1
|
Ahmad Izuren Shah NS, Abu Bakar MR, Taher M, Danial WH, Adam F, Abdul Rahim S. Occurrence analysis of alpha-mangostin from different organs of Garcinia mangostana L. Nat Prod Res 2025:1-5. [PMID: 39785562 DOI: 10.1080/14786419.2024.2449493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Alpha-mangostin (AM) is a naturally occurring xanthone with remarkable pharmacological properties, including anti-inflammatory, anti-bacterial, and antioxidant effects. The compound is commonly extracted from the pericarps of Garcinia mangostana L. fruits, but its seasonal availability is limited. Investigating the potential of using various organs of the tree for AM extraction can help mitigate limitations imposed by the seasonal availability of fruits. This study employs the Soxhlet extraction method and gravitational column chromatography for the preparation of AM from various plant organs. The purity of the compound in the extract was quantitatively determined using high-performance liquid chromatography analysis. The stem barks demonstrated the highest yield at 1.3%, with a concentration of 324.593 µg/mL and a purity of 95.215% for AM. The finding is expected to assist in uncovering alternative sources of AM and contribute to sustainable utilisation of the tree, as various plant organs could be employed in AM extraction.
Collapse
Affiliation(s)
- Nurin Syamimi Ahmad Izuren Shah
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Rushdi Abu Bakar
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- IKOP Pharma (IKOP Sdn. Bhd.), Jalan Sultan Ahmad Shah, Kuantan, Pahang, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang, Malaysia
| | - Syarifah Abdul Rahim
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
2
|
Buravlev EV, Shevchenko OG. Novel Mannich Bases of α‐MangostinBearing Methoxyphenyl Moietieswith Antioxidant and Membrane‐protective activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202202474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Evgeny V. Buravlev
- Laboratory of Organic Synthesis and Chemistry of Natural Compounds Institute of Chemistry Komi Scientific Center Ural Branch of the Russian Academy of Sciences Pervomayskaya St. 48 Syktyvkar 167000 Komi Republic Russian Federation
| | - Oksana G. Shevchenko
- Center of Collective Usage ‘Molecular Biology' Institute of Biology Komi Scientific Center Ural Branch of the Russian Academy of Sciences 28, Kommunisticheskaya St. 167982 Syktyvkar Komi Republic Russian Federation
| |
Collapse
|
3
|
Meylina L, Muchtaridi M, Joni IM, Mohammed AFA, Wathoni N. Nanoformulations of α-Mangostin for Cancer Drug Delivery System. Pharmaceutics 2021; 13:1993. [PMID: 34959275 PMCID: PMC8708633 DOI: 10.3390/pharmaceutics13121993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are emerging as effective agents for the treatment of malignant diseases. The active constituent of α-mangostin from the pericarp of Garcinia mangostana L. has earned significant interest as a plant base compound with anticancer properties. Despite α-mangostin's superior properties as an anticancer agent, its applications are limited due to its poor solubility and physicochemical stability, rapid systemic clearance, and low cellular uptake. Our review aimed to summarize and discuss the nanoparticle formulations of α-mangostin for cancer drug delivery systems from published papers recorded in Scopus, PubMed, and Google Scholar. We investigated various types of α-mangostin nanoformulations to improve its anticancer efficacy by improving bioavailability, cellular uptake, and localization to specific areas These nanoformulations include nanofibers, lipid carrier nanostructures, solid lipid nanoparticles, polymeric nanoparticles, nanomicelles, liposomes, and gold nanoparticles. Notably, polymeric nanoparticles and nanomicelles can increase the accumulation of α-mangostin into tumors and inhibit tumor growth in vivo. In addition, polymeric nanoparticles with the addition of target ligands can increase the cellular uptake of α-mangostin. In conclusion, nanoformulations of α-mangostin are a promising tool to enhance the cellular uptake, accumulation in cancer cells, and the efficacy of α-mangostin as a candidate for anticancer drugs.
