1
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
2
|
Ehsan M, Waheed A, Ullah A, Kazmi A, Ali A, Raja NI, Mashwani ZUR, Sultana T, Mustafa N, Ikram M, Li H. Plant-Based Bimetallic Silver-Zinc Oxide Nanoparticles: A Comprehensive Perspective of Synthesis, Biomedical Applications, and Future Trends. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1215183. [PMID: 35535038 PMCID: PMC9078794 DOI: 10.1155/2022/1215183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/26/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
The universal emphasis on the study of green nanotechnology has led to biologically harmless uses of wide-ranged nanomaterials. Nanotechnology deals with the production of nanosized particles with regular morphology and properties. Various researches have been directed on nanomaterial synthesis by physical, chemical, and biological means. Understanding the safety of both environment and in vivo, a biogenic approach particularly plant-derived synthesis is the best strategy. Silver-zinc oxide nanoparticles are most effective. Moreover, these engineered nanomaterials via morphological modifications attain improved performance in antimicrobial, biomedical, environmental, and therapeutic applications. This article evaluates manufacturing strategies for silver-zinc oxide nanoparticles via plant-derived means along with highlighting their broad range of uses in bionanotechnology.
Collapse
Affiliation(s)
- Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Abdul Waheed
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Abd Ullah
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abeer Kazmi
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
- Department of Genetics, Institute of Hydrobiology, University of Chinese Academy of Sciences (UCAS), Wuhan, China
| | - Amir Ali
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | | | - Tahira Sultana
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Nilofar Mustafa
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Muhammad Ikram
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Huanyong Li
- Binzhou Vocational College, Binzhou 256603, China
| |
Collapse
|
3
|
Modares M, Alijani S, Nasernejad B. NOx photocatalytic degradation over ZnO–CdS heterostructure composite under visible light irradiation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04705-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Ameen S. Vertically arranged Mn2O3 nanosheets as smart sensing electrode for highly sensitive N-hydroxysuccinimide. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Rapid and sensitive detection of selective 1,2-diaminobenzene based on facile hydrothermally prepared doped Co3O4/Yb2O3 nanoparticles. PLoS One 2021; 16:e0246756. [PMID: 33606736 PMCID: PMC7894934 DOI: 10.1371/journal.pone.0246756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
In this approach, the performance of a newly developed sensor probe coated with low-dimensional Co3O4/Yb2O3 nanoparticles (NPs) in rapidly detecting 1,2-diaminobenzene was evaluated by an electrochemical technique. The sensor probe was fabricated by depositing a very thin layer consisting of synthesized Co3O4/Yb2O3 NPs using a 5% Nafion conducting binder onto a glassy carbon electrode (GCE). The facile hydrothermally prepared Co3O4/Yb2O3 NPs were totally characterized by conventional methods such as FTIR, UV-vis, TEM, XPS, EDS, and XRD analyses. The fabricated chemical sensor probe was found to exhibit long-term activity, stability in electrochemical response, good sensitivity (5.6962 μAμM-1cm-2), lowest detection limit (0.02±0.001 pM), and broad linear dynamic range (0.1 pM to 0.01 mM). The observed performances suggest that the newly introduced sensor could play an efficient role in detecting 1,2-diaminobenzene especially in healthcare and environmental applications on a broad scale.
