1
|
de Oliveira IM, Docílio Pereira JV, da Silva Pereira EC, de Souza MS, Cazetta ML, da Cruz Neto CC, da Silva Santana VM, Araújo Pinto VH, Rebouças JS, da Silva Martins DC, DeFreitas-Silva G, Costa DS, da Silva VS. Degradation of Dyes Catalyzed by Aminophenyl-Substituted Mn-Porphyrin Immobilized on Chloropropyl Silica Gel and Evaluation of Phytotoxicity. ACS OMEGA 2024; 9:29516-29528. [PMID: 39005809 PMCID: PMC11238201 DOI: 10.1021/acsomega.4c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
A heterogenized Mn(III) porphyrin-based catalyst was prepared for dye degradation. The new Mn(III) complex of 5,15-bis(4-aminophenyl)-10,20-diphenylporphyrin was immobilized, via covalent bond, in chloropropyl silica gel, generating the material (Sil-Cl@MnP) with a loading of 23 μmol manganese porphyrin (MnP) per gram of Sil-Cl. This material was used as a catalyst in degradation reactions of model dyes, a cationic dye [methylene blue (MB)] and an anionic dye (reactive red 120, RR120), using PhI(OAc)2 and H2O2 as oxidants. The oxidation reactions were carried out after the dye reached adsorption/desorption equilibrium with the catalytic material, with a much higher percentage of adsorption being observed for the cationic MB dye (20%) than for the anionic RR120 dye (3%), which may be associated with electrostatic attraction or repulsion effects, respectively, with the negatively charged surface of the silica (zeta potential measurement for Sil-Cl@MnP, ζ = -19.2 mV). In general, there was a higher degradation percentage for MB than for RR120, probably because the size and charge of RR120 would hinder its approach to the MnP active species on the silica surface. With respect to the oxidant, the PhI(OAc)2-based systems showed a higher degradation percentage than those of H2O2. It was observed that the increase in the oxidant concentration promoted a significant increase in the degradation of MB, with a degradation of approximately 65%. The efficiency of the catalyst was also evaluated after successive additions of the oxidant every 2 h, and it can be seen that the catalyst had no loss of efficiency, with a degradation percentage greater than 80% being observed after 8 h of reaction. The phytotoxicity of the products formed in the system was evaluated in a 1:23.5:188 molar ratio Sil-Cl@MnP: MB:PhI(OAc)2 was used. In these studies, phytotoxicity was found for the germination of lettuce seeds when the original solution was used without dilution; however, when diluted (10% V/V), the results were close to the positive and negative controls. Thus, the material obtained proved to be a potential candidate for application in the degradation reactions of environmental pollutants.
Collapse
Affiliation(s)
- Igor Muniz de Oliveira
- Centro
de Formação de Professores, Universidade Federal do Recôncavo da Bahia, 45300-000. Amargosa, Bahia, Brazil
| | - João Victor Docílio Pereira
- Centro
de Ciências Exatas e Tecnológicas—Universidade
Federal do Recôncavo da Bahia, 44380-000. Cruz das Almas, Bahia, Brazil
| | - Everton Carlos da Silva Pereira
- Centro
de Ciências Exatas e Tecnológicas—Universidade
Federal do Recôncavo da Bahia, 44380-000. Cruz das Almas, Bahia, Brazil
| | - Micaelle Silva de Souza
- Centro
de Ciências Agrárias Ambientais e Biológicas—Universidade
Federal do Recôncavo da Bahia, 44380-000. Cruz das Almas, Bahia, Brazil
| | - Márcia Luciana Cazetta
- Centro
de Ciências Exatas e Tecnológicas—Universidade
Federal do Recôncavo da Bahia, 44380-000. Cruz das Almas, Bahia, Brazil
| | - Claudiano Carneiro da Cruz Neto
- Centro
de Ciências Agrárias Ambientais e Biológicas—Universidade
Federal do Recôncavo da Bahia, 44380-000. Cruz das Almas, Bahia, Brazil
| | | | - Victor Hugo Araújo Pinto
- Departamento
de Química, CCEN, Universidade Federal
da Paraíba, 58033-455 João Pessoa, Paraíba, Brazil
| | - Júlio Santos Rebouças
- Departamento
de Química, CCEN, Universidade Federal
da Paraíba, 58033-455 João Pessoa, Paraíba, Brazil
| | - Dayse Carvalho da Silva Martins
- Departamento
de Química, Instituto de Ciências
Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Gilson DeFreitas-Silva
- Departamento
de Química, Instituto de Ciências
Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Denilson Santos Costa
- Instituto
de Química, Universidade Federal
da Bahia, 40170-115 Salvador, Bahia, Brazil
| | - Vinicius Santos da Silva
- Centro
de Ciências Exatas e Tecnológicas—Universidade