Collapse
Affiliation(s)
- Lisna Meylina
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
4
|
Taokaew S, Chiaoprakobkij N, Siripong P, Sanchavanakit N, Pavasant P, Phisalaphong M. Multifunctional cellulosic nanofiber film with enhanced antimicrobial and anticancer properties by incorporation of ethanolic extract of Garcinia mangostana peel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111783. [PMID: 33545910 DOI: 10.1016/j.msec.2020.111783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Natural polymeric nanofibers-based materials for medical application is an intensive research area due to the unique features of natural polymeric nanofibers. Bacterial nanocellulose (BC) films containing various concentrations of mangosteen (Garcinia mangostana) peel extract were prepared and evaluated as a multifunctional nanofiber film. The extract was absorbed into BC hydrogel and air dried to entrap the extract into nanofiber network. The resulting films contained about 3, 35, and 294 mg of total phenolic compounds and 2, 24, and 250 mg of α-mangostin per cm3 of the dried films. The film containing the highest phenolic compounds and α-mangostin performed the inhibitory effect to Staphylococcus epidermidis, Propionibacterium acnes, and Staphylococcus aureus. High anticancer activity against B16F10 melanoma and MCF-7 breast cancer cells having viabilities of 10 and 5%, respectively after 48 h were detected after the treatments with the film. However, the film had a low toxicity against normal fibroblast and keratinocyte cells with 41 and 99% viability, respectively. The research suggested that the prepared films were a multifunctional nanofiber films with antimicrobial and anticancer properties.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Department of Materials Science and Technology, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| | - Nadda Chiaoprakobkij
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongpun Siripong
- Natural Products Research Section, Research Division, National Cancer Institute of Thailand, Bangkok 10400, Thailand
| | - Neeracha Sanchavanakit
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muenduen Phisalaphong
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Do HTT, Cho J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer's Disease, Parkinson's Disease, and Depression with Pharmacokinetic and Safety Profiles. Int J Mol Sci 2020; 21:E6211. [PMID: 32867357 PMCID: PMC7504283 DOI: 10.3390/ijms21176211] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression. Further studies including clinical trials are essential to decipher their efficacy, and pharmacokinetic and safety profiles in these disorders.
Collapse
Affiliation(s)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea;
| |
Collapse
|
6
|
Nguyen MH, Nguyen DT, Nguyen PTM. Apoptosis induction by α-mangostin-loaded nanoparticles in human cervical carcinoma cells. ACTA ACUST UNITED AC 2020; 75:145-151. [PMID: 32286252 DOI: 10.1515/znc-2020-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 11/15/2022]
Abstract
The compound α-mangostin (AMG) extracted from Garcinia mangostana L. has potent anticancer properties but its clinical application is limited because of its poor solubility. In this study, AMG-loaded nanoparticles (NMG) were synthesized using a new formula and their apoptosis activity against human cervical carcinoma (HeLa) cells was investigated in comparison with organic solvent-soluble AMG in free form. The NMG was successfully synthesized with a particle size of <50 nm, polydispersity index <0.3, and zeta potential of -35.2 mV. At a concentration of 10 μg/mL, AMG reduced cell survival by 60%, whereas NMG treatment resulted in >90% cell death (p < 0.05). The AMG- or NMG-treated cells also showed changes in the size and shape and exhibited enhanced intensity of blue-stained nuclei, as well as decreased cell density, especially in NMG-treated cells. After 24 h of incubation with AMG or NMG, the cells went through late apoptosis at a rate of approximately 34% in 20 μg/mL AMG treatment and 27% in 10 μg/mL NMG treatment (p < 0.05). Thus, HeLa cells underwent more pronounced cell death through apoptosis induction caused by the NMG treatment compared to that caused by AMG. Clearly, the new NMG improved AMG bioavailability while maintaining the desired activity.