Collapse
|
6
|
Rahman MM, Alam MM, Asiri AM, Opo FADM. An Electrochemical Approach for the Selective Detection of Cancer Metabolic Creatine Biomarker with Porous Nano-Formulated CMNO Materials Decorated Glassy Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7060. [PMID: 33321693 PMCID: PMC7763360 DOI: 10.3390/s20247060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
The facile wet-chemical technique was used to prepare the low-dimensional nano-formulated porous mixed metal oxide nanomaterials (CuO.Mn2O3.NiO; CMNO NMs) in an alkaline medium at low temperature. Detailed structural, morphological, crystalline, and functional characterization of CMNO NMs were performed by X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDS) analyses. An efficient and selective creatine (CA) sensor probe was fabricated by using CMNO NMs decorated onto glassy carbon electrode (GCE) as CMNO NMs/GCE by using Nafion adhesive (5% suspension in ethanol). The relation of current versus the concentration of CA was plotted to draw a calibration curve of the CMNO NMs/GCE sensor probe, which was found to have a very linear value (r2 = 0.9995) over a large dynamic range (LDR: 0.1 nM~0.1 mM) for selective CA detection. The slope of LDR by considering the active surface area of GCE (0.0316 cm2) was applied to estimate the sensor sensitivity (14.6308 µAµM-1 cm-2). Moreover, the detection limit (21.63 ± 0.05 pM) of CMNO MNs modified GCE was calculated from the signal/noise (S/N) ratio at 3. As a CA sensor probe, it exhibited long-term stability, good reproducibility, and fast response time in the detection of CA by electrochemical approach. Therefore, this research technique is introduced as a promising platform to develop an efficient sensor probe for cancer metabolic biomarker by using nano-formulated mixed metal oxides for biochemical as well as biomedical research for the safety of health care fields.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Md. M. Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh;
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Firoz. A. D. M. Opo
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Chosun 61452, Korea;
- Phytochemistry Research Laboratory, Department of Pharmacy, University of Asia Pacific, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Rahman MM. Selective capturing of phenolic derivative by a binary metal oxide microcubes for its detection. Sci Rep 2019; 9:19234. [PMID: 31848430 PMCID: PMC6917752 DOI: 10.1038/s41598-019-55891-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Development of highly efficient and potential material for toxic p-nitrophenol is an important design for sensitive detection of hazardous species from ecology and environment. Here it is developed, an efficient as well as selective of p-nitrophenol using binary material by electrochemical performances, including good linearity, lower detection limit, good stability, higher reproducibility and extreme sensitivity. The prepared electrode was fabricated by immobilization of SnO2/CdO microcubes (MCs) with conducting coating binders by using well-known glassy carbon electrode (GCE). The proposed MCs with SnO2/CdO were well-functionalized and prepared by facile hydrothermal technique. The general instrumentation namely, FTIR, UV/vis, FESEM, XPS, TEM, EDS, and powder XRD were employed for the morphological evaluation of the prepared doped MCs, structural, optical and elemental analyses. The large dynamic range (LDR) from 1.0 to 0.01 mM with 0.13 pM detection limit (S/N = 3), limit of quantification (LOQ; 0.43 pM), and an excellent sensitivity of 7.12 µAµM−1cm−2 were exhibited by the fabricated binary material based on SnO2/CdO MCs for selective p-nitrophenol capturing. In shortly, the SnO2/CdO MCs can be employed as an efficient electron mediator with binary materials fabricated GCE for capturing the p-nitrophenol at ultra-trace amounts. Then the binary synthesized material of SnO2/CdO MCs is used as potential and sensitive sensor layer by stable electrochemical approach for sensitive capturing of toxic p-nitrophenol from environmental samples.
Collapse
Affiliation(s)
- Mohammed Muzibur Rahman
- Department of Chemistry, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.