Federal do Recôncavo da Bahia, 44380-000. Cruz das Almas, Bahia, Brazil
| |
Collapse
|
2
|
Lu X, Che Q, Niu X, Zhang Y, Chen Y, Han Q, Li M, Wang S, Lan J. Catalytic Degradation of Triphenylmethane Dyes with an Iron Porphyrin Complex as a Cytochrome P450 Model. Molecules 2023; 28:5401. [PMID: 37513273 PMCID: PMC10384606 DOI: 10.3390/molecules28145401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The organic dyes used in printing and dyeing wastewater have complex components, diverse structures and strong chemical stability, which make them not suitable for treatment and difficult to degrade in the environment. Porphyrins are macromolecules with 18 π electrons formed by four pyrrole molecules connected with a methylene bridge that has a stable structure. Porphyrin combines with iron to form an active intermediate with a structure similar to the cytochrome P450 enzyme, so they are widely used in the biomimetic field. In the current study, 5,10,15,20-tetra (4-carboxyphenyl) porphine ferric chloride (III) (Fe(III)TCPP) was used as a catalyst and iodosobenzene was used as an oxidant to explore the catalytic degradation of triphenylmethane dyes, such as rhodamine B (RhB) and malachite green (MG). The results of UV-Vis spectral analysis have shown that the conversion rate of the rhodamine B was over 90% when the amount of Fe(III)TCPP was 0.027 mM and the amount of iodosobenzene was eight equivalents. When the catalyst was 0.00681 mM and the amount of the oxidant was five equivalents, the conversion rate of the malachite green reached over 95%. This work provides a feasible method for the degradation of triphenylmethane dyes.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Qiman Che
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xinkai Niu
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, China
| | - Yilin Zhang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yu'e Chen
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Qing Han
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Miaoqing Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Shuang Wang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jihong Lan
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China
| |
Collapse
|
3
|
Chino M, La Gatta S, Leone L, De Fenza M, Lombardi A, Pavone V, Maglio O. Dye Decolorization by a Miniaturized Peroxidase Fe-MimochromeVI*a. Int J Mol Sci 2023; 24:11070. [PMID: 37446248 DOI: 10.3390/ijms241311070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Oxidases and peroxidases have found application in the field of chlorine-free organic dye degradation in the paper, toothpaste, and detergent industries. Nevertheless, their widespread use is somehow hindered because of their cost, availability, and batch-to-batch reproducibility. Here, we report the catalytic proficiency of a miniaturized synthetic peroxidase, Fe-Mimochrome VI*a, in the decolorization of four organic dyes, as representatives of either the heterocyclic or triarylmethane class of dyes. Fe-Mimochrome VI*a performed over 130 turnovers in less than five minutes in an aqueous buffer at a neutral pH under mild conditions.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
4
|
Iron Porphyrin as a Cytochrome P450 Model for the Degradation of Dye. Molecules 2022; 27:molecules27227948. [PMID: 36432049 PMCID: PMC9696844 DOI: 10.3390/molecules27227948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Organic dyes are widely used in the textile, biological, medical and other fields. However, a serious environmental problem has appeared because of the presence of organic dyes in industrial aqueous effluents. Thus, the efficient treatment of organic dyes in industrial wastewaters is currently in real demand. The current study investigated the oxidative degradation of the organic dye gentian violet by meso-tetra(carboxyphenyl) porphyriniron(III), [FeIII(TCPP)] as a cytochrome P450 model and iodosylbenzene (PhIO) as an oxidant at room temperature. The degradation reaction was monitored by UV-vis absorption spectroscopy via the observation of UV-vis spectral changes of the gentian violet. The results showed that the efficiency of catalyzed degradation reached more than 90% in 1 h, indicating the remarkable oxidative degradation capacity of the [FeIII(TCPP)]/PhIO system, which provided an efficient approach for the treatment of dyeing wastewater.
