD4 effector memory (TEM) and central memory (TCM) T cells in mice appear to shift with age, but it is unclear whether these changes are driven by the aging host environment, by cell age effects, or both. Here, we address these issues by combining DNA labelling methods, established fate-mapping systems, a novel reporter mouse strain, and mathematical models. Together, these allow us to quantify the dynamics of both young and established circulating memory CD4 T cell subsets, within both young and old mice. We show that that these cells and their descendents become more persistent the longer they reside within the TCM and TEM pools. This behaviour may limit memory CD4 T cell diversity by skewing TCR repertoires towards clones generated early in life, but may also compensate for functional defects in new memory cells generated in old age.
Collapse
Affiliation(s)
- M. Elise Bullock
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Sinead Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Maria Nowicka
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Minahil Sharjeel
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Christiaan van Dorp
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrew J. Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
2
|
Bullock ME, Hogan T, Williams C, Morris S, Nowicka M, Sharjeel M, van Dorp C, Yates AJ, Seddon B. The dynamics and longevity of circulating CD4 + memory T cells depend on cell age and not the chronological age of the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562650. [PMID: 38948729 PMCID: PMC11212895 DOI: 10.1101/2023.10.16.562650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Quantifying the kinetics with which memory T cell populations are generated and maintained is essential for identifying the determinants of the duration of immunity. The quality and persistence of circulating CD4+ effector memory (TEM) and central memory (TCM) T cells in mice appear to shift with age, but it is unclear whether these changes are driven by the aging host environment, by cell age effects, or both. Here we address these issues by combining DNA labelling methods, established fate-mapping systems, a novel reporter mouse strain, and mathematical models. Together, these allow us to quantify the dynamics of both young and established circulating memory CD4+ T cell subsets, within both young and old mice. We show that that these cells and their descendents become more persistent the longer they reside within the TCM and TEM pools. This behaviour may limit memory CD4 T cell diversity by skewing TCR repertoires towards clones generated early in life, but may also compensate for functional defects in new memory cells generated in old age.
Collapse
Affiliation(s)
- M. Elise Bullock
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Sinead Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Maria Nowicka
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Minahil Sharjeel
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Christiaan van Dorp
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Andrew J. Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
3
|
Hoffmann E, Gerwing M, Niland S, Niehoff R, Masthoff M, Geyer C, Wachsmuth L, Wilken E, Höltke C, Heindel WL, Hoerr V, Schinner R, Berger P, Vogl T, Eble JA, Maus B, Helfen A, Wildgruber M, Faber C. Profiling specific cell populations within the inflammatory tumor microenvironment by oscillating-gradient diffusion-weighted MRI. J Immunother Cancer 2023; 11:jitc-2022-006092. [PMID: 36918222 PMCID: PMC10016257 DOI: 10.1136/jitc-2022-006092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The inflammatory tumor microenvironment (TME) is formed by various immune cells, being closely associated with tumorigenesis. Especially, the interaction between tumor-infiltrating T-cells and macrophages has a crucial impact on tumor progression and metastatic spread. The purpose of this study was to investigate whether oscillating-gradient diffusion-weighted MRI (OGSE-DWI) enables a cell size-based discrimination between different cell populations of the TME. METHODS Sine-shaped OGSE-DWI was combined with the Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED) approach to measure microscale diffusion distances, here relating to cell sizes. The accuracy of IMPULSED-derived cell radii was evaluated using in vitro spheroid models, consisting of either pure cancer cells, macrophages, or T-cells. Subsequently, in vivo experiments aimed to assess changes within the TME and its specific immune cell composition in syngeneic murine breast cancer models with divergent degrees of malignancy (4T1, 67NR) during tumor progression, clodronate liposome-mediated depletion of macrophages, and immune checkpoint inhibitor (ICI) treatment. Ex vivo analysis of IMPULSED-derived cell radii was conducted by immunohistochemical wheat germ agglutinin staining of cell membranes, while intratumoral immune cell composition was analyzed by CD3 and F4/80 co-staining. RESULTS OGSE-DWI detected mean cell radii of 8.8±1.3 µm for 4T1, 8.2±1.4 µm for 67NR, 13.0±1.7 for macrophage, and 3.8±1.8 µm for T-cell spheroids. While T-cell infiltration during progression of 4T1 tumors was observed by decreasing mean cell radii from 9.7±1.0 to 5.0±1.5 µm, increasing amount of intratumoral macrophages during progression of 67NR tumors resulted in increasing mean cell radii from 8.9±1.2 to 12.5±1.1 µm. After macrophage depletion, mean cell radii decreased from 6.3±1.7 to 4.4±0.5 µm. T-cell infiltration after ICI treatment was captured by decreasing mean cell radii in both tumor models, with more pronounced effects in the 67NR tumor model. CONCLUSIONS OGSE-DWI provides a versatile tool for non-invasive profiling of the inflammatory TME by assessing the dominating cell type T-cells or macrophages.