| |
Collapse
|
8
|
Khan AAP, Khan A, Alam M, Asiri AM, Uddin J, Rahman MM. SDBS-functionalized MWCNT/poly(o-toluidine) nanowires modified glassy carbon electrode as a selective sensing platform for Ce3+ in real samples. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Rahman MM, Hussain MM, Arshad MN, Awual MR, Asiri AM. Arsenic sensor development based on modification with (E)-N′-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. NEW J CHEM 2019. [DOI: 10.1039/c9nj01567a] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
(E)-N′-(2-Nitrobenzylidene)-benzenesulfonohydrazide was prepared from 2-nitrobenzaldehyde and benzenesulfonylhydrazine by using a condensation method and applied as a selective As3+ sensor.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Muhammad N. Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Md. Rabiul Awual
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| |
Collapse
|
10
|
Rahman MM, Alam M, Hussain MM, Asiri AM, Zayed MEM. Hydrothermally prepared Ag2O/CuO nanomaterial for an efficient chemical sensor development for environmental remediation. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Rahman MM, Fabregat F, Guerrero A, Asiri AM, Bisquert J. Semiconductor α‐Fe 2O 3Hematite Fabricated Electrode for Sensitive Detection of Phenolic Pollutants. ChemistrySelect 2018. [DOI: 10.1002/slct.201802503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research & Chemistry departmentKing Abdulaziz UniversityFaculty of Science Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Francisco Fabregat
- Institute of Advanced MaterialsUniversitat Jaume I 12006 Castelló de la Plana Spain
| | - Antonio Guerrero
- Institute of Advanced MaterialsUniversitat Jaume I 12006 Castelló de la Plana Spain
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research & Chemistry departmentKing Abdulaziz UniversityFaculty of Science Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Juan Bisquert
- Center of Excellence for Advanced Materials Research & Chemistry departmentKing Abdulaziz UniversityFaculty of Science Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Institute of Advanced MaterialsUniversitat Jaume I 12006 Castelló de la Plana Spain
| |
Collapse
|
12
|
Alam MM, Asiri AM, Uddin MT, Islam MA, Rahman MM. In-situ Glycine Sensor Development Based ZnO/Al2
O3
/Cr2
O3
Nanoparticles. ChemistrySelect 2018. [DOI: 10.1002/slct.201802750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- M. M. Alam
- Department of Chemical Engineering and Polymer Science; Shahjalal University of Science and Technology; Sylhet 3100 Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department; King Abdulaziz University; Faculty of Science; Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - M. T. Uddin
- Department of Chemical Engineering and Polymer Science; Shahjalal University of Science and Technology; Sylhet 3100 Bangladesh
| | - M. A. Islam
- Department of Chemical Engineering and Polymer Science; Shahjalal University of Science and Technology; Sylhet 3100 Bangladesh
| | - Mohammed M. Rahman
- Chemistry Department; King Abdulaziz University; Faculty of Science; Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
13
|
George JM, Antony A, Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Mikrochim Acta 2018; 185:358. [DOI: 10.1007/s00604-018-2894-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
|
14
|
Rahman M, Alam MM, Asiri AM. 2-Nitrophenol sensor-based wet-chemically prepared binary doped Co3O4/Al2O3 nanosheets by an electrochemical approach. RSC Adv 2018; 8:960-970. [PMID: 35538940 PMCID: PMC9077016 DOI: 10.1039/c7ra10866d] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Herein, the wet-chemical process (co-precipitation) was used to prepare nanosheets (NSs) of Co3O4/Al2O3 in an alkaline medium (pH ∼ 10.5). The synthesized NSs were totally characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV/vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). The synthesized NSs were deposited onto a glassy carbon electrode (GCE) to prepare a very thin layer with a conducting binder for detecting 2-nitrophenol (2-NP) selectively by a reliable electrochemical method. The proposed chemical sensor exhibits good sensitivity (54.9842 μA μM−1 cm−2), long-term stability, and enhanced chemical response by electrochemical approaches. The resultant current is found to be linear over the concentration range (LDR) from 0.01 nM to 0.01 mM. The estimated detection limit (DL) is equal to 1.73 ± 0.02 pM. This study introduces a potential route for future sensitive sensor development with Co3O4/Al2O3 NSs by an electrochemical approach for the selective detection of hazardous and carcinogenic chemicals in environmental and health care fields. This potential research work introduces a route of future sensitive sensor development with Co3O4/Al2O3 NSs by electrochemical approach to selective detection of hazardous and carcinogenic chemicals in environmental and health care fields.![]()
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
15
|