Collapse
|
5
|
Singh AK, Bilal M, Iqbal HMN, Raj A. In silico analytical toolset for predictive degradation and toxicity of hazardous pollutants in water sources. CHEMOSPHERE 2022; 292:133250. [PMID: 34922975 DOI: 10.1016/j.chemosphere.2021.133250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Different phenolic compounds, including multimeric lignin derivatives in the β-O-4 form, are among the most prevalent compounds in wastewater, often generated from paper industries. Relatively small concentrations of lignin are hazardous to aquatic organisms and can trigger severe environmental hazards. Herein, we present a predictive toolset to insight the induced toxic hazards prediction, and their Lignin peroxidase (LiP)-assisted degradation mechanism of selected multimeric lignin model compounds. T.E.ST and Toxtree toolset were deployed for toxic hazards estimation in different endpoints. To minimize the concerning hazards, we screened multimeric compounds for binding affinity with LiP. The binding affinity was found to be significantly lower than the reference compound. An Extra precision (XP) Glide score of -6.796 kcal/mol was found for dimer (guaiacyl 4-O-5 guaiacyl) complex as lowest compared to reference compound (-4.007 kcal/mol). The active site residues ASP-153, HIP-226, VAL-227, ARG-244, GLU-215, 239, PHE-261 were identified as site-specific key binding AA residues actively involved with corresponding ligands, forming Hydrophobic, H-Bond, π-Stacking, π-π type interactions. The DESMOND-assisted molecular dynamics simulation's (MDS) trajectories of protein-ligand revealed the considerable binding behavior and attained stability and system equilibrium state. Such theoretical and predictive conclusions indicted the feasibility of LiP assisted sustainable mitigation of lignin-based compounds, and such could be used to protect the environment from the potential hazards posed by recognized similar pollutants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Memon AH, Wei B, Shams S, Jiang Y, Jiao M, Su M, Liang H. Construction of robust bienzyme-mimicking nanocatalysts for dye degradation by self-assembly of hematin, metal ions, and nucleotides. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growing proportion of the textile industry has led to an increase in the concentration of colored dyes in aquatic systems.
Collapse
Affiliation(s)
- Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- Government Boys High School Manjhand, Education and Literary Department, Govt of Sindh, Pakistan
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Saira Shams
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yucui Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengzhao Jiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingming Su
- School of Environment and Natural Resources, Renmin University of China, Beijing, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
7
|
Saha TK, Frauendorf H, Meyer F. Oxidative Degradation of Azo Dyes in Aqueous Solution by Water‐Soluble Iron Porphyrin Catalyst. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tapan Kumar Saha
- Department of Chemistry Jahangirnagar University Savar, Dhaka 1342 Bangladesh
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Holm Frauendorf
- Universität Göttingen Institut für Organische und Biomolekulare Chemie Tammannstrasse 2 37077 Göttingen Germany
| | - Franc Meyer
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
8
|
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. Int J Biol Macromol 2021; 181:1072-1080. [PMID: 33892032 DOI: 10.1016/j.ijbiomac.2021.04.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/13/2023]
Abstract
High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
Collapse
Affiliation(s)
- Nikolina Popović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dunja Pržulj
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Maja Mladenović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Olivera Prodanović
- Institute for Multidisciplinary Studies, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Selin Ece
- PerkinElmer chemagen Technologie GmbH, Arnold-Sommerfeld-Ring 2, 52499 Baesweiler, Germany
| | - Karla Ilić Đurđić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Raluca Ostafe
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Purdue Institute of Inflammation, Immunology and Infectious Disease, Molecular Evolution, Protein Engineering and Production, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Departments of Biological Sciences and Chemistry, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Radivoje Prodanović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
9
|
Rathour RK, Sharma V, Rana N, Bhatia RK, Bhatt AK. Bioremediation of Simulated Textile Effluent by an Efficient Bio-catalyst Purified from a Novel Pseudomonas fluorescence LiP-RL5. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212796814666200406100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Microbial degradation of highly stable textile dyes, using lignin peroxidase,
is an eco-friendly, less expensive and much advantageous in comparison to the
chemical method.
