1
|
Garewal N, Pathania S, Bhatia G, Singh K. Identification of Pseudo-R genes in Vitis vinifera and characterization of their role as immunomodulators in host-pathogen interactions. J Adv Res 2022; 42:17-28. [PMID: 35933092 PMCID: PMC9788958 DOI: 10.1016/j.jare.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Duplication events are fundamental to co-evolution in host-pathogen interactions. Pseudogenes (Ψs) are dysfunctional paralogs of functional genes and resistance genes (Rs) in plants are the key to disarming pathogenic invasions. Thus, deciphering the roles of pseudo-R genes in plant defense is momentous. OBJECTIVES This study aimed to functionally characterize diverse roles of the resistance Ψs as novel gene footprints and as significant gene regulators in the grapevine genome. METHODS PlantPseudo pipeline and HMM-profiling identified whole-genome duplication-derived (WGD) Ψs associated with resistance genes (Ψ-Rs). Further, novel antifungal and antimicrobial peptides were characterized for fungal associations using protein-protein docking with Erysiphe necator proteins. miRNA and tasiRNA target sites and transcription factor (TF) binding sites were predicted in Ψ-Rs. Finally, differential co-expression patterns in Ψ-Rs-lncRNAs-coding genes were identified using the UPGMA method. RESULTS 2,746 Ψ-Rs were identified from 31,032 WGD Ψs in the genome of grapevine. 69-antimicrobial and 81-antifungal novel peptides were generated from Ψ-Rs. The putative genic potential was predicted for five novel antifungal peptides which were further characterized by docking against E. necator proteins. 395 out of 527 resistance loci-specific Ψ-Rs were acting as parental gene mimics. Further, to explore the diverse roles of Ψ-Rs in plant-defense, we identified 37,026 TF-binding sites, 208 miRNA, and 99 tasiRNA targeting sites on these Ψ-Rs. 194 Ψ-Rs were exhibiting tissue-specific expression patterns. The co-expression network analysis between Ψs-lncRNA-genes revealed six out of 79 pathogen-responsive Ψ-Rs as significant during pathogen invasion. CONCLUSIONS Our study provides pathogen responsive Ψ-Rs integral for pathogen invasion, which will offer a useful resource for future experimental validations. In addition, our findings on novel peptide generations from Ψ-Rs offer valuable insights which can serve as a useful resource for predicting novel genes with the futuristic potential of being investigated for their bioactivities in the plant system.
Collapse
Affiliation(s)
- Naina Garewal
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | - Garima Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India,Department of Biology, University of Pennsylvania, Philadelphia, USA1
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India,Corresponding author.
| |
Collapse
|
5
|
Deepthi V, V. I. Nair V, Thomas V, Raj N, P. Ramakrishnan S, Khan J, Kaushik M, K. Dhar P, S. Nair A. Function annotation of peptides generated from the non-coding regions of D. melanogaster genome. Bioinformation 2016; 12:202-208. [PMID: 28149056 PMCID: PMC5267965 DOI: 10.6026/97320630012202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
De novo emergence of genes is the most fundamental form of genetic diversity that is attracting the attention of the scientific community. Identification of short open reading frames (sORFs) from the non-coding regions of different genomes has been leading this thought recently. The coding potential of these newly identified sORFs have been investigated through experimental and computational approaches in recent studies. In the present work we have tried to make peptides from intergenic sequences of D. melanogaster genome leading to therapeutic applications. Towards this goal of making novel peptides from non-coding genome, we have found strong computational evidence of 145 peptides with conformational stability from the intergenic sequences of D. melanogaster. The structure of these completely unique peptides was predicted using ab initio method. The function annotation of these peptides was carried out using this structural information. The newly generated proteins were categorised as DNA/Protein/ion binding proteins, electron transporters and a very few as enzymes too. Experimental studies can certainly provide validations to these preliminary findings. This work provides further evidence of untapped potential of non-coding genome.
Collapse
Affiliation(s)
- Varughese Deepthi
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| | - Vineetha V. I. Nair
- Indian Institute of Information Technology and Management, Kerala,Technopark, Trivandrum, India
| | - Vipin Thomas
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| | - Navya Raj
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| | - Shidhi P. Ramakrishnan
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| | - Juveria Khan
- School of Biotechnology,Jawaharlal Nehru University, New Delhi 110067
| | - Monika Kaushik
- School of Biotechnology,Jawaharlal Nehru University, New Delhi 110067
| | - Pawan K. Dhar
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
- School of Biotechnology,Jawaharlal Nehru University, New Delhi 110067
| | - Achuthsankar S. Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| |
Collapse
|
6
|
Thomas V, Raj N, Varughese D, Kumar N, Sehrawat S, Grover A, Singh S, Dhar PK, Nair AS. Predicting stable functional peptides from the intergenic space of E. coli. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:135-140. [PMID: 28392846 DOI: 10.1007/s11693-015-9172-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Expression of synthetic proteins from intergenic regions of E. coli and their functional association was recently demonstrated (Dhar et al. in J Biol Eng 3:2, 2009. doi:10.1186/1754-1611-3-2). This gave birth to the question: if one can make 'user-defined' genes from non-coding genome-how big is the artificially translatable genome? (Dinger et al. in PLoS Comput Biol 4, 2008; Frith et al. in RNA Biol 3(1):40-48, 2006a; Frith et al. in PLoS Genet 2(4):e52, 2006b). To answer this question, we performed a bioinformatics study of all reported E. coli intergenic sequences, in search of novel peptides and proteins, unexpressed by nature. Overall, 2500 E. coli intergenic sequences were computationally translated into 'protein sequence equivalents' and matched against all known proteins. Sequences that did not show any resemblance were used for building a comprehensive profile in terms of their structure, function, localization, interactions, stability so on. A total of 362 protein sequences showed evidence of stable tertiary conformations encoded by the intergenic sequences of E. coli genome. Experimental studies are underway to confirm some of the key predictions. This study points to a vast untapped repository of functional molecules lying undiscovered in the non-expressed genome of various organisms.