Subhan MA, Chandra Saha P, Rahman MM, Ahmed J, Asiri AM, Al-Mamun M. Fabrication of a 2,4-dinitrophenol sensor based on Fe3O4@Ag@Ni nanomaterials and studies on their antibacterial properties. NEW J CHEM 2018. [DOI: 10.1039/c7nj04378c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scheme representing (a) MO coated GCE, (b) theoretical I–V response, (c) observed I–V responses by the MO/Nafion/GCE, and (d) proposed detection mechanism of 2,4-DNP.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science and Technology
- Sylhet-3114
- Bangladesh
| | - Pallab Chandra Saha
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science and Technology
- Sylhet-3114
- Bangladesh
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Jahir Ahmed
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science and Technology
- Sylhet-3114
- Bangladesh
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammad Al-Mamun
- Centre for Clean Environment and Energy
- Griffith School of Environment
- Gold Coast Campus
- Griffith University
- Australia
| |
Collapse
|
16
|
Barman K, Changmai B, Jasimuddin S. Electrochemical Detection of Para-nitrophenol using Copper Metal Nanoparticles Modified Gold Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koushik Barman
- Department of Chemistry; Assam University, Silchar; Assam- 788011 India
| | | | - Sk Jasimuddin
- Department of Chemistry; Assam University, Silchar; Assam- 788011 India
| |
Collapse
|
17
|
Rahman MM, Alam MM, Asiri AM, Islam MA. 3,4-Diaminotoluene sensor development based on hydrothermally prepared MnCo xO y nanoparticles. Talanta 2017; 176:17-25. [PMID: 28917737 DOI: 10.1016/j.talanta.2017.07.093] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
A facile hydrothermal process was used to prepare MnCoxOy nanoparticles (NPs) in alkaline medium (pH~10.5) at room temperature. The NPs were characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV/vis), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD). A thin layer of NPs film as a chemical sensor was fabricated on a glassy carbon electrode (GCE) with the help of a conducting binder. The sensor was implemented successfully for the detection 3,4-DAT with reliable I-V approach at low potential. The sensor-features include good sensitivity (0.37 mAµmolL-1cm-2), low detection limit (LOD=0.26±0.01 pmolL-1 at a signal to noise ratio of 3), low limit of quantification (LOQ=7.80±0.01 pmolL-1), good reliability, good reproducibility, ease of integration, and long-term stability were investigated. The sensor response towards 3,4-DAT is linear in logarithmic scale over a large concentration range (1.0 pmolL-1 to 1.0 µmolL-1). This work is introduced a route for future sensitive sensor development based on MnCoxOy NPs by reliable I-V method for the detection of hazardous and carcinogenic toxins in environmental and health care fields.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Chemistry Department, King Abdulaziz University, Faculty of Science, Jeddah 21589, P.O. Box 80203, Saudi Arabia; Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia.
| | - M M Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh
| | - Abdullah M Asiri
- Chemistry Department, King Abdulaziz University, Faculty of Science, Jeddah 21589, P.O. Box 80203, Saudi Arabia; Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia
| | - M A Islam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh
| |
Collapse
|
18
|
Hussain MM, Rahman MM, Asiri AM. Efficient 2-Nitrophenol Chemical Sensor Development Based on Ce2O3 Nanoparticles Decorated CNT Nanocomposites for Environmental Safety. PLoS One 2016; 11:e0166265. [PMID: 27973600 PMCID: PMC5156369 DOI: 10.1371/journal.pone.0166265] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/25/2016] [Indexed: 11/18/2022] Open
Abstract
Ce2O3 nanoparticle decorated CNT nanocomposites (Ce2O3.CNT NCs) were prepared by a wet-chemical method in basic medium. The Ce2O3.CNT NCs were examined using FTIR, UV/Vis, Field-Emission Scanning Electron Microscopy (FESEM), X-ray electron dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). A selective 2-nitrophenol (2-NP) sensor was developed by fabricating a thin-layer of NCs onto a flat glassy carbon electrode (GCE, surface area = 0.0316 cm2). Higher sensitivity including linear dynamic range (LDR), long-term stability, and enhanced electrochemical performances towards 2-NP were achieved by a reliable current-voltage (I-V) method. The calibration curve was found linear (R2 = 0.9030) over a wide range of 2-NP concentration (100 pM ~ 100.0 mM). Limit of detection (LOD) and sensor sensitivity were calculated based on noise to signal ratio (~3N/S) as 60 ± 0.02 pM and 1.6×10−3 μAμM-1cm-2 respectively. The Ce2O3.CNT NCs synthesized by a wet-chemical process is an excellent way of establishing nanomaterial decorated carbon materials for chemical sensor development in favor of detecting hazardous compounds in health-care and environmental fields at broad-scales. Finally, the efficiency of the proposed chemical sensors can be applied and utilized in effectively for the selective detection of toxic 2-NP component in environmental real samples with acceptable and reasonable results.