Objective:
Biodegradation potential of lignin peroxidase (LiP), from Pseudomonas fluorescens
LiP-RL5, was enhanced after optimization and purification so as to use it as a potential
bioresource for the treatment of textile effluent.
Methods:
LiP producing bacterial isolate was primarily screened by methylene blue assay
followed by LiP assay. The standard protocol was used for purification of lignin peroxidase
and purified LiP was finally used for degradation of textile dyes.
Results:
57 bacterial isolates were screened for lignin peroxidase activity. Isolate LiP-RL5
showed maximum activity (19.8 ±0.33 %) in terms of methylene blue reduction in comparison
to others. Biochemical and molecular characterization of LiP-RL5 showed 99 % similarity
with P. fluorescens. Lignin peroxidase activity was increased by 50 % after optimization
of cultural conditions. Maximum enhancement in the activity was achieved when peptone
was used as a nitrogen source. LiP from P. fluorescens LiP-RL5 was further purified up to 2
folds. SDS-PAGE analysis revealed a single protein band of approximately 40 kDa. Enzyme
also showed high catalytic efficiency with Km= 6.94 mM and Vmax= 78.74 μmol/ml/min. Purified
enzyme was able to decolorize the simulated textile effluent up to 45.05 ±0.28 % after
40 minutes.
Conclusion:
: High catalytic efficiency of purified LiP from P. fluorescens LiP-RL5 suggests
its utility as a potential candidate for biodegradation of toxic dyes in the industrial effluent,
which could be successfully utilized for wastewater treatment at commercial level.
Collapse
Affiliation(s)
- Ranju K. Rathour
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| | - Vaishali Sharma
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| | - Nidhi Rana
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| | - Ravi K. Bhatia
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| | - Arvind K. Bhatt
- Department of Biotechnology, Himachal Pradesh University, Gyan Path, Summer hill, Shimla- 171005, India
| |
Collapse
|
10
|
Mota HP, Quadrado RF, Burgo TA, Iglesias BA, Fajardo AR. Polysaccharide/Fe(III)-porphyrin hybrid film as catalyst for oxidative decolorization of toxic azo dyes: An approach for wastewater treatment. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Hanif M, Rafiq M, Mustaqeem M, Shaheen MA, Qadri KFI, Qadri I, Saleem M. Intracellular and Extracellular Zinc Detection by Organic Fluorescent Receptor. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191029114111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Keeping in view the ever growing demand and application of the organic small
molecules based sensitive and selective fluorescence detection strategies for the trace metallic
ions in the ecosystem, fluids and inside intracellular media, the present literature
survey was focused on the recent development on the organic skeleton based fluorescence
sensor for the zinc ion as Zn2+ is the second most abundant transition metal after iron in
human body. The prominent organic based skeletons introduced during the past three
years for zinc detection including azine, ((Z)-N´-(quinolin-2-ylmethylene)furan-2-
carbohydrazide), nicotinohydrazide, hydrazone, phenolic cage, 4-methyl-2,6-bis[(E)-(2-
(4-phenylthiazol-2-yl)hydrazono)methyl]phenol, bipyridine, N-(quinoline-8-yl)pyridine-2-
carboxamide, anthracene, Schiff base, salen, helicene, Carbon Quantum Dots (CDs) functionalized
with Calix[4]arene, coumarin, diaminomaleonitrile, peptide, hydroxypyrazole, salicylhydrazide were
discussed in detail with particular focus on ligand-zinc complexation mechanism, UV-visible and fluorescence