Collapse
Affiliation(s)
- Vipin Thomas
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, 695581 Kerala India
| | - Navya Raj
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, 695581 Kerala India
| | - Deepthi Varughese
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, 695581 Kerala India
| | - Naveen Kumar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201316 U.P. India
| | - Seema Sehrawat
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201316 U.P. India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201316 U.P. India
| | - Pawan K Dhar
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, 695581 Kerala India.,School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, 695581 Kerala India
| |
Collapse
|
11
|
Shidhi PR, Suravajhala P, Nayeema A, Nair AS, Singh S, Dhar PK. Making novel proteins from pseudogenes. Bioinformatics 2015; 31:33-9. [PMID: 25236460 DOI: 10.1093/bioinformatics/btu615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
MOTIVATION Recently, we made synthetic proteins from non-coding DNA of Escherichia coli. Encouraged by this, we asked: can we artificially express pseudogenes into novel and functional proteins? What kind of structures would be generated? Would these proteins be stable? How would the organism respond to the artificial reactivation of pseudogenes? RESULTS To answer these questions, we studied 16 full-length protein equivalents of pseudogenes. The sequence-based predictions indicated interesting molecular and cellular functional roles for pseudogene-derived proteins. Most of the proteins were predicted to be involved in the amino acid biosynthesis, energy metabolism, purines and pyrimidine biosynthesis, central intermediary metabolism, transport and binding. Interestingly, many of the pseudogene-derived proteins were predicted to be enzymes. Furthermore, proteins showed strong evidence of stable tertiary structures. The prediction scores for structure, function and stability were found to be favorable in most of the cases. IMPACT To our best knowledge, this is the first such report that predicts the possibility of making functional and stable proteins from pseudogenes. In future, it would be interesting to experimentally synthesize and validate these predictions.
Collapse
Affiliation(s)
- P R Shidhi
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India
| | - Prashanth Suravajhala
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India
| | - Aysha Nayeema
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India
| | - Shailja Singh
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India
| | - Pawan K Dhar
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum- 695 581, India, Bioinformatics.Org, 28 Pope Street, Hudson, MA 01749, USA, Bioclues.org, India, Bioclues.org, Denmark, National College, University of Kerala, Trivandrum- 695 009, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh- 201 314, and Centre for Systems and Synthetic Biology, University of Kerala, Kariyavattom, Trivandrum- 695 581, India
| |
Collapse
|
14
|
Stomel JM, Wilson JW, León MA, Stafford P, Chaput JC. A man-made ATP-binding protein evolved independent of nature causes abnormal growth in bacterial cells. PLoS One 2009; 4:e7385. [PMID: 19812699 PMCID: PMC2754611 DOI: 10.1371/journal.pone.0007385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/15/2009] [Indexed: 11/18/2022] Open
Abstract
Recent advances in de novo protein evolution have made it possible to create synthetic proteins from unbiased libraries that fold into stable tertiary structures with predefined functions. However, it is not known whether such proteins will be functional when expressed inside living cells or how a host organism would respond to an encounter with a non-biological protein. Here, we examine the physiology and morphology of Escherichia coli cells engineered to express a synthetic ATP-binding protein evolved entirely from non-biological origins. We show that this man-made protein disrupts the normal energetic balance of the cell by altering the levels of intracellular ATP. This disruption cascades into a series of events that ultimately limit reproductive competency by inhibiting cell division. We now describe a detailed investigation into the synthetic biology of this man-made protein in a living bacterial organism, and the effect that this protein has on normal cell physiology.
Collapse
Affiliation(s)
- Joshua M. Stomel
- Center for BioOptical Nanotechnology, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - James W. Wilson
- Center for Infectious Disease and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Megan A. León
- Center for BioOptical Nanotechnology, Arizona State University, Tempe, Arizona, United States of America
| | - Phillip Stafford
- Center for Innovations in Medicine, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - John C. Chaput
- Center for BioOptical Nanotechnology, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|