Collapse
Affiliation(s)
- Minh H Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Dat T Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Phuong T M Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| |
Collapse
|
7
|
Rezeki YA, Hapidin DA, Rachmawati H, Munir MM, Khairurrijal K. Formation of electrosprayed composite nanoparticles from polyvinylpyrrolidone/mangosteen pericarp extract. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
α-Mangostin Hydrogel Film Based Chitosan–Alginate for Recurrent Aphthous Stomatitis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many antiseptic drugs, local anaesthetics, and corticosteroids have been used for effective therapy of recurrent aphthous stomatitis (RAS). However, these drugs have harmful side effects. α-mangostin (α-M), a main compound of mangosteen (Garcinia mangostana L.) peel, has been known as a wound healing agent. In addition, hydrogel film as dressings designed to separate mucosal lesions from the oral environment, and improve the effectiveness of RAS therapy. The purpose of this study was to develop α-M hydrogel film based chitosan–alginate (ChAlg/α-M HF) for RAS. The in silico study by Discovery studio visualizer and AutoDock confirmed that hydrogen bonding between Ch, Alg, and α-M occurred. The results of physicochemical characterizations by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) indicated that the ChAlg/α-M HF had a lower crystalline form compared to pure α-M. In addition, ChAlg/α-M HF significantly improved the swelling ratio and tensile strength compared to that of ChAlg HF. Moreover, the existence of Alg increased the degradability of Ch, and closely related to the release of α-M from ChAlg HF. The in vitro release study confirmed that the release of α-M from ChAlg/α-M HF was the Fickian diffusion model. Finally, the mucoadhesive study revealed that ChAlg/α-M HF had a good mucoadhesive property. These results suggest that hydrogel film-based chitosan–alginate have the potential as carriers of α-M for RAS therapy.
Collapse
|
9
|
Asasutjarit R, Meesomboon T, Adulheem P, Kittiwisut S, Sookdee P, Samosornsuk W, Fuongfuchat A. Physicochemical properties of alpha-mangostin loaded nanomeulsions prepared by ultrasonication technique. Heliyon 2019; 5:e02465. [PMID: 31538120 PMCID: PMC6745438 DOI: 10.1016/j.heliyon.2019.e02465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/10/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022] Open
Abstract
Hypothesis Alpha-mangostin (AMG) is a natural compound possessing strong antibacterial activity. Because of its poor water solubility, the formulations of AMG usually require high concentrations of solubilizers leading limitation for using in some clinical applications. Thus, the novel formulation of topical nanoemulsion (NE) containing AMG (AMG-NE) with optimal content of the oil phase and surfactants was developed. Experiments AMG was extracted, purified and used as an active ingredient of AMG-NE. Blank NEs (NEs without AMG) with varying in contents of the oil phase and surfactants and AMG-NE were prepared by the ultrasonication technique. They were investigated their physicochemical properties including antibacterial activity against Staphyloccocus aureus and Propionibacterium acnes (which is recently renamed as Cutibacterium acnes). Findings Blank NEs and AMG-NE had droplet size in a range of nanometer and negative value of zeta potential. The droplet size, polydispersity index and zeta potential of blank NEs were affected by formulation compositions and sonication intensities. AMG could be loaded into a representative Blank NE at a maximum concentration of 0.2% w/w and did not cause significant changes in physicochemical properties. AMG-NE showed the antibacterial activity against Staphyloccocus aureus and Propionibacterium acnes without toxicity to the skin cells. Therefore, AMG-NE had potential for using in a clinical study to investigate its efficacy and safety in patients.