investigation, spectral variation, isosbestic emergence, limit of detection, ligand-zinc binding stoichiometry,
association/binding constant and applications for intracellular tracing of metallic contamination via confocal
fluorescence microscopic studies. Among the several discussed optical probes, rhodamine and fluorescein
based material offer appreciable sensitivity, exhibiting drawback of pH sensitivity. Probes based on these
ligands triggered “turn-on” signal even in the absence of metals upon fluctuation in pH e.g., acidic in former
case and basic in the latter case. Hydroxypyrazole-based ligands also showed detection signal variation by
switching the pH of the solution. Schiff base and bipyridyl scaffold were found to possess good ligation toward
the several transition metals. Azole, oxazole, thiazole, thiadiazole, hydrazine carboxamide and hydrazine carbothiomide
are the bioactive molecules exhibiting good cell viability and probes designed by using these central
nucleus might be better to invest for intracellular imaging. Symmetrical heterocyclic cage like probe
showed better chelation toward several transition metals and it is a good choice for the design and development
of sensor for simultaneous detection of several transition metals.
Collapse
Affiliation(s)
- Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub campus layyah-31200, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur-6300, Pakistan
| | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha, Sub-campus Bhakkar-30000, Pakistan
| | | | - Kaneez F. I. Qadri
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah , PO Box 80203, Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biologiy, Faculty of Sciences, King Abdulaziz University, PO Box 80216 Jeddah 21589, Saudi Arabia
| | - Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sub-campus Bhakkar-30000, Pakistan
| |
Collapse
|
12
|
Zucca P, Bellot S, Rescigno A. The Modern Use of an Ancient Plant: Exploring the Antioxidant and Nutraceutical Potential of the Maltese Mushroom ( Cynomorium Coccineum L.). Antioxidants (Basel) 2019; 8:antiox8080289. [PMID: 31394783 PMCID: PMC6719927 DOI: 10.3390/antiox8080289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022] Open
Abstract
In the continuous scientific search for new safe and effective drugs, there has recently been a rediscovery of natural substances as a potential reservoir of innovative therapeutic solutions for human health, with the prospect of integrating with and sometimes replacing conventional drugs. Cynomorium coccineum subsp. coccineum is a holoparasitic plant well known in ethnopharmacology, although its current use as a curative remedy is reported only in some ethnic groups of North Africa and the Arabian Peninsula. Often known as ‘Maltese mushroom’ due to its unique appearance and the absence of chlorophyll, C. coccineum is present in almost all of the Mediterranean Basin. It is only recently that a few research groups have begun to look for confirmation of some of its traditional uses to highlight previously unknown biological activities. Here, we review the recent scientific findings on the plant’s phytochemistry and the most significant descriptions of some of its antioxidant and biological activities (antimicrobial, anticancer, pro-erectile, and anti-tyrosinase enzyme) both in vivo and in vitro. Some of these may be promising from the perspective of food and cosmetic formulations. The purpose of this review is to provide an initial impetus to those who, in the foreseeable future, will want to increase the knowledge and possible applications of this plant full of history, charm, and mystery.
