1
|
Rezaei A, van den Berg M, Mirlohi H, Verhoye M, Amiri M, Keliris GA. Recurrence quantification analysis of rs-fMRI data: A method to detect subtle changes in the TgF344-AD rat model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108378. [PMID: 39260164 DOI: 10.1016/j.cmpb.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) is one of the leading causes of dementia, affecting the world's population at a growing rate. The preclinical stage of AD lasts over a decade, hence understanding AD-related early neuropathological effects on brain function at this stage facilitates early detection of the disease. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) has been a powerful tool for understanding brain function, and it has been widely used in AD research. In this study, we apply Recurrence Quantification Analysis (RQA) on rs-fMRI images of 4-months (4 m) and 6-months-old (6 m) TgF344-AD rats and WT littermates to identify changes related to the AD phenotype and aging. RQA has been focused on areas of the default mode-like network (DMLN) and was performed based on Recurrence Plots (RP). RP is a mathematical representation of any dynamical system that evolves over time as a set of its state recurrences. In this paper, RPs were extracted in order to identify the affected regions of the DMLN at very early stages of AD. RESULTS Using the RQA approach, we identified significant changes related to the AD phenotype at 4 m and/or 6 m in several areas of the rat DMLN including the BFB, Hippocampal fields CA1 and CA3, CG1, CG2, PrL, PtA, RSC, TeA, V1, V2. In addition, with age, brain activity of WT rats showed less predictability, while the AD rats presented reduced decline of predictability. CONCLUSIONS The results of this study demonstrate that RQA of rs-fMRI data is a potent approach that can detect subtle changes which might be missed by other methodologies due to the brain's non-linear dynamics. Moreover, this study provides helpful information about specific areas involved in AD pathology at very early stages of the disease in a very promising rat model of AD. Our results provide valuable information for the development of early detection methods and novel diagnosis tools for AD.
Collapse
Affiliation(s)
- Arash Rezaei
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hajar Mirlohi
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium; Institute of Computer Science, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| |
Collapse
|
2
|
Kora Y, Salhi S, Davidsen J, Simon C. Global excitability and network structure in the human brain. Phys Rev E 2023; 107:054308. [PMID: 37328981 DOI: 10.1103/physreve.107.054308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/07/2023] [Indexed: 06/18/2023]
Abstract
We utilize a model of Wilson-Cowan oscillators to investigate structure-function relationships in the human brain by means of simulations of the spontaneous dynamics of brain networks generated through human connectome data. This allows us to establish relationships between the global excitability of such networks and global structural network quantities for connectomes of two different sizes for a number of individual subjects. We compare the qualitative behavior of such correlations between biological networks and shuffled networks, the latter generated by shuffling the pairwise connectivities of the former while preserving their distribution. Our results point towards a remarkable propensity of the brain to achieve a trade-off between low network wiring cost and strong functionality, and highlight the unique capacity of brain network topologies to exhibit a strong transition from an inactive state to a globally excited one.
Collapse
Affiliation(s)
- Youssef Kora
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, T2N 4N1 Calgary, Canada
| | - Salma Salhi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, T2N 4N1 Calgary, Canada
| | - Jörn Davidsen
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, T2N 4N1 Calgary, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, T2N 4N1 Calgary, Canada
| |
Collapse
|
3
|
Czyżewski A, Kurowski A, Odya P, Szczuko P. Multifactor consciousness level assessment of participants with acquired brain injuries employing human-computer interfaces. Biomed Eng Online 2020; 19:2. [PMID: 31924202 PMCID: PMC6954635 DOI: 10.1186/s12938-019-0746-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/31/2019] [Indexed: 11/27/2022] Open
Abstract
Background A lack of communication with people suffering from acquired brain injuries may lead to drawing erroneous conclusions regarding the diagnosis or therapy of patients. Information technology and neuroscience make it possible to enhance the diagnostic and rehabilitation process of patients with traumatic brain injury or post-hypoxia. In this paper, we present a new method for evaluation possibility of communication and the assessment of such patients’ state employing future generation computers extended with advanced human–machine interfaces. Methods First, the hearing abilities of 33 participants in the state of coma were evaluated using auditory brainstem response measurements (ABR). Next, a series of interactive computer-based exercise sessions were performed with the therapist’s assistance. Participants’ actions were monitored with an eye-gaze tracking (EGT) device and with an electroencephalogram EEG monitoring headset. The data gathered were processed with the use of data clustering techniques. Results Analysis showed that the data gathered and the computer-based methods developed for their processing are suitable for evaluating the participants’ responses to stimuli. Parameters obtained from EEG signals and eye-tracker data were correlated with Glasgow Coma Scale (GCS) scores and enabled separation between GCS-related classes. The results show that in the EEG and eye-tracker signals, there are specific consciousness-related states discoverable. We observe them as outliers in diagrams on the decision space generated by the autoencoder. For this reason, the numerical variable that separates particular groups of people with the same GCS is the variance of the distance of points from the cluster center that the autoencoder generates. The higher the GCS score, the greater the variance in most cases. The results proved to be statistically significant in this context. Conclusions The results indicate that the method proposed may help to assess the consciousness state of participants in an objective manner.