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Rolf Niehoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Enrica Wilken
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany.,Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Regina Schinner
- Department of Radiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Berger
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany.,Department of Radiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Heinke P, Rost F, Rode J, Trus P, Simonova I, Lázár E, Feddema J, Welsch T, Alkass K, Salehpour M, Zimmermann A, Seehofer D, Possnert G, Damm G, Druid H, Brusch L, Bergmann O. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst 2022; 13:499-507.e12. [PMID: 35649419 DOI: 10.1016/j.cels.2022.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Physiological liver cell replacement is central to maintaining the organ's high metabolic activity, although its characteristics are difficult to study in humans. Using retrospective radiocarbon (14C) birth dating of cells, we report that human hepatocytes show continuous and lifelong turnover, allowing the liver to remain a young organ (average age <3 years). Hepatocyte renewal is highly dependent on the ploidy level. Diploid hepatocytes show more than 7-fold higher annual birth rates than polyploid hepatocytes. These observations support the view that physiological liver cell renewal in humans is mainly dependent on diploid hepatocytes, whereas polyploid cells are compromised in their ability to divide. Moreover, cellular transitions between diploid and polyploid hepatocytes are limited under homeostatic conditions. With these findings, we present an integrated model of homeostatic liver cell generation in humans that provides fundamental insights into liver cell turnover dynamics.
Collapse
Affiliation(s)
- Paula Heinke
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Fabian Rost
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Julian Rode
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Palina Trus
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Irina Simonova
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Joshua Feddema
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thilo Welsch
- Visceral-, Thoracic- and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kanar Alkass
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mehran Salehpour
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Andrea Zimmermann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Göran Possnert
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lutz Brusch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
5
|
Roeder SS, Burkardt P, Rost F, Rode J, Brusch L, Coras R, Englund E, Håkansson K, Possnert G, Salehpour M, Primetzhofer D, Csiba L, Molnár S, Méhes G, Tonchev AB, Schwab S, Bergmann O, Huttner HB. Evidence for postnatal neurogenesis in the human amygdala. Commun Biol 2022; 5:366. [PMID: 35440676 PMCID: PMC9018740 DOI: 10.1038/s42003-022-03299-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
The human amygdala is involved in processing of memory, decision-making, and emotional responses. Previous studies suggested that the amygdala may represent a neurogenic niche in mammals. By combining two distinct methodological approaches, lipofuscin quantification and 14C-based retrospective birth dating of neurons, along with mathematical modelling, we here explored whether postnatal neurogenesis exists in the human amygdala. We investigated post-mortem samples of twelve neurologically healthy subjects. The average rate of lipofuscin-negative neurons was 3.4%, representing a substantial proportion of cells substantially younger than the individual. Mass spectrometry analysis of genomic 14C-concentrations in amygdala neurons compared with atmospheric 14C-levels provided evidence for postnatal neuronal exchange. Mathematical modelling identified a best-fitting scenario comprising of a quiescent and a renewing neuronal population with an overall renewal rate of >2.7% per year. In conclusion, we provide evidence for postnatal neurogenesis in the human amygdala with cell turnover rates comparable to the hippocampus. Lipofuscin labeling and 14 C retrospective birth-dating of neurons, along with mathematical modelling, here suggest continued postnatal neurogenesis in the human amygdala, rather than protracted maturation of developmentally generated neurons.