Collapse
Affiliation(s)
- Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Sidonie Bellot
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy.
| |
Collapse
|
13
|
Bioinspired versus Enzymatic Oxidation of Some Homologous Thionine Dyes in the Presence of Immobilized Metalloporphyrin Catalysts and Ligninolytic Enzymes. Int J Mol Sci 2017; 18:ijms18122553. [PMID: 29182586 PMCID: PMC5751156 DOI: 10.3390/ijms18122553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022] Open
Abstract
Thionines are recalcitrant and polluting textile dyes presenting various degrees of N-methylation. In this paper, a complete series of homologous thionines was used as the substrates for oxidation in the presence of a bioinspired commercial iron-porphyrin immobilized on to imidazole- and pyridine-functionalized fumed silica, to emulate the active site of ligninolytic peroxidases. The obtained catalytic adducts showed a remarkable ability to catalyze thionine dye oxidation in the presence of different oxidants such as potassium monopersulfate and hydrogen peroxide. Different oxidation patterns were obtained and mechanistically discussed, in comparison with those observed in the presence of some ligninolytic oxidizing enzymes.
Collapse
|
14
|
Zucca P, Fernandez-Lafuente R, Sanjust E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016; 21:E1577. [PMID: 27869778 PMCID: PMC6273708 DOI: 10.3390/molecules21111577] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Agarose is a polysaccharide obtained from some seaweeds, with a quite particular structure that allows spontaneous gelation. Agarose-based beads are highly porous, mechanically resistant, chemically and physically inert, and sharply hydrophilic. These features-that could be further improved by means of covalent cross-linking-render them particularly suitable for enzyme immobilization with a wide range of derivatization methods taking advantage of chemical modification of a fraction of the polymer hydroxyls. The main properties of the polymer are described here, followed by a review of cross-linking and derivatization methods. Some recent, innovative procedures to optimize the catalytic activity and operational stability of the obtained preparations are also described, together with multi-enzyme immobilized systems and the main guidelines to exploit their performances.
Collapse
Affiliation(s)
- Paolo Zucca
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Monserrato (CA), Italy.
| | | | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Monserrato (CA), Italy.
| |
Collapse
|
15
|
Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int J Biol Macromol 2016; 89:181-9. [DOI: 10.1016/j.ijbiomac.2016.04.075] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022]
|
16
|
Zucca P, Neves CMB, Simões MMQ, Neves MDGPMS, Cocco G, Sanjust E. Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes. Molecules 2016; 21:E964. [PMID: 27455229 PMCID: PMC6272862 DOI: 10.3390/molecules21070964] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications.
Collapse
Affiliation(s)
- Paolo Zucca
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
- Consorzio UNO Oristano, via Carmine snc, Oristano 09170, Italy.
| | - Cláudia M B Neves
- Department of Chemistry and QOPNA, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Mário M Q Simões
- Department of Chemistry and QOPNA, University of Aveiro, Aveiro 3810-193, Portugal.
| | | | - Gianmarco Cocco
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
| | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
| |
Collapse
|
17
|
Rayati S, Sheybanifard Z. Manganese(III) porphyrin supported onto multi-walled carbon nanotubes for heterogeneous oxidation of synthetic textile dyes and 2,6-dimethylphenol by tert-butyl hydroperoxide. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Bilal M, Asgher M, Shahid M, Bhatti HN. Characteristic features and dye degrading capability of agar-agar gel immobilized manganese peroxidase. Int J Biol Macromol 2016; 86:728-40. [PMID: 26854887 DOI: 10.1016/j.ijbiomac.2016.02.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