Collapse
Affiliation(s)
- Andrzej Czyżewski
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| | - Adam Kurowski
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland.
| | - Piotr Odya
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Szczuko
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
4
|
Abstract
Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.
Collapse
Affiliation(s)
- Emmanuelle Tognoli
- The Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - J A Scott Kelso
- The Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA; Intelligent Systems Research Centre, University of Ulster, Magee Campus, Northland Road, Derry BT48 7JL, Northern Ireland, UK.
| |
Collapse
|
5
|
Gruberger M, Maron-Katz A, Sharon H, Hendler T, Ben-Simon E. The wandering mood: psychological and neural determinants of rest-related negative affect. Front Psychol 2013; 4:961. [PMID: 24421771 PMCID: PMC3872732 DOI: 10.3389/fpsyg.2013.00961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022] Open
Abstract
Rest related negative affect (RRNA) has gained scientific interest in the past decade. However, it is mostly studied within the context of mind-wandering (MW), and the relevance of other psychological and neural aspects of the resting state to its’ occurrence has never been studied. Several indications associate RRNA with internally directed attention, yet the nature of this relation remains largely unknown. Moreover, the role of neural networks associated with rest related phenomenology – the default mode (DMN), executive (EXE), and salience (SAL) networks, has not been studied in this context. To this end, we explored two 5 (baseline) and 15-minute resting-state simultaneous fMRI-EEG scans of 29 participants. As vigilance has been shown to affect attention, and thus its availability for inward allocation, EEG-based vigilance levels were computed for each participant. Questionnaires for affective assessment were administered before and after scans, and retrospective reports of MW were additionally collected. Results revealed increased negative affect following rest, but only among participants who retained high vigilance levels. Among low-vigilance participants, changes in negative affect were negligible, despite reports of MW occurrence in both groups. In addition, in the high-vigilance group only, a significant increase in functional connectivity (FC) levels was found between the DMN-related ventral anterior cingulate cortex (ACC), associated with emotional processing, and the EXE-related dorsal ACC, associated with monitoring of self and other’s behavior. These heightened FC levels further correlated with reported negative affect among this group. Taken together, these results demonstrate that, rather than an unavoidable outcome of the resting state, RRNA depends on internal allocation of attention at rest. Results are discussed in terms of two rest-related possible scenarios which defer in mental and neural processing, and subsequently, in the occurrence of RRNA.
Collapse
Affiliation(s)
- Michal Gruberger
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv University Tel Aviv, Israel ; School of Psychological Sciences, Tel Aviv University Tel Aviv, Israel
| | - Adi Maron-Katz
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv University Tel Aviv, Israel ; Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Haggai Sharon
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv University Tel Aviv, Israel ; Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Talma Hendler
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv University Tel Aviv, Israel ; School of Psychological Sciences, Tel Aviv University Tel Aviv, Israel ; Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Eti Ben-Simon
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv University Tel Aviv, Israel ; Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
6
|
Northoff G. What the brain's intrinsic activity can tell us about consciousness? A tri-dimensional view. Neurosci Biobehav Rev 2012; 37:726-38. [PMID: 23253946 DOI: 10.1016/j.neubiorev.2012.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022]
Abstract
Current neuroscience applies a bi-dimensional model to consciousness. Content and level of consciousness have been distinguished from each other in their underlying neuronal mechanisms. This though leaves open the role of the brain's intrinsic activity and its particular temporal and spatial structure in consciousness. I here review and investigate the spatial and temporal features of the brain's intrinsic activity in detail and postulate what I describe as spatiotemporal structure that implies a virtual (e.g., statistically based) spatiotemporal continuity. Such spatiotemporal continuity is supposed to structure and organize the neural processing of the incoming extrinsic stimuli and their potential association with consciousness. I therefore conclude that the current bi-dimensional view of consciousness focusing only on content and level may need to be complemented by a third dimension, the form, e.g., spatiotemporal structure, as provided by the intrinsic activity. In short, I here opt for tri-rather than bi-dimensional view of consciousness.