Collapse
Affiliation(s)
- Rathapon Asasutjarit
- Novel Drug Delivery Systems Development Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, 12120, Thailand
| | - Tunradee Meesomboon
- Novel Drug Delivery Systems Development Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, 12120, Thailand
| | - Pheeraphong Adulheem
- Novel Drug Delivery Systems Development Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, 12120, Thailand
| | - Siriporn Kittiwisut
- Medical Chemistry and Natural Products Research Unit, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, 12120, Thailand
| | - Papawee Sookdee
- Department of Applied Thai Traditional Medicine, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| | - Worada Samosornsuk
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Asira Fuongfuchat
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| |
Collapse
|
10
|
Nabipour H. Design and Evaluation of Non-steroidal Anti-inflammatory Drug Intercalated into Layered Zinc Hydroxide as a Drug Delivery System. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01143-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Sivaranjani M, Leskinen K, Aravindraja C, Saavalainen P, Pandian SK, Skurnik M, Ravi AV. Deciphering the Antibacterial Mode of Action of Alpha-Mangostin on Staphylococcus epidermidis RP62A Through an Integrated Transcriptomic and Proteomic Approach. Front Microbiol 2019; 10:150. [PMID: 30787919 PMCID: PMC6372523 DOI: 10.3389/fmicb.2019.00150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Alpha-mangostin (α-MG) is a natural xanthone reported to exhibit rapid bactericidal activity against Gram-positive bacteria, and may therefore have potential clinical application in healthcare sectors. This study sought to identify the impact of α-MG on Staphylococcus epidermidis RP62A through integrated advanced omic technologies. Methods: S. epidermidis was challenged with sub-MIC (0.875 μg/ml) of α-MG at various time points and the differential expression pattern of genes/proteins were analyzed in the absence and presence of α-MG using RNA sequencing and LC-MS/MS experiments. Bioinformatic tools were used to categorize the biological processes, molecular functions and KEGG pathways of differentially expressed genes/proteins. qRT-PCR was employed to validate the results obtained from these analyses. Results: Transcriptomic and proteomic profiling of α-MG treated cells indicated that genes/proteins affected by α-MG treatment were associated with diverse cellular functions. The greatest reduction in expression was observed in transcription of genes conferring cytoplasmic membrane integrity (yidC2, secA and mscL), cell division (ftsY and divlB), teichoic acid biosynthesis (tagG and dltA), fatty-acid biosynthesis (accB, accC, fabD, fabH, fabI, and fabZ), biofilm formation (icaA) and DNA replication and repair machinery (polA, polC, dnaE, and uvrA). Those with increased expression were involved in oxidative (katA and sodA) and cellular stress response (clpB, clpC, groEL, and asp23). The qRT-PCR analysis substantiated the results obtained from transcriptomic and proteomic profiling studies. Conclusion: Combining transcriptomic and proteomic methods provided comprehensive information about the antibacterial mode of action of α-MG. The obtained results suggest that α-MG targets S. epidermidis through multifarious mechanisms, and especially prompts that loss of cytoplasmic membrane integrity leads to rapid onset of bactericidal activity.
Collapse
Affiliation(s)
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Päivi Saavalainen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | | |
Collapse
|
12
|
Eukun Sage E, Jailani N, Md. Taib AZ, Mohd Noor N, Mohd Said MI, Abu Bakar M, Mackeen MM. From the Front or Back Door? Quantitative analysis of direct and indirect extractions of α-mangostin from mangosteen (Garcinia mangostana). PLoS One 2018; 13:e0205753. [PMID: 30321238 PMCID: PMC6188793 DOI: 10.1371/journal.pone.0205753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
The pulp and pericarp of mangosteen (Garcinia mangostana) fruit are popular food, beverage and health products whereby 60% of the fruit consist of the pericarp. The major metabolite in the previously neglected or less economically significant part of the fruit, the pericarp, is the prenylated xanthone α-mangostin. This highly bioactive secondary metabolite is typically isolated using solvent extraction methods that involve large volumes of halogenated solvents either via direct or indirect extraction. In this study, we compared the quantities of α-mangostin extracted using three different extraction methods based on the environmentally friendly solvents methanol and ethyl acetate. The three solvent extractions methods used were direct extractions from methanol (DM) and ethyl acetate (DEA) as well as indirect extraction of ethyl acetate obtained via solvent partitioning from an initial methanol extract (IEA). Our results showed that direct extraction afforded similar and higher quantities of α-mangostin than indirect extraction (DM: 318 mg; DEA: 305 mg; IEA: 209 mg per 5 g total dried pericarp). Therefore, we suggest that the commonly used method of indirect solvent extraction using halogenated solvents for the isolation of α-mangostin is replaced by single solvent direct extraction using the environmentally friendly solvents methanol or ethyl acetate.