Immobilization of enzymes has been regarded as an efficient approach to develop biocatalyst with improved activity and stability characteristics under reaction conditions. In the present study, purified manganese peroxidase (MnP) from Ganoderma lucidum IBL-05 was immobilized in agar-agar support using entrapment technique. Maximum immobilization yield was accomplished at 4.0% agar-agar gel. The immobilized MnP exhibited better resistance to changes in pH and temperature than the free enzyme, with optimal conditions being pH 6.0 and 50 °C. The kinetic parameters Km and Kcat/Km for free and entrapped MnP were calculated to be 65.6 mM and 6.99 M(-1) s(-1), and 82 mM and 8.15 M(-1) s(-1), respectively. Thermo-stability was significantly improved after immobilization. After 120 h, the insolubilized MnP retained its activity up to 71.9% and 60.3% at 30 °C and 40 °C, respectively. It showed activity until 10th cycle and retained 74.3% residual activity after 3th cycle. The effects of H2O2, ionic strength and potential inhibitors on activity of free and immobilized enzyme were investigated. Moreover, the decolorization of three structurally different dyes was monitored in order to assess the degrading capability of the entrapped MnP. The decolorization efficiencies for all the tested dyes were 78.6-84.7% after 12h. The studies concluded that the toxicity of dyes aqueous solutions was significantly reduced after treatment. The remarkable catalytic, thermo-stability and re-cycling features of the agar-agar immobilized MnP display a high potential for biotechnological applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Environmental & Material Chemistry Laboratory, Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
19
|
Ucoski GM, Machado GS, Silva GDF, Nunes FS, Wypych F, Nakagaki S. Heterogeneous oxidation of the dye Brilliant Green with H 2 O 2 catalyzed by supported manganese porphyrins. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zucca P, Cocco G, Manca S, Steri D, Sanjust E. Imidazole versus pyridine as ligands for metalloporphine immobilization in ligninolytic peroxidases-like biomimetic catalysts. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Saleem M, Ali A, Park BJ, Choi EH, Lee KH. Optical Properties of Some Novel 2,5-Disubstituted 1,3,4-Oxadiazole Derivatives and their Application as an Efficient Cell Staining Azo Dyes. J Fluoresc 2014; 24:1553-61. [DOI: 10.1007/s10895-014-1459-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/16/2014] [Indexed: 11/28/2022]
|
22
|
Zucca P, Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 2014; 19:14139-94. [PMID: 25207718 PMCID: PMC6272024 DOI: 10.3390/molecules190914139] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/09/2014] [Accepted: 08/22/2014] [Indexed: 01/23/2023] Open
Abstract
Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides).
Collapse
Affiliation(s)
- Paolo Zucca
- Consorzio UNO, Consortium University of Oristano, Oristano 09170, Italy.
| | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università di Cagliari, Monserrato 09042, Italy.
| |
Collapse
|
23
|
Zucca P, Rescigno A, Rinaldi AC, Sanjust E. Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2013.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Terres J, Battisti R, Andreaus J, de Jesus PC. Decolorization and degradation of Indigo Carmine dye from aqueous solution catalyzed by horseradish peroxidase. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2013.873416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Kalsoom U, Ashraf SS, Meetani MA, Rauf MA, Bhatti HN. Mechanistic study of a diazo dye degradation by Soybean Peroxidase. Chem Cent J 2013; 7:93. [PMID: 23711110 PMCID: PMC3680093 DOI: 10.1186/1752-153x-7-93] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/16/2013] [Indexed: 11/17/2022] Open
Abstract
Background Enzyme based remediation of wastewater is emerging as a novel, efficient and environmentally-friendlier approach. However, studies showing detailed mechanisms of enzyme mediated degradation of organic pollutants are not widely published. Results The present report describes a detailed study on the use of Soybean Peroxidase to efficiently degrade Trypan Blue, a diazo dye. In addition to examining various parameters that can affect the dye degradation ability of the enzyme, such as enzyme and H2O2 concentration, reaction pH and temperature, we carried out a detailed mechanistic study of Trypan Blue degradation. HPLC-DAD and LC-MS/MS studies were carried out to confirm dye degradation and analyze the intermediate metabolites and develop a detailed mechanistic dye degradation pathway. Conclusion We report that Soybean peroxidase causes Trypan Blue degradation via symmetrical azo bond cleavage and subsequent radical-initiated ring opening of the metabolites. Interestingly, our results also show that no high molecular weight polymers were produced during the peroxidase-H2O2 mediated degradation of the phenolic Trypan Blue.
Collapse
Affiliation(s)
- Umme Kalsoom
- Department of Chemistry, UAE University, P, O, Box 15551, Al-Ain, United Arab Emirates.
| | | | | | | | | |
Collapse
|