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, Canada.
| |
Collapse
|
7
|
Yamanishi T, Liu JQ, Nishimura H. Modeling fluctuations in default-mode brain network using a spiking neural network. Int J Neural Syst 2012; 22:1250016. [PMID: 22830966 DOI: 10.1142/s0129065712500165] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.
Collapse
Affiliation(s)
- Teruya Yamanishi
- Department of Management Information Science, Fukui University of Technology, Fukui, 910-8505, Japan.
| | | | | |
Collapse
|
8
|
Imaging and Cognitive Genetics: The Norwegian Cognitive NeuroGenetics Sample. Twin Res Hum Genet 2012; 15:442-52. [DOI: 10.1017/thg.2012.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Data collection for the Norwegian Cognitive NeuroGenetics sample (NCNG) was initiated in 2003 with a research grant (to Ivar Reinvang) to study cognitive aging, brain function, and genetic risk factors. The original focus was on the effects of aging (from middle age and up) and candidate genes (e.g., APOE, CHRNA4) in cross-sectional and longitudinal designs, with the cognitive and MRI-based data primarily being used for this purpose. However, as the main topic of the project broadened from cognitive aging to imaging and cognitive genetics more generally, the sample size, age range of the participants, and scope of available phenotypes and genotypes, have developed beyond the initial project. In 2009, a genome-wide association (GWA) study was undertaken, and the NCNG proper was established to study the genetics of cognitive and brain function more comprehensively. The NCNG is now controlled by the NCNG Study Group, which consists of the present authors. Prominent features of the NCNG are the adult life-span coverage of healthy participants with high-dimensional imaging, and cognitive data from a genetically homogenous sample. Another unique property is the large-scale (sample size 300–700) use of experimental cognitive tasks focusing on attention and working memory. The NCNG data is now used in numerous ongoing GWA-based studies and has contributed to several international consortia on imaging and cognitive genetics. The objective of the following presentation is to give other researchers the information necessary to evaluate possible contributions from the NCNG to various multi-sample data analyses.
Collapse
|
9
|
Abstract
Nowadays, the term medical physics usually refers to the work of physicists employed in hospitals, who are concerned mainly with medical applications of radiation, diagnostic imaging, and clinical measurement. This involvement in clinical work began barely 100 years ago, but the relation between physics and medicine has a much longer history. In this report, I have traced this history from the earliest recorded period, when physical agents such as heat and light began to be used to diagnose and treat disease. Later, great polymaths such as Leonardo da Vinci and Alhazen used physical principles to begin the quest to understand the function of the body. After the scientific revolution in the 17th century, early medical physicists developed a purely mechanistic approach to physiology, whereas others applied ideas derived from physics in an effort to comprehend the nature of life itself. These early investigations led directly to the development of specialties such as electrophysiology, biomechanics, and ophthalmology. Physics-based medical technology developed rapidly during the 19th century, but it was the revolutionary discoveries about radiation and radioactivity at the end of the century that ushered in a new era of radiation-based medical diagnosis and treatment, thereby giving rise to the modern medical physics profession. Subsequent developments in imaging in particular have revolutionised the practice of medicine. We now stand on the brink of a new revolution in post-genomic personalised medicine, with physics-based techniques again at the forefront. As before, these techniques are often the unpredictable fruits of earlier investment in basic physics research.
Collapse
Affiliation(s)
- Stephen F Keevil
- Department of Medical Physics, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
10
|
|