Collapse
Affiliation(s)
- Mohammad M. Hussain
- Chemistry Department, King Abdulaziz University, Faculty of Science, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, King Abdulaziz University, Faculty of Science, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: ,
| | - Abdullah M. Asiri
- Chemistry Department, King Abdulaziz University, Faculty of Science, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Haldorai Y, Giribabu K, Hwang SK, Kwak CH, Huh YS, Han YK. Facile synthesis of α-MnO2 nanorod/graphene nanocomposite paper electrodes using a 3D precursor for supercapacitors and sensing platform to detect 4-nitrophenol. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Development of selective chloroform sensor with transition metal oxide nanoparticle/multi-walled carbon nanotube nanocomposites by modified glassy carbon electrode. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
|
22
|
Rahman MM, Balkhoyor HB, Asiri AM. Ultrasensitive and selective hydrazine sensor development based on Sn/ZnO nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra02352e] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fabrication of highly sensitive (∼5.0108 μA cm−2 μM−1) and selective hydrazine chemical sensor based on wet-chemically prepared Sn/ZnO nanoparticles deposited glassy carbon electrodes with a detection limit as low as 18.95 ± 0.02 pM (at an S/N of 3).
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Hasan B. Balkhoyor
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
23
|
Rahman MM, Asiri AM. Development of ionic-sensor based on sono-chemically prepared low-dimensional β-Fe2O3 nanoparticles onto flat-gold electrodes by an electrochemical approach. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Shukur M, Kadir M. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.167] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Lamba R, Umar A, Mehta S, Kumar Kansal S. Well-crystalline porous ZnO–SnO2 nanosheets: An effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta 2015; 131:490-8. [DOI: 10.1016/j.talanta.2014.07.096] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/16/2022]
|
26
|
Development of efficient chemi-sensor and photo-catalyst based on wet-chemically prepared ZnO nanorods for environmental remediation. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Role of Nanostructures for Anti-proliferation of Bacteria and Their Quantitative Study Validated by Statistical Analysis. J Pharm Innov 2014. [DOI: 10.1007/s12247-014-9193-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Rahman MM, Khan SB, Marwani HM, Asiri AM. SnO2–TiO2 nanocomposites as new adsorbent for efficient removal of La(III) ions from aqueous solutions. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Wu J, Wang Q, Umar A, Sun S, Huang L, Wang J, Gao Y. Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO2 nanotubes. NEW J CHEM 2014. [DOI: 10.1039/c4nj00420e] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystalline α-MnO2 nanotubes were synthesized and used as a potential scaffold for the efficient detection of p-nitrophenol.
Collapse
Affiliation(s)
- Jingwen Wu
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083, P. R. China
| | - Qiang Wang
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083, P. R. China
| | - Ahmad Umar
- Department of Chemistry
- College of Science and Arts
- Najran University
- Najran-11001, Kingdom of Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED)
| | - Shihao Sun
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083, P. R. China
| | - Liang Huang
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083, P. R. China
| | - Junya Wang
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083, P. R. China
| | - Yanshan Gao
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083, P. R. China
| |
Collapse
|
30
|
Rahman MM, Khan SB, Asiri AM, Al-Sehemi AG. Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.164] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Rahman MM, Khan SB, Gruner G, Al-Ghamdi MS, Daous MA, Asiri AM. Chloride ion sensors based on low-dimensional α-MnO2–Co3O4 nanoparticles fabricated glassy carbon electrodes by simple I–V technique. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.04.067] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|