Collapse
Affiliation(s)
- Sebastian S Roeder
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Petra Burkardt
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian Rost
- Center for Regenerative Therapies (CRTD), TU Dresden, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Information Services and High Performance Computing (ZIH), TU Dresden, Dresden, Germany.,Center for Molecular and Cellular Bioengineering, DRESDEN-concept Genome Center, TU Dresden, Dresden, Germany
| | - Julian Rode
- Center for Information Services and High Performance Computing (ZIH), TU Dresden, Dresden, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing (ZIH), TU Dresden, Dresden, Germany
| | - Roland Coras
- Department of Neuropathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Karl Håkansson
- Tandem Laboratory, Uppsala University, Uppsala, Sweden.,Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | | | - Mehran Salehpour
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Daniel Primetzhofer
- Tandem Laboratory, Uppsala University, Uppsala, Sweden.,Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary
| | - Sarolta Molnár
- Department of Pathology, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, University of Debrecen, Debrecen, Hungary
| | - Anton B Tonchev
- Departments of Anatomy, Cell Biology and Stem Cell Biology, Medical University Varna, Varna, Bulgaria
| | - Stefan Schwab
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies (CRTD), TU Dresden, Dresden, Germany.,Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Hagen B Huttner
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany. .,Department of Neurology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
6
|
Waldherr S. Estimation methods for heterogeneous cell population models in systems biology. J R Soc Interface 2018; 15:20180530. [PMID: 30381346 PMCID: PMC6228475 DOI: 10.1098/rsif.2018.0530] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
Heterogeneity among individual cells is a characteristic and relevant feature of living systems. A range of experimental techniques to investigate this heterogeneity is available, and multiple modelling frameworks have been developed to describe and simulate the dynamics of heterogeneous populations. Measurement data are used to adjust computational models, which results in parameter and state estimation problems. Methods to solve these estimation problems need to take the specific properties of data and models into account. The aim of this review is to give an overview on the state of the art in estimation methods for heterogeneous cell population data and models. The focus is on models based on the population balance equation, but stochastic and individual-based models are also discussed. It starts with a brief discussion of common experimental approaches and types of measurement data that can be obtained in this context. The second part describes computational modelling frameworks for heterogeneous populations and the types of estimation problems occurring for these models. The third part starts with a discussion of observability and identifiability properties, after which the computational methods to solve the various estimation problems are described.
Collapse
|
7
|
Temporal fate mapping reveals age-linked heterogeneity in naive T lymphocytes in mice. Proc Natl Acad Sci U S A 2015; 112:E6917-26. [PMID: 26607449 DOI: 10.1073/pnas.1517246112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding how our T-cell compartments are maintained requires knowledge of their population dynamics, which are typically quantified over days to weeks using the administration of labels incorporated into the DNA of dividing cells. These studies present snapshots of homeostatic dynamics and have suggested that lymphocyte populations are heterogeneous with respect to rates of division and/or death, although resolving the details of such heterogeneity is problematic. Here we present a method of studying the population dynamics of T cells in mice over timescales of months to years that reveals heterogeneity in rates of division and death with respect to the age of the host at the time of thymic export. We use the transplant conditioning drug busulfan to ablate hematopoetic stem cells in young mice but leave the peripheral lymphocyte compartments intact. Following their reconstitution with congenically labeled (donor) bone marrow, we followed the dilution of peripheral host T cells by donor-derived lymphocytes for a year after treatment. Describing these kinetics with mathematical models, we estimate rates of thymic production, division and death of naive CD4 and CD8 T cells. Population-averaged estimates of mean lifetimes are consistent with earlier studies, but we find the strongest support for a model in which both naive T-cell pools contain kinetically distinct subpopulations of older host-derived cells with self-renewing capacity that are resistant to displacement by naive donor lymphocytes. We speculate that these incumbent cells are conditioned or selected for increased fitness through homeostatic expansion into the lymphopenic neonatal environment.
Collapse
|