Collapse
Affiliation(s)
- Edison Eukun Sage
- Chemistry Programme, Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Nashriq Jailani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Selangor, Malaysia, UKM Bangi
| | | | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Selangor, Malaysia, UKM Bangi
| | - Md. Ikram Mohd Said
- Chemistry Programme, Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Muntaz Abu Bakar
- Chemistry Programme, Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Mukram Mohamed Mackeen
- Chemistry Programme, Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Selangor, Malaysia, UKM Bangi
| |
Collapse
|
13
|
Sriyanti I, Edikresnha D, Rahma A, Munir MM, Rachmawati H, Khairurrijal K. Mangosteen pericarp extract embedded in electrospun PVP nanofiber mats: physicochemical properties and release mechanism of α-mangostin. Int J Nanomedicine 2018; 13:4927-4941. [PMID: 30214198 PMCID: PMC6124466 DOI: 10.2147/ijn.s167670] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background α-Mangostin is a major active compound of mangosteen (Garcinia mangostana L.) pericarp extract (MPE) that has potent antioxidant activity. Unfortunately, its poor aqueous solubility limits its therapeutic application. Purpose: This paper reports a promising approach to improve the clinical use of this substance through electrospinning technique. Methods Polyvinylpyrrolidone (PVP) was explored as a hydrophilic matrix to carry α-mangostin in MPE. Physicochemical properties of MPE:PVP nanofibers with various extract-to-polymer ratios were studied, including morphology, size, crystallinity, chemical interaction, and thermal behavior. Antioxidant activity and the release of α-mangostin, as the chemical marker of MPE, from the resulting fibers were investigated. Results It was obtained that the MPE:PVP nanofiber mats were flat, bead-free, and in a size range of 387–586 nm. Peak shifts in Fourier-transform infrared spectra of PVP in the presence of MPE suggested hydrogen bond formation between MPE and PVP. The differential scanning calorimetric study revealed a noticeable endothermic event at 119°C in MPE:PVP nanofibers, indicating vaporization of moisture residue. This confirmed hygroscopic property of PVP. The absence of crystalline peaks of MPE at 2θ of 5.99°, 11.62°, and 13.01° in the X-ray diffraction patterns of electrospun MPE:PVP nanofibers showed amorphization of MPE by PVP after being electrospun. The radical scavenging activity of MPE:PVP nanofibers exhibited lower IC50 value (55–67 µg/mL) in comparison with pure MPE (69 µg/mL). The PVP:MPE nanofibers tremendously increased the antioxidant activity of α-mangostin as well as its release rate. Applying high voltage in electrospinning process did not destroy the chemical structure of α-mangostin as indicated by retained in vitro antioxidant activity. The release rate of α-mangostin significantly increased from 35% to over 90% in 60 minutes. The release of α-mangostin from MPE:PVP nanofibers was dependent on α-mangostin concentration and particle size, as confirmed by the first-order kinetic model as well as the Hixson–Crowell kinetic model. Conclusion We successfully synthesized MPE:PVP nanofiber mats with enhanced antioxidant activity and release rate, which can potentially improve the therapeutic effects offered by MPE.
Collapse
Affiliation(s)
- Ida Sriyanti
- Department of Physics, Faculty of Mathematics and Natural Sciences, .,Research Center for Bioscience and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung, .,Department of Physics Education, Faculty of Education, Universitas Sriwijaya, Palembang
| | - Dhewa Edikresnha
- Department of Physics, Faculty of Mathematics and Natural Sciences, .,Research Center for Bioscience and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung,
| | - Annisa Rahma
- Pharmaceutics Research Division, School of Pharmacy,
| | - Muhammad Miftahul Munir
- Department of Physics, Faculty of Mathematics and Natural Sciences, .,Research Center for Bioscience and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung,
| | - Heni Rachmawati
- Pharmaceutics Research Division, School of Pharmacy, .,Research Center for Nanoscience and Nanotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung, Indonesia,
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, .,Research Center for Bioscience and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Bandung,
| |
Collapse
|
14
|
Cheng X, Zhou Y, Zhang F, Zhu K, Liu Y, Li Y. Base-Promoted Tandem Reaction Involving Insertion into Carbon-Carbon σ-Bonds: Synthesis of Xanthone and Chromone Derivatives. Chemistry 2016; 22:12655-9. [DOI: 10.1002/chem.201602064] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xingcan Cheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 China
| | - Yuanyuan Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 China
| | - Fangfang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 China
| | - Kai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 China
| | - Yuanyuan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 China
| | - Yanzhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 China
| |
Collapse
|
15
|
Koh JJ, Zou H, Lin S, Lin H, Soh RT, Lim FH, Koh WL, Li J, Lakshminarayanan R, Verma C, Tan DTH, Cao D, Beuerman RW, Liu S. Nonpeptidic Amphiphilic Xanthone Derivatives: Structure-Activity Relationship and Membrane-Targeting Properties. J Med Chem 2015; 59:171-93. [PMID: 26681070 DOI: 10.1021/acs.jmedchem.5b01500] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We recently reported the bioinspired synthesis of a highly potent nonpeptidic xanthone, 2c (AM-0016), with potent antibacterial activity against MRSA. Herein, we report a thorough structure-activity relationship (SAR) analysis of a series of nonpeptidic amphiphilic xanthone derivatives in an attempt to identify more potent compounds with lower hemolytic activity and greater membrane selectivity. Forty-six amphiphilic xanthone derivatives were analyzed in this study and structurally classified into four groups based on spacer length, cationic moieties, lipophilic chains, and triarm functionalization. We evaluated and explored the effects of the structures on their membrane-targeting properties. The SAR analysis successfully identified 3a with potent MICs (1.56-3.125 μ/mL) and lower hemolytic activity (80.2 μg/mL for 3a versus 19.7 μg/mL for 2c). Compound 3a displayed a membrane selectivity of 25.7-50.4. Thus, 3a with improved HC50 value and promising selectivity could be used as a lead compound for further structural optimization for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 119074 Singapore
| | - Hanxun Zou
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore.,School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510641, China
| | - Shuimu Lin
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore.,School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510641, China
| | - Huifen Lin
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore
| | - Rui Ting Soh
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore
| | - Fang Hui Lim
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore
| | - Wee Luan Koh
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore
| | - Jianguo Li
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore.,Bioinformatics Institute (A*STAR) , 30 Biopolis Street, 07-01 Matrix, 138671 Singapore
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School , 169857 Singapore
| | - Chandra Verma
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore.,Bioinformatics Institute (A*STAR) , 30 Biopolis Street, 07-01 Matrix, 138671 Singapore.,School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, 637551 Singapore.,Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, 117543 Singapore
| | - Donald T H Tan
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 119074 Singapore.,Singapore National Eye Centre , 11 Third Hospital Avenue, 168751 Singapore
| | - Derong Cao
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510641, China
| | - Roger W Beuerman
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School , 169857 Singapore
| | - Shouping Liu
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, 169856 Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School , 169857 Singapore
| |
Collapse
|
16
|
Asasutjarit R, Larpmahawong P, Fuongfuchat A, Sareedenchai V, Veeranondha S. Physicochemical properties and anti-Propionibacterium acnes activity of film-forming solutions containing alpha-mangostin-rich extract. AAPS PharmSciTech 2014; 15:306-16. [PMID: 24327275 DOI: 10.1208/s12249-013-0057-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to study the effect of formulation compositions on physicochemical properties and anti-Propionibacterium acnes activity of film-forming solutions containing alpha-mangostin-rich extract (AM). Film-forming solution bases and film-forming solutions containing AM were prepared by using Eudragit RL PO or Klucel LF or combinations of them as film-forming polymers. Rheological properties, pH values of the solutions, and mechanical properties of the dry films were investigated. An optimized formulation was selected and evaluated for the film surface, in vitro AM release, an anti-P. acnes activity, and potential for being a skin irritant. It was found that mechanical properties of the dry films were affected by total polymer contents, ratios of Klucel LF/Eudragit RL PO, AM, and contents of triethyl citrate. The film-forming solutions containing AM had pH values around 7.0. Their flow curves exhibited Newtonian flow behaviors. The optimized formulation provided films possessing smooth and nonporous surfaces. These films showed greater anti-P. acnes activity than their base films without toxicity to skin fibroblasts. Furthermore, AM released from the film matrix obeyed Higuchi's equation. In conclusion, the film-forming solutions containing AM had potential for treatment of acne vulgaris caused by P. acnes. However, further in vivo study is necessary to determine their efficacy and safety for using in patients suffering from acne vulgaris.
Collapse
|